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Measuring urban tree loss dynamics across residential 
landscapes

Alessandro Ossola and
US Environmental Protection Agency, National Risk Management Research Laboratory, Office of 
Research and Development, Sustainable Technology Division, 26 W. Martin Luther King Dr., 
Cincinnati, OH, 45268, USA.

Matthew E. Hopton*

US Environmental Protection Agency, National Risk Management Research Laboratory, Office of 
Research and Development, Sustainable Technology Division, 26 W. Martin Luther King Dr., 
Cincinnati, OH, 45268, USA.

Abstract

The spatial arrangement of urban vegetation depends on urban morphology and socio-economic 

settings. Urban vegetation changes over time because of human management. Urban trees are 

removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to 

decreases in canopy cover. However, this provides little information about location and structural 

characteristics of trees lost, as well as environmental and social factors affecting tree loss 

dynamics. This is particularly relevant in residential landscapes where access to residential parcels 

for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral 

imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across 

residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 

444 census tracts. Position and stem height of trees lost were extracted from canopy height models 

calculated as the difference between final (year 5) and initial (year 0) vegetation height derived 

from LiDAR. Multivariate regression models were used to predict number and height of tree stems 

lost in residential parcels in each census tract based on urban morphological and socio-economic 

variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee 

over 5 years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km2. 

Average stem height was 10.16 m, though trees lost in Denver were taller compared to Milwaukee. 

The number of stems lost was higher in neighborhoods with higher canopy cover and developed 

before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. 

The study provides a simple method for measuring urban tree loss dynamics within and across 

entire cities, and represents a further step towards high resolution assessments of the three-

dimensional change of urban vegetation at large spatial scales.
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1. Introduction

When viewed from above, most urban landscapes contain trees and vegetation. These can 

provide humans a number of important ecosystem services ranging from stormwater runoff 

and pollution reduction to urban heat island mitigation and psychological wellbeing (Dobbs 

et al. 2011, Livesley et al. 2016). As such, it is not surprising that over the last two decades 

the increased availability of remotely sensed imagery has fueled research on urban tree 

canopy cover (Iverson and Cook 2000, Mennis 2006, Jiang et al. 2017). These investigations 

have largely focused on the assessment of factors regulating canopy cover, such as the 

morphological characteristics of urban landscapes (e.g., land use, parcel size, age of 

development) (Luck et al. 2009, Lowry et al. 2012, Bigsby et al. 2014) and socio-economic 

characteristics of neighborhoods (e.g., education, income) (Grove et al. 2006, 2014, Schwarz 

et al. 2015).

Advancements in data collection, storage, and processing have made LiDAR (Light 
Detection And Ranging) technology much more efficient for accurate assessments of the 

three-dimensional structure of urban trees and vegetation (Alonzo et al. 2014, Raciti et al. 

2014, Mitchell et al. 2016). These investigations are important because the structure of 

vegetation, rather than its cover per se, can significantly affect the biophysical and micro-

climatic characteristics of urban greenspace (McPherson et al. 1997, Davis et al. 2016), 

ecological and hydrological processes (Ossola et al. 2015a, Ossola et al. 2016), and the 

provision of habitat for biodiversity (Stagoll et al. 2012, Le Roux et al. 2014, Ossola et al. 

2015b).

However, the structure of urban vegetation is not a static measure because it is continuously 

re-shaped through human management and environmental factors. For example, it is 

estimated that about 4 million urban trees are lost each year in the United States (US), 

corresponding to about 1% of urban forests of the entire country (Nowak and Greenfield 

2012). On the other hand, hundreds of exotic and native species of trees and shrubs are 

regularly planted in urban greenspace (Clarke et al. 2013, Threlfall et al. 2016). As such, the 

evaluation of spatial and temporal changes of vegetation and trees in urban landscapes can 

provide insights on the environmental and social factors driving these dynamics. This is 

particularly relevant in residential landscapes where the diversity of people’s preferences 

and attitudes toward trees and vegetation can greatly affect management practices of 

vegetation (Cook et al. 2012, Kendal et al. 2012, van Heezik et al. 2013, Pearce et al. 2015, 

Conway 2016, Visscher et al. 2016).

Similar to assessments of urban tree cover, those evaluating urban forest dynamics (e.g., 

growth, mortality, etc.) have relied on the comparison of multi-temporal medium-and high-

resolution imagery to date (Zhao et al. 2013, Zhao et al. 2016). Studies based on field-

collected data examining temporal changes in vegetation structure have been generally 
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restricted to small geographical areas due to the costs associated with field surveys, limited 

access to sites of interest (Quigley 2002, O’Brien et al. 2012, Briber et al. 2015, Enloe et al. 

2015, Vogt et al. 2015), or the sporadic occurrence of atmospheric events such as storms and 

hurricanes (Burley et al. 2008, Staudhammer et al. 2011). Similarly, few manipulative 

experiments designed to evaluate the effects of urbanization on tree and vegetation growth or 

productivity have been focused on comparisons between urban and rural sites (Gregg et al. 

2003, Ziska et al. 2004, Searle et al. 2012, Singh et al. 2017). At large spatial scales, most 

literature on urban tree loss dynamics has focused on changes in canopy cover (Nowak and 

Greenfield 2012, Hostetler et al. 2013). These studies, however, provide little information on 

location and structural characteristics (e.g., stem height) of trees lost, and as such, on the 

potential environmental and socio-economic factors driving these changes.

The recent availability of multi-temporal LiDAR datasets for some rural forests and 

plantations has allowed the investigation of vegetation structural dynamics over spatial 

scales ranging from individual plots to entire landscapes. For example, numerous attempts 

have been made to measure short-term (2–11 years) tree growth (Næsset and Gobakken 

2005, Hopkinson et al. 2008) and changes in tree biomass (Meyer et al. 2013, Økseter et al. 

2015, Cao et al. 2016). Similarly, canopy gap opening and closure in rural forests and tree 

harvesting in plantations have been monitored using LiDAR (Yu et al. 2004, Vepakomma et 

al. 2008, Vepakomma et al. 2010, Vepakomma et al. 2011). The only LiDAR-based study 

investigating dynamics of vegetation structure in urban systems was restricted to a single 

urban park in Osaka, Japan, over a six-year period (Song et al. 2016).

This study addresses the following objectives: i) to devise a method based on medium-

resolution LiDAR collected at a 5-year interval to measure dynamics of urban tree loss 

across entire residential landscapes, and ii) to apply this method in two US cities to identify 

potential relationships between dynamics of tree loss (i.e., number of stems lost in a 5-year 

period and their height), and the morphological and socio-economic characteristics of 

residential landscapes.

2. Methods and data

2.1. Study areas

The metropolitan areas of Denver, CO and Milwaukee, WI were selected for this study due 

to their contrasting urbanization trajectories and availability of geospatial datasets (Fig. 1).

Denver’s metropolitan area is situated in the Colorado Piedmont of the Great Plains, 

between the High Plains and the Rocky Mountains in the South Platte River Valley. Located 

at an altitude ranging from 1564 and 1768 m above sea level, the area has a semi-arid 

continental climate (Kottek et al. 2006) with mean annual temperature of 10.3°C and mean 

annual precipitation of 440 mm (PRISM Climate Group 2015). Denver was founded in 1858 

and its population has recently grown to more than 750,000 people, making it one of the 

fastest growing US cities (US Census Bureau 2010).

Milwaukee’s metropolitan area is located on the western shore of Lake Michigan at an 

altitude between 179 and 259 m above sea level. Due to its proximity to the Great Lakes, 
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Milwaukee has a humid continental climate (Kottek et al. 2006) with a mean annual 

temperature of 9.0°C and mean annual precipitation of 861 mm (PRISM Climate Group 

2015). European immigrants settled in the area in the 1830’s and the population peaked in 

the 1960’s to then decrease to 850,000 inhabitants to date (US Census Bureau 2010). As 

such, Milwaukee is currently considered a shrinking city. The Milwaukee study area (516 

km2) is larger than that in Denver (448 km2), comprising some peri-urban forest and 

agricultural land intermixed with developed areas.

2.2. Data sources

Two airborne LiDAR point cloud datasets with similar point density were used for each city 

(Table 1).

LiDAR point clouds were collected in 2008 and 2013 for Denver, and in 2010 and 2015 for 

Milwaukee, resulting in LiDAR datasets collected at a 5-year interval. LiDAR datasets for 

Denver and Milwaukee were acquired by USGS and the Southeastern Wisconsin Regional 

Planning Commission, respectively, and are publicly available for download (Denver, http://

nationalmap.gov/; Milwaukee, http://county.milwaukee.gov/mclio/geodata.html). Ground 

returns were already classified by the data provider. Aerial 4-band visible (RBG) and near-

infrared (NIR) imagery at 1 m resolution were obtained from the National Agricultural 

Imagery Program (NAIP, United States Department of Agriculture; http://

datagateway.nrcs.usda.gov/). NAIP imagery for Denver was acquired in 2009 and 2013, and 

for Milwaukee in 2010 and 2015. The collection of LiDAR and NAIP data was not 

simultaneous because LiDAR data are preferentially collected in winter when leaves are 

absent (“leaf off”), and NAIP imagery is acquired in summer at the peak of the growing 

season (“leaf on”). A time offset up to 3 years in the collection of LiDAR data and NAIP 

imagery was assumed to not significantly change urban vegetation structure in Chicago, IL 

(Davis et al. 2016). In this study, the maximum offset between LiDAR and NAIP data was 

limited to 1 year (i.e., Denver 2008–2009).

Land use/zoning and parcel maps were used to locate residential properties within the urban 

landscape (n=187,478 and 213,227 for Denver and Milwaukee, respectively). Publicly 

available land use and parcel data for Denver were acquired from the City of Denver (https://

www.denvergov.org/opendata/), the City of Aurora (https://apps2.auroragov.org/opendata/) 

and Arapahoe County (http://www.arapahoegov.com/), whereas data for Milwaukee were 

acquired from Milwaukee County (http://county.milwaukee.gov/mclio). Socio-economic 

indicators related to population, education, employment, income inequality (Gini Index), and 

house physical characteristics for the year 2010 (Appendix A) were obtained from the 

American FactFinder (US Census Bureau 2010), and summarized at the census tract level as 

a proxy for neighborhoods (n=177 and 267 for Denver and Milwaukee, respectively).

2.3. Geostatistical analyses and validation

LiDAR—LiDAR point clouds were imported in ArcGIS Desktop 10.4.1 (ESRI, Redlands, 

CA). Point outliers located at more than 100 m above the ground (e.g., bird returns) were 

reclassified as high-noise and excluded from analysis. Digital terrain models (DTMs) for 

each LiDAR dataset were interpolated from ground returns using a triangulation (natural 
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neighbor) approach (Davis et al. 2016). To accommodate for differences in point density due 

to LiDAR swaths and urban morphology, a raster cell size of 1.5 m was set. Although this 

size is about double the suggested minimum size based on the average density of the first 

returns of the LiDAR datasets (Chen et al. 2006), it was used in Chicago, IL using a LiDAR 

dataset with comparable point density (Davis et al. 2016). Digital surface models (DSMs) 

for each LiDAR dataset were interpolated from the first returns of above-ground features 

using the same methodology used for the interpolation of the DTMs. From each DSM, the 

respective DTM was subtracted to calculate the normalized digital surface models (nDSMs), 

which represent the absolute altitude of urban features (e.g., vegetation, buildings, etc.) from 

the ground.

VEGETATION STRUCTURAL CHARACTERISTICS—The Normalized Difference 

Vegetation Index (NDVI) was calculated for each of the four NAIP datasets. Woody and 

herbaceous vegetation were distinguished from non-vegetated areas by using a supervised 

classification approach based on data fusion in ArcGIS Desktop 10.4.1 (ESRI, Redlands, 

CA). This approach allows the classification of urban features and land use over large 

geographic areas (Singh et al. 2012), and avoids the use of subjective thresholds in NDVI-

based classifications. Thus, the NAIP 4 bands (RGB and NIR) were fused to the 

corresponding NDVI and nDSM layers for each city and temporal replication. A polygon 

training sample and the respective spectral signature were created by manually classifying a 

minimum of 100,000 pixels for each of three classes (woody vegetation, herbaceous 

vegetation, non-vegetated). The spectral signature was used as input for supervised 

classification using a maximum likelihood classifier (ML). Compared to other classifiers 

(e.g., classification trees) ML has been demonstrated to accurately map urban land use, 

particularly during large-scale assessments (Singh et al. 2012).

By using an ML on each fused dataset, a canopy mask was created based both on the 

spectral (i.e., RGB and NIR) and structural (i.e., LiDAR) characteristics of vegetation by 

selecting the woody vegetation class. Each canopy mask was used to crop the nDSMs and 

calculate canopy height models (CHMs) and canopy cover for each city and year. Vegetation 

volume (m3) for each city and year was calculated by multiplying the canopy height by the 

pixel size (2.25 m2), assuming the entire volume to be occupied by vegetation (e.g., stems, 

branches, leaves, etc.—from canopy to ground). Change in vegetation height (ΔCHMs, m) 

was calculated by subtracting CHM 2008 from 2013 for Denver, and 2010 CHM from 2015 

for Milwaukee. The location and height of trees (> 5 m) lost during the 5-year period in each 

city was calculated by using the rLiDAR library (Silva et al. 2015) in R 3.3.1 (R Core Team 

2016) on the inverted ΔCHMs (Fig. 2). The function FindTreeCHM of the rLiDAR library 

locates individual tree tops and their heights by using an algorithm that finds local maxima 

within a fixed window (Silva et al. 2015). To exclude shrubs and tree saplings from analyses, 

we assumed adult trees to be taller than 5 m and have a canopy footprint larger than 20 m2. 

Thus, the window size in FindTreeCHM was set to 3 pixel units (i.e., 4.5 m) and the 

minimum detection height threshold to 5 m.

GEOSPATIAL ANALYSIS VALIDATION—The accuracy of the DTMs and nDSMs was 

calculated by comparing the two temporal models created for each city (i.e., 2008 and 2013 
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for Denver; 2010 and 2015 for Milwaukee). In particular, 100 points were randomly selected 

in correspondence of bare ground and paved surfaces and the values from each DTM were 

detected to test their correlation (Pearson) using R 3.3.1 (R Core Team 2016). Similarly, 100 

points were randomly selected in correspondence of roof tops and values of each nDSM 

were detected to test the correlation of the two nDSMs for each city. In doing so, we 

assumed that ground and roofs did not significantly change over the 5-year periods, as was 

visually confirmed through inspection of the NAIP imagery.

The accuracy and reliability of the supervised classification of fused data for creating 

vegetation masks was performed by randomly generating 100 points for both vegetation 

classes (i.e., woody and herbaceous). Each point was visually truthed using the NAIP 

imagery to calculate a confusion matrix, and thus reliability (type I errors, false positives), 

accuracy (type II errors, false negatives), and the overall performance of classification 

(Kappa coefficient). The accuracy of the workflow used for identifying tree stems lost in 

residential areas in the 5-year period was tested by randomly selecting 200 stems out of the 

all tree stems lost in both Denver and Milwaukee using ArcGIS Desktop 10.4.1 (ESRI, 

Redlands, CA). These 400 stems were imported to Google Earth Pro™ to visually inspect 

their actual removal by comparing independent historic satellite imagery (DigitalGlobe, 

resolution <1 m) taken before 2008 and after 2013 in Denver, and before 2010 and after 

2015 in Milwaukee. Accuracy was calculated as the ratio between the number of correctly 

classified tree stems lost and their total number (n=200).

2.4. Statistical analyses

DATA PREPARATION—Vegetation volume and canopy cover were summarized within 

each residential parcel and standardized based on the parcel area for each temporal replicate 

and city. Parcel level variables were summarized at census tract level by averaging all the 

values from all the residential parcels within each census tract. The total number of tree 

stems and average height was summarized at census tract level. Census tracts with fewer 

than 100 residential parcels were excluded from statistical analyses to allow a larger 

statistical base.

Racial composition and age of neighborhoods have been demonstrated to be related to 

canopy cover in numerous US cities (e.g., Grove et al. 2006, Lowry Jr. et al. 2012). Thus, a 

racial diversity index was computed from the proportion of the different races living in each 

census tract by calculating the Shannon-Weiner diversity index using the library vegan 
(Oksanen et al. 2014) in R 3.3.1 (R Core Team 2016). The decade of maximum housing 
development was calculated as the decade having the highest number of built structures in 

each census tract and it was used as a proxy for the age of neighborhoods.

STATISTICAL ANALYSES—Multivariate linear regression analysis was used to assess 

the relationship between urban morphological and socio-economic characteristics and i) 

total number of tree stems lost in each census tract and ii) average height of all tree stems 

lost in each census tract (response variables). In particular, three model types (i.e., urban 
morphology, socio-economic, and global) were fitted for each city. Urban morphology 
models were fitted using predictor variables related to vegetation, parcel, and physical 
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characteristics of land use (Table 2), and previously used to model distribution of urban tree 

cover (Bigsby et al. 2014).

Socio-economic models were fitted based on predictor variables related to social and 

economic characteristics of census tracts (Table 2). Global models were fitted by using both 

urban morphology and socio-economic predictors. Before regression analyses, variables 

were checked to exclude outliers and test bi-variate relationships among variables (Zuur et 

al. 2009). To avoid multicollinearity of the predictor variables (Appendix B), these were 

selected using a stepwise procedure based on the variance inflation factor (VIF) with a set 

threshold of 3 (R2 = 0.66) (Dormann et al. 2013) (Table 2). Variables were transformed 

using logarithmic and squared-root transformations as required to meet normality and 

heteroscedasticity assumptions. Small sample-size corrected Akaike information criterion 

(AICc) was used to determine the level of support for the three competing model types for 

each city and response variable, by selecting the model with the lowest AICc. Statistical 

analyses were performed in R 3.3.1 (R Core Team 2016) using the libraries corrplot (Wei 

and Simko 2016), usdm (Naimi 2015), gvlma (Peña and Slate 2015), to compute 

correlations, VIF-variable selections, and regression analyses, respectively. Average values 

are reported in Results with their standard errors unless otherwise stated.

3. Results

The DTMs and nDSMs calculated from the LiDAR datasets at i) the beginning and ii) the 

end of the 5-year periods were significantly correlated (ρ>0.98) both in Denver and 

Milwaukee (Appendix C). The supervised classifications of urban vegetation (woody, 

herbaceous, and non-vegetated) based on data fusion of NAIP, NDVI, and nDSM yielded 

accuracy and reliability of classification >91% for both temporal replicate datasets of the 

two cities (Appendix D). The accuracy of the rLiDAR detection of the tree stems lost based 

on the ΔCHMs was 95% on average (97% for Denver and 92% for Milwaukee).

A total of 13,427 and 15,000 tree stems (height > 5m) were lost in the 5-year period from 

residential parcels in Denver (2008–2013) and Milwaukee (2010–2015), respectively. On a 

per area basis, this corresponds to an average of 99.33 ± 3.49 (Denver) and 82.41 ± 2.14 

(Milwaukee) tree stems per km2 of residential area. The tallest stems lost in Denver and 

Milwaukee were 28.04 and 23.82 m high, respectively. Tree stems lost in Denver were taller 

on average (11.42 ± 0.03 m) compared to those lost in Milwaukee (8.95 ± 0.02 m) (Fig. 3).

Urban morphology and global models predicting the number of tree stems lost had the 

lowest AICc for Denver and Milwaukee, respectively (Table 3).

Initial canopy cover was positively related to the number of tree stems lost in residential 

landscapes in both cities, whereas the decade of maximum housing development and racial 
diversity index were negative predictors in Denver and Milwaukee, respectively (Table 4). 

The number of tree stems lost during a 5-year period was generally greater in neighborhoods 

having higher residential woody vegetation cover and volume in both cities (Fig. 4). In 

Denver, but not in Milwaukee, the number of tree stems lost decreased with the age of 

neighborhoods (Fig. 5A).

Ossola and Hopton Page 7

Sci Total Environ. Author manuscript; available in PMC 2019 January 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



In both cities, global models were selected to predict the height of tree stems lost (Table 3). 

In Denver, stem height was negatively related to percentage of families below poverty level 
and positively to Gini index (Table 5).

The percentage of vacant housing units was a negative predictor for stem height in both 

cities, though this was marginally non-significant in Milwaukee (Table 5).

4. Discussion

4.1 LiDAR and tree loss dynamics in residential landscapes

The devised methodology, based on comparison of two CHMs calculated for different years 

(ΔCHMs) followed by stem loss detection with rLiDAR, held comparable results between 

Denver and Milwaukee. LiDAR point clouds had relatively low point density and were 

acquired by various providers using different sensors and flight and data processing settings. 

However, the methodology proved to be a simple procedure for the synoptic assessment of 

changes in urban forest structure within residential landscapes across two large urban areas 

(>250 km2). LiDAR datasets have been recently used to measure vegetation attributes at 

smaller spatial scales, such as a few local neighborhoods or greenspaces (Raciti et al. 2014, 

Caynes et al. 2016), though some investigations covered entire urban areas (Singh et al. 

2012, Davis et al. 2016, Mitchell et al. 2016). When attempts to evaluate structural changes 

of urban vegetation have been made, they were generally limited to a single urban 

greenspace (Song et al. 2016). As such, this study initiates the use of multi-source LiDAR 

and multi-spectral datasets for investigation of dynamics of urban forests within relatively 

short temporal scales (5 years) and across entire cities.

Our methodological approach seems to be particularly suitable in residential landscapes 

because these are characterized by scattered and relatively isolated trees, suggesting its 

potential application to other urban land uses having similar canopy structural 

characteristics, such as urban parks and streetscapes. In comparison, preliminary trials 

outside of Milwaukee’s residential area, where the forest has a more closed and homogenous 

canopy cover, yielded slightly less accurate stem loss detections (results not shown). Using a 

similar approach based on co-registered LiDAR-derived CHMs collected at a 5-year interval 

and coupled with an object-based delineation technique, Vepakomma et al. (2008) were able 

to automatically detect naturally-occurring canopy gaps in a small 6 km2 patch of Canadian 

boreal forest with 96% accuracy, which is comparable to the average accuracy achieved in 

this study.

A possible limitation of our methodological approach lies in the detection of tree stems 

through rLiDAR, which is based on the uppermost morphology of tree canopies (Silva et al. 

2015). Thus, it is possible stems of smaller trees lost in the understory might not have been 

detected, and these are likely to be underestimated. On the other hand, two stems rather than 

two main branches might have been detected within the same canopy footprint in some 

instances (Fig. 2A), causing possible overestimations. This is a known limitation of the 

calculation of canopy metrics from CHMs, which is likely to have dissimilar effects on tree 

species based on their respective morphological traits (e.g., broadleaf vs conifer) and canopy 

architecture (Huabing et al. 2009). The detection of trees removed or still standing using 
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remote-sensing data remains a challenging task in urban areas where the diversity of urban 

forests might be high (Gillespie et al. 2017). Despite the importance of field-based 

information to validate remote sensing data (Gillespie et al. 2017), in our study, the lack of 

available tree-loss datasets and the impossibility to locate tree stems lost with a targeted field 

survey impeded the validation of the tree loss dataset with independent field-based data. 

Though the resolution of the LiDAR and multispectral datasets used in this study did not 

allow the discrimination of tree genera or species, further improvements could be obtained 

through tree species classification based on LiDAR datasets with higher point density and 

novel remote sensing techniques (Alonzo et al. 2014, Asner et al. 2017). These are likely to 

become readily available in the future, allowing researchers to incorporate the variability 

arising from high tree species richness typical of residential landscapes (Clarke et al. 2013, 

Threlfall et al. 2016). A more detailed classification of urban features, structures, and 

infrastructure through LiDAR datasets with higher resolution could overcome few tree stem 

misclassifications observed in this study (e.g., powerlines overhanging herbaceous 

vegetation can create false positives).

Further, a 5 m threshold for the tree stem rLiDAR detection was selected in this study 

assuming: i) adult trees to be taller than 5 m and ii) a ΔCHMs > 5 m to be indicative of trees 

being completely removed rather than pruned or topped. As such, some of the stems 

detected with rLiDAR may have represented trees being drastically managed, rather than 

completely removed from residential parcels. Tree topping might partially explain some of 

the differences in the frequency distribution of observed stem height between Denver and 

Milwaukee. However, it is likely that the different height distribution of tree stems removed 

primarily depends on the different species composition of residential forest across the two 

cities. Despite tree topping and pruning being common and widespread practices in urban 

greenspaces, detailed information on these management practices is scant, particularly 

within the private realm and at city-wide scales (Kuhns 2009). As such, the collection of 

urban tree-care data from professionals and land-owners, possibly stratified for different tree 

species and age classes, could further refine assessments of changes to urban forest based on 

this or similar methodological approaches.

4.2 Tree loss patterns in residential landscapes

Regression models based on urban morphological variables best explained the dynamics of 

tree loss in Denver, but not in Milwaukee (Table 3). As such, this only partially resonates 

with previous evidence suggesting urban morphology as the main driver of urban tree cover 

(Bigsby et al. 2014). However, tree loss was higher in neighborhoods with more vegetation.

Thus, initial canopy cover was a significant predictor of stem loss in the multivariate 

regression analysis. This is reasonable because the number of trees lost over time increases 

with increasing canopy cover due to the likely higher initial number of stems that can be 

potentially lost.

The number of tree stems lost was higher in Denver’s neighborhoods developed before the 

1970s, and at a lesser extent in Milwaukee.
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As such, in the latter, the decade of maximum housing development was not a significant 

term in the regression analysis. Although previous studies found significant relationships 

between vegetation cover and building or neighborhood age (Mennis 2006, Boone et al. 

2010, Lowry et al. 2012), we argue that age of development could have different effects 

when comparing tree loss dynamics in cities characterized by different development 

histories and planning legacies. Except for the racial diversity index in Milwaukee, socio-

economics variables were generally poor predictors of tree stem loss, as similarly reported 

by Raciti et al. (2014) investigating vegetation cover and biomass in Boston’s residential 

neighborhoods. The effect of socio-economic variables on change in cover of urban 

vegetation that Luck et al. (2009) found in relation to neighborhood age was not observed in 

our study. Similarly, housing density, a significant predictor of urban tree cover (Luck et al. 

2009, Bigsby et al. 2014), was not related to tree loss in either city.

Regression global models better predicted stem height of trees removed in both cities, 

though these had lower power (i.e., R2) than those predicting the number of stems lost. This 

was particularly evident in Milwaukee were only percentage of vacant units had a marginally 

non-significant negative relationship with stem height of lost trees. The same relationship 

was significant in Denver. The generally poor and inconsistent relationship between tree 

stem height and socio-economics might indicate that factors accounted for in this study were 

weakly related to people’s motivations for tree removal. This is in line with a recent study 

where removal patterns were not related to demographics or property characteristics, but 

rather aesthetic preferences, perceived tree health, and risk (Conway 2016). Koeser et al. 

(2015) noticed size of removed trees had little effect in risk perception of homeowners, 

property managers, and tree care professionals, suggesting relatively consistent effects 

determined by the various actors managing urban trees.

In general, identifying causal relationships related to trees loss in urban areas is a 

challenging task. In fact, beside factors accounted for in this study, sporadic events, such as 

those related to pest and disease outbreaks or extreme weather, can further complicate urban 

tree loss assessments (Hostetler et al. 2013). For example, ~30,000 trees were removed from 

urban areas in Worcester County, MA (~90 km2) between 2008 and 2012 to limit the 

infestation of the Asian longhorned beetle (Anoplophora glabripennis) on maple tree species 

(Rogan et al. 2013). In comparison, Hurricane Ike making landfall over Houston, TX in 

2008 caused the loss of only 4.3% of trees from 37 permanent research plots established in 

2001–2002, whereas 31.8% of the original trees were actually removed due to urban 

development (Staudhammer et al. 2011). In this study, no extreme weather events were 

recorded in either Denver or Milwaukee during the 5-year periods considered (NWS-NOAA 

2016, Western Water Assessment 2016). Although in the last few years both study areas 

have been affected by various tree pests (e.g., emerald ash borer), it is not possible to 

speculate about possible relationships with the tree loss dynamics observed.

5. Conclusions

This study demonstrated medium-resolution LiDAR can be used to measure tree loss 

dynamics across entire cities and landscapes. The growing availability of high-resolution 

LiDAR and multispectral imagery collected over time will greatly enhance our ability to 
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assess and monitor urban forest dynamics at large spatial scales. New research is needed to 

evaluate the consequential impacts of urban tree loss on urban ecosystem services such as 

eco-hydrological processes, habitat provision for biodiversity, and air quality improvement. 

Future efforts based on similar methodological approaches could investigate other important 

processes driving urban vegetation change (e.g., growth, afforestation, post-planting 

mortality, pest, and pathogen epidemics, etc.) and how these are shaped by people and the 

urban environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A:

Details of the socio-economic indicators aggregated at census tract level obtained from the 

American FactFinder of the US Census Bureau for 2010 (https://factfinder.census.gov/).
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Socio-economic
indicator Description

DP0020001 Median age (both sexes)

DP0090001 White alone or in combination with one or more other races

DP0090002 Black or African American alone or in combination with one or more other races

DP0090003 American Indian and Alaska Native alone or in combination with one or more
other races

DP0090004 Asian alone or in combination with one or more other races

DP0090005 Native Hawaiian and Other Pacific Islander alone or in combination with one or
more other races

DP0090006 Some Other Race alone or in combination with one or more other races

DP0120002 Population in households

DP0120014 Population in group quarters

DP0130002 Family households

DP0130010 Nonfamily households

DP0160001 Average household size

DP0170001 Average family size

DP0180002 Occupied housing units

DP0180003 Vacant housing units

DP0210002 Owner-occupied housing units

DP0210003 Renter-occupied housing units

HC01_EST_VC16 Percent high school graduate or higher (table S1501)

HC01_EST_VC17 Percent bachelor’s degree or higher (table S1501)

HC01_EST_VC01 All families (table S1702)

HC02_EST_VC01 Percent families below poverty level (table S1702)

HD01_VD01 Gini Index (table B19083)

HC02_EST_VC02 Median income (dollars) per household (table S1903)

HC01_EST_VC24 Working-age population 20 to 64 years (table S2301)

HC02_EST_VC24 In labor population 20 to 64 years (table S2301)

HC03_EST_VC24 Employed population 20 to 64 years (table S2301)

HC04_EST_VC24 Unemployment rate 20 to 64 years (table S2301)

HD01_VD01 Median contract rent (table B25058)

HD01_VD02 Buildings built in 2005 or later (table B25034)

HD01_VD03 Buildings built 2000 to 2004 or earlier

HD01_VD04 Buildings built 1990 to 1999 or earlier

HD01_VD05 Buildings built 1980 to 1989 or earlier

HD01_VD06 Buildings built 1970 to 1979 or earlier

HD01_VD07 Buildings built 1960 to 1969 or earlier

HD01_VD08 Buildings built 1950 to 1959 or earlier

HD01_VD09 Buildings built 1940 to 1949 or earlier

HD01_VD10 Buildings built 1939 or earlier
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Appendix B:

Correlation matrices of the urban morphology and socio-economic variables summarized at 

census tract level for Denver, CO and Milwaukee, WI.
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Appendix C:

Pearson correlation (ρ) and p-value (p) of the digital elevation models (randomly-generated 

ground points for DTMs) and normalized digital surface models (randomly-generated roof 

points for nDSMs) in Denver, CO (2008 and 2013) and Milwaukee, WI (2010 and 2015).

Appendix D:

Confusion matrices calculated to test accuracy, reliability and Kappa statistic of the 

maximum likelihood supervised classification of urban vegetation in Denver, CO (2008, 

2013) and Milwaukee, WI (2010, 2015) based on data fusion of the NAIP imagery (RGB, 

NIR), NDVI and nDSM. Reliability represents type I errors (false positives), accuracy 

represents type II errors (false negatives), and Kappa evaluates the overall performance of 

classification.
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Denver 2008

Classification  

Woody
vegetation

Herbaceous
vegetation

Non-
vegetated Total Reliability Kappa

Validation

Woody vegetation 91 8 1 100 0.910 -

Herbaceous
vegetation 4 96 0 100 0.960 -

Non-vegetated 0 0 0 0 0.000 -

 

Total 95 104 1 200 0.000 -

Accuracy 0.958 0.923 0.000 0.000 0.935 -

Kappa - - - - - 0.871

        

Denver 2013

Classification  

Woody
vegetation

Herbaceous
vegetation

Non-
vegetated Total Reliability Kappa

Validation

Woody vegetation 91 4 5 100 0.910 -

Herbaceous
vegetation 4 95 1 100 0.950 -

Non-vegetated 0 0 0 0 0.000 -

 

Total 95 99 6 200 0.000 -

Accuracy 0.958 0.960 0.000 0.000 0.930 -

Kappa - - - - - 0.864

Milwaukee 2010

Classification  

Woody
vegetation

Herbaceous
vegetation

Non-
vegetated Total Reliability Kappa

Validation

Woody vegetation 96 3 1 100 0.960 -

Herbaceous
vegetation 4 96 0 100 0.960 -

Non-vegetated 0 0 0 0 0.000 -

 

Total 100 99 1 200 0.000 -

Accuracy 0.960 0.970 0.000 0.000 0.960 -

Kappa - - - - - 0.920

Milwaukee 2010

Classification  

Woody
vegetation

Herbaceous
vegetation

Non-
vegetated Total Reliability Kappa

Validation

Woody vegetation 91 9 0 100 0.910 -

Herbaceous
vegetation 7 93 0 100 0.930 -

Non-vegetated 0 0 0 0 0.000 -

 

Total 98 102 0 200 0.000 -

Accuracy 0.929 0.912 0.000 0.000 0.920 -

Kappa - - - - - 0.840
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Figure 1: 
Study areas in Denver, CO (A) and Milwaukee, WI (B). Light gray polygons represent the 

census tracts considered in the study, bold lines are the counties’ perimeters.
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Figure 2: 
Example of tree stems lost within residential parcels in Denver, CO detected from the 

difference between the canopy height models (-ΔCHMs) calculated for the years 2008 and 

2013 (A). Satellite images are from Google Earth™ and taken in July 2007 (B) and June 

2014 (C), before and after the 5-year reference periods. Each dot represents the position of a 

tree stem lost, whereas the its radius is proportional to stem height. The complete tree 

datasets for Denver and Milwaukee are available as supplementary material.
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Figure 3: 
Stem height frequency distribution for all the trees (height >5 m) lost within residential 

parcels in Denver, CO and Milwaukee, WI in a 5-year period.
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Figure 4: 
Bivariate relationship between the total number of tree stems lost per unit of residential area 

and A) the average woody vegetation volume, and B) woody vegetation cover within 

residential parcels in the initial year (i.e. 2008 and 2010 for Denver and Milwaukee, 

respectively). Dots represent parcel-based values averaged at census tract level.
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Figure 5: 
Average number of tree stems lost (A) within a 5-year period per unit of residential area and 

their average height (B) in relation to the decade of maximum housing development of 

neighborhood (i.e. census tract) in Denver, CO and Milwaukee, WI. Numbers above bars 

represent the number of census tracts analyzed, errors bars represent standard errors of the 

mean.
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Table 1:

Characteristics of the LiDAR datasets used in this study for Denver, CO and Milwaukee, WI.

Dataset name USGS LPC CO
Denver 2008

USGS LPC CO
South Platte
River Lot 5 –

2013

2010 Milwaukee
County LiDAR

2015 Southeast
WI Counties

LiDAR

Study area Denver, CO Denver, CO Milwaukee, WI Milwaukee, WI

Collection period 25.03.2008
19.04.2008

25.10.2013
31.05.2014

16.04.2010
18.04.2010

24.03.2015
03.04.2015

Nominal point spacing
(m) 0.7 0.7 0.7 * 0.7 *

Min. point spacing (m) 0.444 0.391 0.433 * 0.364 *

Mean point spacing (m) 0.603 0.439 0.542 * 0.457 *

Max. point spacing (m) 0.760 0.627 0.779 * 0.854 *

Vertical accuracy (cm) 6.3 RMSE 5.7 RMSE 8.0 RMSE 10.0 RMSE

Tile size (km) 1.5 × 1.5 1.5 × 1.5 1.5 × 1.5 3 × 3

N. tiles 196 196 291 88

*
The original unit of measure of the 2010 Milwaukee County LiDAR and the 2015 Southeast WI Counties LiDAR datasets is the US foot, which 

has been converted to meter using the equivalency 1 foot = 0.3048 m.
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Table 2:

Variables selected using variance inflation factors (VIF) used as predictors in the multivariate regression 

analysis for each of the model types (i.e. urban morphology, socio-economic) in each city and having i) total 

number of tree stems lost in each tract and ii) stem average height as response variables. Global models were 

fitted by using both urban morphology and socio-economic variables for each city. Variable selection using 

variance inflation factors (VIF) was performed separately for each city, and as such, some variables (−) have 

been excluded from modeling to avoid multicollinearity.

Model type: Urban morphology

Denver, CO Milwaukee, WI

Canopy cover (initial year) Canopy cover (initial year)

Decade max housing development Decade max housing development

Average parcel area -

Housing density Housing density

Percent residential land use Percent residential land use

Model type: Socio-economic

Denver, CO Milwaukee, WI

Median age Median age

- Racial diversity index

Family / non-family ratio Family / non-family ratio

Percent vacant units Percent vacant units

Percent families below poverty -

Gini index Gini index

Percent unemployed Percent unemployed

Monthly rent Monthly rent
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Table 3:

Comparison of the competing models based on urban morphological, socio-economic, and all (global) 

variables performed using AICc. Model sets are ranked based on increasing AICc and the best models are 

italicized.

City Response
variable Model type n.

parameters AICc ΔAICc AICc
weight

Denver Number of
tree stems lost Urban morphology 5 683.44 0.00 0.88

  Global 12 687.33 3.89 0.12

  Socio-economic 7 765.94 82.5 0.00

Milwaukee Number of
tree stems lost Global 11 192.73 0.00 0.84

  Socio-economic 7 196.02 3.29 0.16

  Urban morphology 4 239.17 46.44 0.00

Denver Tree stem
height Global 12 353.58 0.00 0.81

  Socio-economic 7 356.48 2.90 0.19

  Urban morphology 5 382.76 29.18 0.00

Milwaukee Tree stem
height Global 11 504.39 0.00 0.88

  Socio-economic 7 508.39 4.00 0.12

  Urban morphology 4 522.37 17.98 0.00
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Table 4:

Summary statistics of the best fitting linear models (lowest AICc) predicting the number of tree stems lost in 

residential landscapes in Denver, CO and Milwaukee, WI.

Response variable:
number tree stems lost (km2)

Denver Milwaukee

Model type Urban morphology Global

Predictor variables Estimate Std. error p Estimate Std. error p

Canopy cover (initial year) 9.87 1.67 < 0.001 2.63 0.37 < 0.001

Decade of max housing
development −0.06 0.01 < 0.001 −0.001 0.002 0.55

Average parcel area −0.49 0.33 0.14 - - -

Housing density −0.04 0.23 0.87 −0.03 0.08 0.73

Percent residential land use 0.01 0.01 0.13 −0.001 0.001 0.83

Median age - - - −0.32 5.61 0.11

Racial diversity index - - - −0.38 0.15 < 0.05

Family/non-family ratio - - - 0.10 0.10 0.34

Percent vacant units - - - 0.01 0.06 0.87

Gini index - - - 0.74 0.91 0.22

Percent unemployed - - - −0.04 0.04 0.25

Monthly rent - - − 0.01 0.15 0.94

 Degrees of freedom 166 249

 R2 / Adj R2 0.48 / 0.46 0.28 / 0.25

 F-statistic (p-value) 30.2 (< 0.001) 8.848 (<0.001)
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Table 5:

Summary statistics of the best fitting linear models (lowest AICc) predicting stem height of trees lost in 

residential landscapes in Denver, CO and Milwaukee, WI.

Response variable:
tree stem height (m) Denver Milwaukee

Model type Global Global

Predictor variables Estimate Std. error p Estimate Std. error p

Canopy cover (initial year) 0.72 0.82 0.38 0.42 0.67 0.54

Decade of max housing
development −0.001 0.001 0.65 −0.01 0.01 0.13

Average parcel area 0.14 0.15 0.38 - - -

Housing density 0.15 0.14 0.30 0.02 0.14 0.91

Percent residential land use 0.001 0.001 0.17 0.01 0.01 0.19

Median age 0.17 0.44 0.70 0.07 0.37 0.84

Racial diversity index - - - −0.09 0.27 0.72

Percent families below poverty −0.17 0.05 < 0.001 - - -

Family/non-family ratio 0.03 0.23 0.91 0.14 0.18 0.43

Percent vacant units −0.33 0.16 < 0.05 −0.23 0.12 0.053

Gini index 2.90 0.89 < 0.01 −1.89 1.11 0.08

Percent unemployed 0.05 0.08 0.53 −0.05 0.07 0.48

Monthly rent −0.21 0.26 0.40 0.22 0.26 0.40

 Degrees of freedom 156 249

 R2 / Adj R2 0.38 / 0.33 0.16 / 0.13

 F-statistic (p-value) 7.93 (< 0.001) 4.44 (< 0.001)
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