
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Genotyping structural variants in pangenome graphs using the vg toolkit

Permalink

https://escholarship.org/uc/item/1s75d98k

Journal

Genome Biology, 21(1)

ISSN

1474-760X

Authors

Hickey, Glenn
Heller, David
Monlong, Jean
et al.

Publication Date

2020-12-01

DOI

10.1186/s13059-020-1941-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1s75d98k
https://escholarship.org/uc/item/1s75d98k#author
https://escholarship.org
http://www.cdlib.org/


METHOD Open Access

Genotyping structural variants in
pangenome graphs using the vg toolkit
Glenn Hickey1†, David Heller1,2†, Jean Monlong1†, Jonas A. Sibbesen1, Jouni Sirén1, Jordan Eizenga1,
Eric T. Dawson3,4, Erik Garrison1, Adam M. Novak1 and Benedict Paten1*

Abstract

Structural variants (SVs) remain challenging to represent and study relative to point mutations despite their
demonstrated importance. We show that variation graphs, as implemented in the vg toolkit, provide an effective
means for leveraging SV catalogs for short-read SV genotyping experiments. We benchmark vg against state-of-the-
art SV genotypers using three sequence-resolved SV catalogs generated by recent long-read sequencing studies. In
addition, we use assemblies from 12 yeast strains to show that graphs constructed directly from aligned de novo
assemblies improve genotyping compared to graphs built from intermediate SV catalogs in the VCF format.

Introduction
A structural variant (SV) is a genomic mutation involv-
ing 50 or more base pairs. SVs can take several forms
such as deletions, insertions, inversions, translocations,
or other complex events. Due to their greater size, SVs
often have a larger impact on phenotype than smaller
events such as single nucleotide variants (SNVs) and
small insertions and deletions (indels) [1]. Indeed, SVs
have long been associated with developmental disorders,
cancer, and other complex diseases and phenotypes [2].
Despite their importance, SVs remain much more

poorly studied than their smaller mutational counter-
parts. This discrepancy stems from technological limita-
tions. Short-read sequencing has provided the basis of
most modern genome sequencing studies due to its high
base-level accuracy and relatively low cost, but is poorly
suited for discovering SVs. The central obstacle is in
mapping short reads to the human reference genome. It
is generally difficult or impossible to unambiguously
map a short read if the sample whose genome is being
analyzed differs substantially from the reference at the
read’s location. The large size of SVs virtually guarantees
that short reads derived from them will not map to the
linear reference genome. For example, if a read

corresponds to sequence in the middle of a large
reference-relative insertion, then there is no location in
the reference that corresponds to a correct mapping.
The best result a read mapper could hope to produce
would be to leave it unmapped. Moreover, SVs often lie
in repeat-rich regions, which further frustrate read map-
ping algorithms.
Short reads can be more effectively used to genotype

known SVs. This is important, as even though efforts to
catalog SVs with other technologies have been highly
successful, their cost currently prohibits their use in
large-scale studies that require hundreds or thousands of
samples such as disease association studies. Traditional
SV genotypers start from reads that were mapped to a
reference genome, extracting aberrant mapping that
might support the presence of the SV of interest.
Current methods such as SVTyper [3] and the genotyp-
ing module of Delly [4] (henceforth referred to as Delly
Genotyper) typically focus on split reads and paired
reads mapped too close or too far from each other.
These discordant reads are tallied and remapped to the
reference sequence modified with the SV of interest in
order to genotype deletions, insertions, duplications, in-
versions, and translocations. SMRT-SV v2 Genotyper
uses a different approach: the reference genome is aug-
mented with SV-containing sequences as alternate con-
tigs and the resulting mappings are evaluated with a
machine learning model trained for this purpose [5].
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The catalog of known SVs in human is quickly
expanding. Several large-scale projects have used short-
read sequencing and extensive discovery pipelines on
large cohorts, compiling catalogs with tens of thousands
of SVs in humans [6, 7], using split read and discordant
pair-based methods like Delly [4] to find SVs using
short-read sequencing. More recent studies using long-
read or linked-read sequencing have produced large cat-
alogs of structural variation, the majority of which was
novel and sequence-resolved [5, 8–11]. These technolo-
gies are also enabling the production of high-quality de
novo genome assemblies [8, 12], and large blocks of
haplotype-resolved sequences [13]. Such technical ad-
vances promise to expand the amount of known gen-
omic variation in humans in the near future, and further
power SV genotyping studies. Representing known
structural variation in the wake of increasingly larger
datasets poses a considerable challenge, however. VCF,
the standard format for representing small variants, is
unwieldy when used for SVs due its unsuitability for ex-
pressing nested or complex variants. Another strategy
consists in incorporating SVs into a linear pangenome
reference via alt contigs, but it also has serious draw-
backs. Alt contigs tend to increase mapping ambiguity.
In addition, it is unclear how to scale this approach as
SV catalogs grow.
Pangenomic graph reference representations offer an

attractive approach for storing genetic variation of all
types [14]. These graphical data structures can seam-
lessly represent both SVs and point mutations using the
same semantics. Moreover, including known variants in
the reference makes read mapping, variant calling, and
genotyping variant-aware. This leads to benefits in terms
of accuracy and sensitivity [15–17]. The coherency of
this model allows different variant types to be called and
scored simultaneously in a unified framework.
vg is the first openly available variation graph tool to

scale to multi-gigabase genomes. It provides read map-
ping, variant calling, and visualization tools [15]. In
addition, vg can build graphs both from variant catalogs
in the VCF format and from assembly alignments.
Other tools have used genome graphs or pangenomes

to genotype variants. GraphTyper realigns mapped reads
to a graph built from known SNVs and short indels
using a sliding-window approach [18]. BayesTyper first
builds a set of graphs from known variants including
SVs, then genotypes variants by comparing the distribu-
tion of k-mers in the sequencing reads with the k-mers
of haplotype candidate paths in the graph [19]. Para-
graph builds a graph for each breakpoint of known vari-
ants [20], then, for each breakpoint, it pulls out all
nearby reads from the linear alignment and realigns
them to the graph. Genotypes are computed using the
read coverage from the pair of breakpoint graphs

corresponding to each SV. These graph-based ap-
proaches showed clear advantages over standard
methods that use only the linear reference.
In this work, we present a SV genotyping framework

based on the variation graph model and implemented in
the vg toolkit. We show that this method is capable of
genotyping known deletions, insertions, and inversions
and that its performance is not inhibited by small errors
in the specification of SV allele breakpoints. We evalu-
ated the genotyping accuracy of our approach using sim-
ulated and real Illumina reads and a pangenome built
from SVs discovered in recent long-read sequencing
studies [5, 21–23]. We also compared vg’s performance
with state-of-the-art SV genotypers: SVTyper [3], Delly
Genotyper [4], BayesTyper [19], Paragraph [20], and
SMRT-SV v2 Genotyper [5]. Across the datasets we
tested, which range in size from 26 k to 97 k SVs, vg is the
best performing SV genotyper on real short-read data for
all SV types in the majority of cases. Finally, we demon-
strate that a pangenome graph built from the alignment of
de novo assemblies of diverse Saccharomyces cerevisiae
strains improves SV genotyping performance.

Results
Structural variation in vg
We used vg to implement a straightforward SV genotyp-
ing pipeline. Reads are mapped to the graph and used to
compute the read support for each node and edge (see
Additional file 1 for a description of the graph formal-
ism). Sites of variation within the graph are then identi-
fied using the snarl decomposition as described in [24].
These sites correspond to intervals along the reference
paths (e.g., contigs or chromosomes) which are embed-
ded in the graph. They also contain nodes and edges de-
viating from the reference path, which represent
variation at the site. For each site, the two most sup-
ported paths spanning its interval (haplotypes) are deter-
mined, and their relative supports used to produce a
genotype at that site (Fig. 1a). The pipeline is described
in detail in “Methods.” We rigorously evaluated the ac-
curacy of our method on a variety of datasets and
present these results in the remainder of this section.

Simulated dataset
As a proof of concept, we simulated genomes and differ-
ent types of SVs with a size distribution matching real SVs
[22]. We compared vg against Paragraph, SVTyper, Delly
Genotyper, and BayesTyper across different levels of se-
quencing depth. We also added some errors (1–10 bp) to
the location of the breakpoints to investigate their effect
on genotyping accuracy (see “Methods”). The results are
shown in Fig. 1b.
When using the correct breakpoints, most methods

performed similarly, with differences only becoming
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visible at very low sequencing depths. Only vg and Para-
graph maintained their performance in the presence of
1–10-bp errors in the breakpoint locations. The dra-
matic drop for BayesTyper can be explained by its k-
mer-based approach that requires precise breakpoints.
Overall, these results show that vg is capable of genotyp-
ing SVs and is robust to breakpoint inaccuracies in the
input VCF.

HGSVC dataset
A total of 72,485 structural variants from The Human
Genome Structural Variation Consortium (HGSVC) were
used to benchmark the genotyping performance of vg

against the four other SV genotyping methods. This high-
quality SV catalog was generated from three samples using
a consensus from different sequencing, phasing, and vari-
ant calling technologies [22]. The three individual samples
represent different human populations: Han Chinese
(HG00514), Puerto-Rican (HG00733), and Yoruban Ni-
gerian (NA19240). We used these SVs to construct a
graph with vg and as input for the other genotypers. Using
short sequencing reads, the SVs were genotyped and com-
pared with the genotypes in the original catalog (see
“Methods”).
First, we compared the methods using simulated reads

for HG00514. This represents the ideal situation where

Fig. 1 Structural variation in vg. a vg uses the read coverage over possible paths to genotype variants in a snarl. The cartoon depicts the case of
a heterozygous insertion and a homozygous deletion. The algorithm is described in detail in “Methods.” b Simulation experiment. Each subplot
shows a comparison of genotyping accuracy for five methods. Results are separated between types of variation (insertions, deletions, and
inversions). The experiments were also repeated with small random errors introduced to the VCF to simulate breakpoint uncertainty. For each
experiment, the x-axis is the simulated read depth and the y-axis shows the maximum F1 across different minimum quality thresholds. SVTyper
cannot genotype insertions, hence the missing line in the top panels
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the SV catalog exactly matches the SVs supported by the
reads. BayesTyper and vg showed the best F1 score and
precision-recall trade-offs (Fig. 2a and Additional file 1:
Figure S1, Additional file 1: Table S1), outperforming
the other methods by a clear margin. When restricting
the comparisons to regions not identified as tandem re-
peats or segmental duplications, the genotyping predic-
tions were significantly better for all methods. We
observed similar results when evaluating the presence of

an SV call instead of the exact genotype (Fig. 2a and
Additional file 1: Figure S2).
We then repeated the analysis using real Illumina

reads from the three HGSVC samples to benchmark the
methods on a more realistic experiment. Here, vg clearly
outperformed other approaches (Fig. 2a and Add-
itional file 1: Figure S3). In non-repeat regions and inser-
tions across the whole genome, the F1 scores and
precision-recall AUC were higher for vg compared to

Fig. 2 Structural variants from the HGSVC and Genome in a Bottle datasets. HGSVC: Simulated and real reads were used to genotype SVs and
compared with the high-quality calls from Chaisson et al. [22]. Reads were simulated from the HG00514 individual. Using real reads, the three
HG00514, HG00733, and NA19240 individuals were tested. GIAB: Real reads from the HG002 individual were used to genotype SVs and compared
with the high-quality calls from the Genome in a Bottle consortium [21, 23, 25]. a Maximum F1 score for each method (color), across the whole
genome or focusing on non-repeat regions (x-axis). We evaluated the ability to predict the presence of an SV (transparent bars) and the exact
genotype (solid bars). Results are separated across panels by variant type: insertions and deletions. SVTyper cannot genotype insertions, hence the
missing bars in the top panels. b Maximum F1 score for different size classes when evaluating on the presence of SVs across the whole genome.
c Size distribution of SVs in the HGSVC and GIAB catalogs
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other methods. For example, for deletions in non-repeat
regions, the F1 score for vg was 0.824 while the second
best method, Paragraph, had a F1 score of 0.717. We ob-
served similar results when evaluating the presence of an
SV call instead of the exact genotype (Fig. 2a and Add-
itional file 1: Figure S4).
In general, the genotyped variants were matched 1-to-

1 with variants in the truth set but some methods
showed some signs of “over-genotyping” that is not
reflected in the precision/recall/F1 scores. Methods like
Paragraph, Delly Genotyper, or SVTyper tended to geno-
type on average more than one variant per truth-set
variant (Additional file 1: Figure S5). Like other SV cata-
logs, the HGSVC catalog is not fully sequence-resolved
and contains a number of near-duplicates with slightly
different breakpoint definition. When genotyping a sam-
ple, multiple versions of a variant are genotyped multiple
times by methods that analyze each variant independ-
ently. In contrast, vg follows a unified path-centric ap-
proach that only selects the best genotype in a region
(see “Methods”).
We further evaluate the performance for different SV

sizes and repeat content. In addition, vg’s performance
was stable across the spectrum of SV sizes (Fig. 2b, c).
By annotating the repeat content of the deleted/inserted
sequence, we further evaluated vg’s performance across
repeat classes. As expected, simple repeat variation was
more challenging to genotype than transposable element
polymorphisms (Additional file 1: Figure S6). Figure 3
shows an example of an exonic deletion that was cor-
rectly genotyped by vg but not by BayesTyper, SVTyper,
or Delly Genotyper.

Other long-read datasets
Genome in a bottle consortium
The Genome in a Bottle (GiaB) consortium is currently
producing a high-quality SV catalog for an Ashkenazim
individual (HG002) [21, 23, 25]. Dozens of SV callers op-
erating on datasets from short, long, and linked reads
were used to produce this set of SVs. We evaluated the
SV genotyping methods on this sample as well using the
GIAB VCF, which also contains parental calls (HG003
and HG004), all totaling 30,224 SVs. Relative to the
HGSVC dataset, vg performed similarly but Paragraph
saw a large boost in accuracy and was the most accurate
method across all metrics (Fig. 2, Additional file 1: Fig-
ure S7 and S8, and Additional file 1: Table S2). As be-
fore, the remaining methods produced lower F1 scores.

SMRT-SV v2 catalog and training data [5]
A recent study by Audano et al. generated a catalog of
97,368 SVs (referred as SVPOP below) using long-read
sequencing across 15 individuals [5]. These variants were
then genotyped from short reads across 440 individuals

using the SMRT-SV v2 Genotyper, a machine learning-
based tool implemented for that study. The SMRT-SV
v2 Genotyper was trained on a pseudodiploid genome
constructed from high-quality assemblies of two haploid
cell lines (CHM1 and CHM13) and a single negative
control (NA19240). We first used vg to genotype the
SVs in this two-sample training dataset using 30× cover-
age reads and compared the results with the SMRT-SV
v2 Genotyper. vg was systematically better at predicting
the presence of an SV for both SV types, but SMRT-SV
v2 Genotyper produced slightly better genotypes for de-
letions in the whole genome (see Fig. 4, Additional file 1:
Figure S9 and S10, and Additional file 1: Table S3). To
compare vg and SMRT-SV v2 Genotyper on a larger
dataset, we then genotyped SVs from the entire SVPOP
catalog with both methods, using the read data from the
three HGSVC samples described above. Given that the
SVPOP catalog contains these three samples, we once
again evaluated accuracy by using the long-read calls as
a baseline. Paragraph was included as an additional point
of comparison.
Compared to SMRT-SV v2 Genotyper, vg had a better

precision-recall curve and a higher F1 for both insertions
and deletions (SVPOP in Fig. 4 and Additional file 1:
Figure S11, and Additional file 1: Table S4). Paragraph’s
performance was virtually identical to vg’s. Of note,
SMRT-SV v2 Genotyper produces no-calls in regions
where the read coverage is too low, and we observed
that its recall increased when filtering these regions out
the input set. Interestingly, vg performed well even in re-
gions where SMRT-SV v2 Genotyper produced no-calls
(Additional file 1: Figure S12 and Additional file 1: Table
S5). Audano et al. discovered 217 sequence-resolved in-
versions using long reads, which we attempted to geno-
type. vg correctly predicted the presence of around 14%
of the inversions present in the three samples (Add-
itional file 1: Table S4). Inversions are often complex,
harboring additional variation that makes their
characterization and genotyping challenging.

Graphs from alignment of de novo assemblies
We can construct variation graphs directly from whole-
genome alignments (WGA) of multiple de novo assem-
blies [15]. This bypasses the need for generating an ex-
plicit variant catalog relative to a linear reference, which
could be a source of error due to the reference bias in-
herent in read mapping and variant calling. Genome
alignments from graph-based software such as Cactus
[27] can contain complex structural variation that is ex-
tremely difficult to represent, let alone call, outside of a
graph, but which is nevertheless representative of the ac-
tual genomic variation between the aligned assemblies.
We sought to establish if graphs built in this fashion
provide advantages for SV genotyping.
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To do so, we analyzed public sequencing datasets for
12 yeast strains from two related clades (S. cerevisiae
and S. paradoxus) [28]. We distinguished two different
strain sets, in order to assess how the completeness of
the graph affects the results. For the all-strain set, all 12
strains were used, with S.c. S288C as the reference strain.
For the five-strain set, S.c. S288C was used as the refer-
ence strain, and we selected two other strains from each
of the two clades (see “Methods”). We compared geno-
typing results from a WGA-derived graph (cactus graph)

with results from a VCF-derived graph (VCF graph).
The VCF graph was created from the linear reference
genome of the S.c. S288C strain and a set of SVs relative
to this reference strain in VCF format identified from
the other assemblies in the respective strain set by three
methods: Assemblytics [29], AsmVar [30], and paftools
[31]. The cactus graph was derived from a multiple gen-
ome alignment of the strains in the respective strain set
using Cactus [27]. The VCF graph is mostly linear and
highly dependent on the reference genome. In contrast,

Fig. 3 Exonic deletion in the HGSVC dataset correctly genotyped by vg. a Visualization of the HGSVC graph as augmented by reads aligned by
vg at a locus harboring a 51-bp homozygous deletion in the UTR region of the LONRF2 gene. At the bottom, a horizontal black line represents
the topologically sorted nodes of the graph. Black rectangles represent edges found in the graph. Above this rendering of the topology, the
reference path from GRCh38 is shown (in green). Red and blue bars represent reads mapped to the graph. Thin lines in the reference path and
read mappings highlight relative gaps (either insertions or deletions) against the full graph. The vg read mappings show consistent coverage
even over the deletion. b Reads mapped to the linear genome reference GRCh38 using bwa mem [26] in the same region. Reads contain soft-
clipped sequences and short insertions near the deletion breakpoints. Part of the deleted region is also covered by several reads, potentially
confusing traditional SV genotypers
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the cactus graph is structurally complex and relatively
free of reference bias.
First, we tested our hypothesis that the cactus graph

has higher mappability due to its better representation
of sequence diversity among the yeast strains (see Add-
itional file 1). Generally, more reads mapped to the cac-
tus graph with high identity (Additional file 1: Figure
S13a and S14a) and high mapping quality (Add-
itional file 1: Figure S13b and S14b) than to the VCF
graph. On average, 88%, 79%, and 68% of reads mapped
to the all strain cactus graph with an identity of at least
50%, 90%, and 100%, respectively, compared to only
77%, 57%, and 23% of reads on the all strain VCF graph.
Similarly, 88% of reads mapped to the all strain cactus
graph with a mapping quality of at least 30 compared to
only 80% of reads on the all strain VCF graph.
Next, we compared the SV genotyping performance of

both graph types. We mapped short reads from the 11
non-reference strains to both graphs and genotyped vari-
ants for each strain using the vg toolkit’s variant calling
module (see “Methods”). There is no gold standard
available for these samples to compare against which
renders an evaluation using recall, precision, and F1
score impossible. Therefore, we used an indirect meas-
ure of SV genotyping accuracy. We evaluated each SV
genotype set based on the alignment of reads to a sam-
ple graph constructed from the genotype set (see
“Methods”). Conceptually, the sample graph represents
the sample’s diploid genome by starting out from the
reference genome and augmenting it with the genotype
results. If a given genotype set is correct, we expect that

reads from the same sample will be mapped with high
identity and confidence to the corresponding sample
graph. To specifically quantify mappability in SV regions,
we excluded reads that produced identical mapping
quality and identity on both sample graphs and an
empty sample graph containing the linear reference only
(see “Methods” and Additional file 1: Figure S15 for re-
sults from all reads). Then, we analyzed the average delta
in mapping identity and mapping quality of the
remaining short reads between both sample graphs
(Fig. 5a, b).
For most of the strains, we observed an improvement

in mapping identity of the short reads on the cactus
sample graph compared to the VCF sample graph. The
mean improvement in mapping identity across the
strains (for reads differing in mapping identity) was 8.0%
and 8.5% for the all strains set graphs and the five
strains set graphs, respectively. Generally, the improve-
ment in mapping identity was larger for strains in the S.
paradoxus clade (mean of 13.7% and 13.3% for the two
strain sets, respectively) than for strains in the S. cere-
visiae clade (mean of 3.3% and 4.4%). While the
higher mapping identity indicated that the cactus
graph represents the reads better (Fig. 5a), the higher
mapping quality confirmed that this did not come at
the cost of added ambiguity or a more complex graph
(Fig. 5b). For most strains, we observed an improve-
ment in mapping quality of the short reads on the
cactus sample graph compared to the VCF sample
graph (mean improvement across the strains of 1.0
and 5.7 for the two strain sets, respectively).

Fig. 4 Structural variants from SMRT-SV v2 [5]. The pseudodiploid genome built from two CHM cell lines and one negative control sample was
originally used to train SMRT-SV v2 Genotyper in Audano et al. [5]. It contains 16,180 SVs. The SVPOP panel shows the combined results for the
HG00514, HG00733, and NA19240 individuals, three of the 15 individuals used to generate the high-quality SV catalog in Audano et al. [5]. Here,
we report the maximum F1 score (y-axis) for each method (color), across the whole genome or focusing on non-repeat regions (x-axis). We
evaluated the ability to predict the presence of an SV (transparent bars) and the exact genotype (solid bars). Genotype information is not
available in the SVPOP catalog hence genotyping performance could not be evaluated
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Discussion
Overall, graph-based methods were more accurate than
traditional SV genotypers in our benchmarks, with vg
performing best across most datasets. These results
show that SV genotyping benefits from variant-aware
read mapping and graph-based genotyping, a finding
consistent with previous studies [15–19]. Paragraph, an-
other graph-based genotyper which was released as we
were submitting this work, was very competitive with vg
and showed the best overall accuracy on the GIAB data-
set. In addition to being featured prominently in Para-
graph’s development and evaluation, the GIAB dataset
we used was a different coverage (50×) than the other
30× datasets we used. Our simulation results show that
Paragraph is slightly more robust than vg with respect to
differences in coverage and perhaps this is a factor in
the difference in performance. In the future, we would
like to better model the expected read depth in the vg
genotyper as it currently does not exploit this informa-
tion. In contrast, vg is much more accurate than Para-
graph on the HGSVC dataset and we speculate that this
is due to the higher number of overlapping variants.
Using the snarl decomposition, vg can genotype arbi-
trary combinations of SVs simultaneously, whereas Para-
graph operates one at a time.
We took advantage of newly released datasets for our

evaluation, which feature up to 3.7 times more variants
than the more widely used GIAB benchmark. More and

more large-scale projects are using low-cost short-read
technologies to sequence the genomes of thousands to
hundreds of thousands of individuals (e.g., the Pancancer
Analysis of Whole Genomes [32], the Genomics England
initiative [33], and the TOPMed consortium [34]). We
believe pangenome graph-based approaches will improve
both how efficiently SVs can be represented, and how
accurately they can be genotyped with this type of data.
A particular advantage of our method is that it does

not require exact breakpoint resolution in the variant li-
brary. Our simulations showed that vg’s SV genotyping
algorithm is robust to errors of as much as 10 bp in
breakpoint location. However, there is an upper limit to
this flexibility, and we find that vg cannot accurately
genotype variants with much higher uncertainty in the
breakpoint location (like those discovered through read
coverage analysis). vg is also capable of fine-tuning
SV breakpoints by augmenting the graph with differ-
ences observed in read alignments. Simulations
showed that this approach can usually correct small
errors in SV breakpoints (Additional file 1: Figure S16
and Additional file 1: Table S6).
vg uses a unified framework to call and score different

variant types simultaneously. In this work, we only con-
sidered graphs containing certain types of SVs, but the
same methods can be extended to a broader range of
graphs. For example, we are interested in evaluating how
genotyping SVs together with SNPs and small indels

Fig. 5 SV genotyping comparison. Short reads from all 11 non-reference yeast strains were used to genotype SVs contained in the cactus graph
and the VCF graph. Subsequently, sample graphs were generated from the resulting SV genotype sets. The short reads were aligned to the
sample graphs and reads with identical mapping identity and quality across both sample graphs and an additional empty sample graph were
removed from the analysis. The quality of the remaining divergent alignments was used to ascertain SV genotyping performance. The bars show
the average delta in mapping identity (a) and in mapping quality (b) of divergent short reads aligned to the sample graphs derived from the
cactus graph and the VCF graph. Positive values denote an improvement of the cactus graph over the VCF graph. Colors represent the two strain
sets and transparency indicates whether the respective strain was part of the five strains set
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using a combined graph affects the accuracy of studying
either alone. The same methods used for genotyping
known variants in this work can also be extended to call
novel variants by first augmenting the graph with edits
from the mapped reads. This approach, which was used
only in the breakpoint fine-tuning portion of this work,
could be further used to study small variants around and
nested within SVs. Novel SVs could be called by aug-
menting the graph with long-read mappings. vg is en-
tirely open source, and its ongoing development is
supported by a growing community of researchers and
users with common interest in scalable, unbiased pange-
nomic analyses and representation. We expect this col-
laboration to continue to foster increases in the speed,
accuracy, and applicability of methods based on pangen-
ome graphs in the years ahead.
Our results suggest that constructing a graph from de

novo assembly alignment instead of a VCF leads to bet-
ter SV genotyping. High-quality de novo assemblies for
human are becoming more and more common due to
improvements in technologies like optimized mate-pair
libraries [35] and long-read sequencing [12]. We expect
future graphs to be built from the alignment of numer-
ous de novo assemblies, and we are presently working
on scaling our assembly-based pipeline to human-sized
genome assemblies. Another challenge is creating gen-
ome graphs that integrate assemblies with variant-based
data resources. One possible approach is to progressively
align assembled contigs into variation graphs con-
structed from variant libraries, but methods for doing so
are still experimental.

Conclusion
In this study, the vg toolkit was compared to existing
SV genotypers across several high-quality SV catalogs.
We showed that its method of mapping reads to a
variation graph leads to better SV genotyping com-
pared to other state-of-the-art methods. This work in-
troduces a flexible strategy to integrate the growing
number of SVs being discovered with higher reso-
lution technologies into a unified framework for gen-
ome inference. Our work on whole-genome alignment
graphs shows the benefit of directly utilizing de novo
assemblies rather than variant catalogs to integrate
SVs in genome graphs. We expect this latter ap-
proach to increase in significance as the reduction in
long-read sequencing costs drives the creation of nu-
merous new de novo assemblies. We envision a future
in which the lines between variant calling, genotyping,
alignment, and assembly are blurred by rapid changes
in sequencing technology. Fully graph-based ap-
proaches, like the one we present here, will be of
great utility in this new phase of genome inference.

Methods
SV genotyping algorithm
The input to the SV genotyping algorithm is an indexed
variation graph in xg format along with a (single-sample)
read alignment in GAM format. If the graph was con-
structed from a VCF, as was the case for the human-
genome graphs discussed in this paper, this VCF can
also be input to the caller. The first step is to compute a
compressed coverage index from the alignment using
this command, vg pack <graph.xg> <alignment.gam> -Q
5 -o graph.pack. This index stores the number of reads
with mapping quality at least 5 mapped to each edge
and each base of each node on the graph. Computing
the coverage can be done in a single scan through the
reads and, in practice, tends to be an order of magnitude
faster than sorting the reads.
Variation graphs, as represented in vg, are bidirected.

In a bidirected graph, every node can be thought of hav-
ing two distinct sides. See, for example, the left and right
sides of each rectangle in Fig. 1a. If x is the side of a
given node A, then we use the notation x’ to denote the
other side of A. A snarl is defined by a pair of sides, x
and y, that satisfy the following criteria:

1. Removing all edges incident to x’ and y’ disconnects
the graph, creating a connected component X that
contains x and y.

2. There is no side z in X such that {x,z} satisfies the
above criteria. Likewise for y.

Snarls can be computed in linear time using a cac-
tus graph decomposition [24]. They can be computed
once for a given graph using vg snarls, or on the fly
with vg call.
Once the snarls have been identified, the SV genotyp-

ing algorithm proceeds as follows. For every snarl in the
graph for which both end nodes lie on a reference path
(such as a chromosome) and that it is not contained in
another snarl, the following steps are performed.

1. All VCF variants, v1, v2, …, vk that are contained
within the snarl are looked up using information
embedded during graph construction. Let |vi| be
the number of alleles in the ith VCF variant. Then
there are |v1|x|v2|…x|vk| possible haplotypes
through the snarl. If this number is too high (>
500,000), then alleles with average support of less
than 1 are filtered out.

2. For each possible haplotype, a corresponding
bidrected path through the snarl (from x to y) is
computed.

3. For each haplotype path, its average support
(over bases and edges) is computed using the
compressed coverage index, and the two most
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supported paths are selected (ties are broken
arbitrarily).

4. If the most supported path exceeds the minimum
support threshold (default 1), and has more than B
(default 6) times the support of the next most
supported path, the site is called homozygous for
the allele associated with the most supported path.

5. Else if the second most supported path exceeds the
minimum support threshold (default 1), then the
site is deemed heterozygous with an allele from
each of the top two paths.

6. Given the genotype computed above, it is trivial to
map back from the chosen paths to the VCF alleles
in order to produce the final output.

The command to do the above is vg call <graph.xg> -k
<graph.pack> -v variants.vcf.gz. If the graph was not
constructed from a VCF, then a similar algorithm is used
except the traversals are computed heuristically search-
ing through the graph. This is enabled by not using the
-v option in the above command.

toil-vg
toil-vg is a set of Python scripts for simplifying vg tasks
such as graph construction, read mapping, and SV geno-
typing. Much of the analysis in this report was done
using toil-vg, with the exact commands available at
github.com/vgteam/sv-genotyping-paper. toil-vg uses the
Toil workflow engine [36] to seamlessly run pipelines lo-
cally, on clusters or on the cloud. Graph indexing and
mapping in particular are computationally expensive
(though work is underway to address this) and well-
suited to distribution on the cloud. The principal toil-vg
commands used are described below.

toil-vg construct
toil-vg construct automates graph construction and
indexing following the best practices put forth by the vg
community. Graph construction is parallelized across
different sequences from the reference FASTA, and dif-
ferent whole-genome indexes are created side by side
when possible. The graph is automatically annotated
with paths corresponding to the different alleles in the
input VCF. The indexes created are the following:

� xg index: This is a compressed version of the graph
that allows fast node, edge and path lookups

� gcsa2 index: This is a substring index used only for
read mapping

� gbwt index: This is an index of all the haplotypes in
the VCF as implied by phasing information. When
available, it is used to help ensure that haplotype
information is preserved when constructing the
gcsa2 index

� snarls index: The snarls represent sites of variation
in the graph and are used for genotyping and variant
calling.

toil-vg map
toil-vg map splits the input reads into batches, maps
each batch in parallel, then merges the result.

toil-vg call
toil-vg call splits the input graph by chromosome and
calls each one individually. vg call has been recently up-
dated so that this subdivision is largely unnecessary: the
entire graph can be easily called at once. Still, toil-vg can
be used to farm this task out to a single cloud node if
desired.

toil-vg sveval
toil-vg sveval evaluates the SV calls relative to a truth
set. Matching SV calls is non-trivial because two SV call-
sets often differ slightly around the breakpoints. Even for
a genotyping experiment, the same input SVs can have
equivalent but different representations. Furthermore,
SV catalogs often contain very similar SVs that could be
potentially duplicates of the same true variant. To make
sure that SVs are matched properly when comparing ge-
notyped SVs and the truth set, we use an approach that
overlaps variants and aligns allelic sequences if neces-
sary. It was implemented in the sveval R package
(https://github.com/jmonlong/sveval). Additional file 1:
Figure S17 shows an overview of the SV evaluation ap-
proach which is described below. Of note, the variants
are first normalized with bcftools norm (1.9) to ensure
consistent representation between called variants and
baseline variants [37].
For deletions and inversions, we begin by computing

the overlaps between the SVs in the call set and the
truth set. For each variant, we then compute the propor-
tion of its region that is covered by a variant in the other
set, considering only variants overlapping with at least
10% reciprocal overlap. If this coverage proportion is
higher than 50%, we consider the variant covered. True
positives (TPs) are covered variants from the call set
(when computing the precision) or the truth set (when
computing the recall). Variants from the call set are con-
sidered false positives (FPs) if they are not covered by
the truth set. Conversely, variants from the truth set are
considered false negatives (FNs) if they are not covered
by the call set.
For insertions, we select pairs of insertions that are lo-

cated no farther than 20 bp from each other. We then
align the inserted sequences using a Smith-Waterman
alignment. For each insertion, we compute the propor-
tion of its inserted sequence that aligns a matched vari-
ant in the other set. If this proportion is at least 50%, the
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insertions are considered covered. Covering relationships
are used to define TPs, FPs, and FNs the same way as
for deletions and inversions.
The results shown in this study used a minimum of

50% coverage to match variants but we also replicated
the results using 90% minimum coverage and observed
similar results (see Additional file 1: Figure S18).
The coverage statistics are computed using any variant

larger than 1 bp but a minimum size is required for a
variant to be counted as TP, FP, or FN. In this work, we
used the default minimum SV size of 50 bp.
sveval accepts VCF files with symbolic or explicit rep-

resentation of the SVs. If the explicit representation is
used, multi-allelic variants are split and their sequences
right-trimmed. When using the explicit representation
and when the REF and ALT sequences are longer than
10 bp, the reverse-complement of the ALT sequence is
aligned to the REF sequence to identify potential inver-
sions. If more than 80% of the sequence aligns, it is clas-
sified as an inversion.
We assess both the ability to predict the presence of

an SV and the full genotype. For the presence evaluation,
both heterozygous and homozygous alternate SVs are
compared jointly using the approach described above.
To compute genotype-level metrics, the heterozygous
and homozygous SVs are compared separately. Before
splitting the variants by genotype, pairs of heterozygous
variants with reciprocal overlap of at least 80% are
merged into a homozygous ALT variant. To handle frag-
mented variants, consecutive heterozygous variants lo-
cated at less that 20 bp from each other are first merged
into larger heterozygous variants.
Precision-recall curves are produced by successively

filtering out variants of low quality. By default, the
QUAL field in the VCF file is used as the quality infor-
mation. If QUAL is missing (or contains only 0 s), the
genotype quality in the GQ field is used.
The evaluation is performed using all variants or using

only variants within high-confidence regions. In most
analysis, the high-confidence regions are constructed by
excluding segmental duplications and tandem repeats
(using the respective tracks from the UCSC Genome
Browser). For the GIAB analysis, we used the Tier 1
high-confidence regions provided by the GIAB consor-
tium in version 0.6.
The inserted/deleted sequence was also annotated

using RepeatMasker [38]. SVs were separated by repeat
family if the annotated repeat element covered more
than 80% of the sequence. We recomputed precision
and recall in the most frequent repeat families.
The average number of genotyped variants per vari-

ant in the truth set (Additional file 1: Figure S5) was
computed by dividing the number of TPs from the
call set by the number of TPs from the truth set, i.e.,

the ratio of matched variants between the two variant
sets.

Other SV genotypers
BayesTyper (v1.5 beta 62888d6)
Where not specified otherwise, BayesTyper was run as
follows. Raw reads were mapped to the reference gen-
ome using bwa mem [26] (0.7.17). GATK haplotypecal-
ler [39] (3.8) and Platypus [40] (0.8.1.1) with assembly
enabled were run on the mapped reads to call SNVs and
short indels (< 50 bp) needed by BayesTyper for correct
genotyping. The VCFs with these variants were then
normalized using bcftools norm (1.9) and combined with
the SVs across samples using bayesTyperTools to pro-
duce the input candidate set. k-mers in the raw reads
were counted using kmc [41] (3.1.1) with a k-mer size of
55. A Bloom filter was constructed from these k-mers
using bayesTyperTools makeBloom. Finally, variants
were clustered and genotyped using bayestyper cluster
and bayestyper genotype, respectively, with default pa-
rameters except --min-genotype-posterior 0. Non-PASS
variants and non-SVs (GATK and Platypus origin) were
filtered prior to evaluation using bcftools filter and filter-
AlleleCallsetOrigin, respectively.

Delly (v0.7.9)
The delly call command was run on the reads mapped
by bwa mem [26], the reference genome FASTA file,
and the VCF containing the SVs to genotype (converted
to their explicit representations).

SVTyper (v0.7.0)
The VCF containing deletions was converted to sym-
bolic representation and passed to svtyper with the reads
mapped by bwa mem [26]. The output VCF was con-
verted back to explicit representation using bayesTyper-
Tools convertAllele to facilitate variant normalization
before evaluation.

Paragraph (v2.3)
Paragraph was run using default parameters using the
multigrmpy.py script, taking the input VCF and reads
mapped by bwa mem [26] as inputs. We used the geno-
type estimates in the genotypes.vcf.gz output file. In
order for Paragraph to run, we added padding sequence
to problematic variants in the input VCFs of the GIAB
and SVPOP catalogs.

SMRT-SV v2 Genotyper (v2.0.0 Feb 21 2019 commit
adb13f2)
SMRT-SV v2 Genotyper was run with the “30x-4” model
and min-call-depth 8 cutoff. It was run only on VCFs
created by SMRT-SV, for which the required contig
BAMs were available. The Illumina BAMs used where
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the same as the other methods described above. The
output VCF was converted back to explicit representa-
tion to facilitate variant normalization later.

Running time and memory usage
Running times and memory usage for the different tools
are shown in Additional file 1: Table S7. The Elapsed
(wall clock) time and the Maximum resident set size
were extracted from the output of /usr/bin/time -v. We
show the profiling results when genotyping the HGSVC
SV catalog in the HG00514 sample.

Simulation experiment
We simulated a synthetic genome with 1000 insertions,
deletions, and inversions. We separated each variant
from the next by a buffer of at least 500 bp. The sizes of
deletions and insertions followed the distribution of SV
sizes from the HGSVC catalog. We used the same size
distribution as deletions for inversions. A VCF file was
produced for three simulated samples with genotypes
chosen uniformly between homozygous reference, het-
erozygous, and homozygous alternate.
We created another VCF file containing errors in the

SV breakpoint locations. We shifted one or both break-
points of deletions and inversions by distances between
1 and 10 bp. The locations and sequences of insertions
were also modified, either shifting the variants or short-
ening them at the flanks, again by up to 10 bp.
Paired-end reads were simulated using vg sim on the

graph that contained the true SVs. Different read depths
were tested: 1×, 3×, 7×, 10×, 13×, 20×. The base qualities
and sequencing errors were trained to resemble real Illu-
mina reads from NA12878 provided by the Genome in a
Bottle Consortium.
The genotypes called in each experiment (genotyping

method/VCF with or without errors/sequencing depth)
were compared to the true SV genotypes to compute the
precision, recall, and F1 score (see toil-vg sveval).

Breakpoint fine-tuning using graph augmentation
vg can call variants after augmenting the graph with the
read alignments to discover new variants (see toil-vg
call). We tested if this approach could fine-tune the
breakpoint location of SVs in the graph. We started with
the graph that contained approximate SVs (1–10 bp er-
rors in breakpoint location) and 20× simulated reads
from the simulation experiment (see “Simulation experi-
ment”). The variants called after graph augmentation
were compared with the true SVs. We considered fine-
tuning correct if the breakpoints matched exactly.

HGSVC analysis
We first obtained phased VCFs for the three Human
Genome Structural Variation Consortium (HGSVC)

samples from Chaisson et al. [22] and combined them
with bcftools merge. A variation graph was created and
indexed using the combined VCF and the HS38D1 refer-
ence with alt loci excluded. The phasing information
was used to construct a GBWT index [42], from which
the two haploid sequences from HG00514 were ex-
tracted as a graph. Illumina read pairs with 30× coverage
were simulated from these sequences using vg sim, with
an error model learned from real reads from the same
sample. These simulated reads reflect an idealized situ-
ation where the breakpoints of the SVs being genotyped
are exactly known a priori. The reads were mapped to
the graph, and the mappings used to genotype the SVs
in the graph. Finally, the SV calls were compared back
to the HG00514 genotypes from the HGSVC VCF. We
repeated the process with the same reads on the linear
reference, using bwa mem [26] for mapping and Delly
Genotyper, SVTyper, Paragraph, and BayesTyper for SV
genotyping.
We downloaded Illumina HiSeq 2500 paired-end reads

from the EBI’s ENA FTP site for the three samples,
using Run Accessions ERR903030, ERR895347, and
ERR894724 for HG00514, HG00733, and NA19240, re-
spectively. We ran the graph and linear mapping and
genotyping pipelines exactly as for the simulation, and
aggregated the comparison results across the three sam-
ples. We used BayesTyper to jointly genotype the three
samples.

GIAB analysis
We obtained version 0.5 of the Genome in a Bottle
(GIAB) SV VCF for the Ashkenazim son (HG002) and
his parents from the NCBI FTP site. We obtained Illu-
mina reads as described in Garrison et al. [15] and
downsampled them to 50× coverage. We used these
reads as input for vg call and the other SV genotyping
pipelines described above (though with GRCh37 instead
of GRCh38). For BayesTyper, we created the input vari-
ant set by combining the GIAB SVs with SNV and indels
from the same study. Variants with reference allele or
without a determined genotype for HG002 in the GIAB
call set (10,569 out of 30,224) were considered “false
positives” as a proxy measure for precision. These vari-
ants correspond to putative technical artifacts and par-
ental calls not present in HG002. For the evaluation in
high-confidence regions, we used the Tier 1 high-
confidence regions provided by the GIAB consortium in
version 0.6.

SMRT-SV v2 comparison (CHMPD and SVPOP)
The SMRT-SV v2 Genotyper can only be used to geno-
type sequence-resolved SVs present on contigs with
known SV breakpoints, such as those created by SMRT-
SV v2, and therefore could not be run on the simulated,
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HGSVC, or GIAB call sets. The authors shared their
training and evaluation set: a pseudodiploid sample con-
structed from combining the haploid CHM1 and
CHM13 samples (CHMPD), and a negative control
(NA19240). The high quality of the CHM assemblies
makes this set an attractive alternative to using simu-
lated reads. We used this two-sample pseudodiploid
VCF along with the 30× read set to construct, map, and
genotype with vg, and also ran SMRT-SV v2 Genotyper
with the “30x-4” model and min-call-depth 8 cutoff, and
compared the two back to the original VCF.
In an effort to extend this comparison from the train-

ing data to a more realistic setting, we reran the three
HGSVC samples against the SMRT-SV v2 discovery
VCF (SVPOP, which contains 12 additional samples in
addition to the three from HGSVC) published by
Audano et al. [5] using vg and SMRT-SV v2 Genotyper.
The discovery VCF does not contain genotypes. In con-
sequence, we were unable to distinguish between hetero-
zygous and homozygous genotypes and instead
considered only the presence or absence of a non-
reference allele for each variant.
SMRT-SV v2 Genotyper produces explicit no-call

predictions when the read coverage is too low to pro-
duce accurate genotypes. These no-calls are consid-
ered homozygous reference in the main accuracy
evaluation. We also explored the performance of vg
and SMRT-SV v2 Genotyper in different sets of re-
gions (Additional file 1: Figure S12 and Add-
itional file 1: Table S5):

1. Non-repeat regions, i.e., excluding segmental
duplications and tandem repeats (using the
respective tracks from the UCSC Genome
Browser).

2. Repeat regions defined as segmental duplications
and tandem repeats.

3. Regions where SMRT-SV v2 Genotyper could call
variants.

4. Regions where SMRT-SV v2 Genotyper produced
no-calls.

Yeast graph analysis
For the analysis of graphs from de novo assemblies, we
utilized publicly available PacBio-derived assemblies and
Illumina short-read sequencing datasets for 12 yeast
strains from two related clades (Additional file 1:
Table 1) [28]. We constructed graphs from two different
strain sets: For the five strains set, we selected five
strains for graph construction (S.c. SK1, S.c. YPS128, S.p.
CBS432, S.p. UFRJ50816 and S.c. S288C). We randomly
selected two strains from different subclades of each
clade as well as the reference strain S.c. S288C. For the
all-strain set in contrast, we utilized all 12 strains for
graph construction. We constructed two different
types of genome graphs from the PacBio-derived as-
semblies of the five or 12 (depending on the strains
set) selected strains. In this section, we describe the
steps for the construction of both graphs and the
genotyping of variants. More details and the precise
commands used in our analyses can be found at
github.com/vgteam/sv-genotyping-paper.

Construction of the VCF graph
We constructed the first graph (called the VCF graph
throughout the paper) by adding variants onto a linear
reference. This method requires one assembly to serve
as a reference genome. The other assemblies must be
converted to variant calls relative to this reference. The
PacBio assembly of the S.c. S288C strain was chosen as

Table 1 12 yeast strains from two related clades were used in our analysis. Five strains were selected to be included in the five
strains set and all strains were included in the all strains set. Graphs were constructed from strains in the respective strain set while
all 11 non-reference strains were used for genotyping

Strain Clade Included in five strains set Included in all strains set

S288C S. cerevisiae ✓ ✓

SK1 S. cerevisiae ✓ ✓

YPS128 S. cerevisiae ✓ ✓

UWOPS034614 S. cerevisiae ✓

Y12 S. cerevisiae ✓

DBVPG6765 S. cerevisiae ✓

DBVPG6044 S. cerevisiae ✓

CBS432 S. paradoxus ✓ ✓

UFRJ50816 S. paradoxus ✓ ✓

N44 S. paradoxus ✓

UWOPS919171 S. paradoxus ✓

YPS138 S. paradoxus ✓
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the reference genome because this strain was used
for the S. cerevisiae genome reference assembly. To
obtain variants for the other assemblies, we com-
bined three methods for SV detection from genome
assemblies: Assemblytics [29] (commit df5361f),
AsmVar (commit 5abd91a) [30], and paftools (ver-
sion 2.14-r883) [31]. We constructed a union set of
SVs detected by the three methods (using bedtools
[43]) and combined variants with a reciprocal over-
lap of at least 50% to avoid duplication in the union
set. We merged these union sets of variants for each
of the other (non-reference) strains in the strain set,
and we then applied another deduplication step to
combine variants with a reciprocal overlap of at least
90%. We then used vg construct to build the VCF
graph with the total set of variants and the linear
reference genome.

Construction of the cactus graph
The second graph (called the cactus graph through-
out the paper) was constructed from a whole-
genome alignment between the assemblies. First, the
repeat-masked PacBio-assemblies of the strains in
the strain set were aligned with our Cactus tool [27].
Cactus requires a phylogenetic tree of the strains
which was estimated using Mash (version 2.1) [44]
and PHYLIP (version 3.695) [45]. Subsequently, we
converted the HAL format output file to a variation
graph with hal2vg (https://github.com/Comparative-
GenomicsToolkit/hal2vg).

Genotyping of SVs
Prior to genotyping, we mapped the Illumina short reads
of all 12 yeast strains to both graphs using vg map. We
measured the fractions of reads mapped with specific
properties using vg view and the JSON processor jq.
Then, we applied toil-vg call (commit be8b6da) to geno-
type variants, obtaining a separate genotype set for each
of the 11 non-reference strains on both graphs and for
each of the two strain sets (in total 11 × 2 × 2 = 44 geno-
type sets). From the genotype sets, we removed variants
smaller than 50 bp and variants with missing or homozy-
gous reference genotypes. To evaluate the filtered geno-
type sets, we generated a sample graph (i.e., a graph
representation of the genotype set) for each genotype set
using vg construct and vg mod on the reference assem-
bly S.c. S288C and the genotype set. Subsequently, we
mapped short reads from the respective strains to each
sample graph using vg map. We mapped the short reads
also to an empty sample graph that was generated using
vg construct as a graph representation of the linear ref-
erence genome. In an effort to restrict our analysis to SV
regions, we removed reads that mapped equally well
(i.e., with identical mapping quality and percent identity)

to all three graphs (the two sample graphs and the
empty sample graph) from the analysis. These filtered
out reads most likely stem from portions of the strains’
genomes that are identical to the reference strain S.c.
S288C. We analyzed the remaining alignments of reads
from SV regions with vg view and jq.
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https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=vgsv2019/sim-HG00514-30x.fq.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/svanalyzer_union_171212_v0.5.0_annotated.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/svanalyzer_union_171212_v0.5.0_annotated.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/svanalyzer_union_171212_v0.5.0_annotated.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam


Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/
HG002.hs37d5.300x.bam.
The SV catalog from Audano et al. [5] was prepared from http://ftp.1
000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/
working/20181025_EEE_SV-Pop_1/VariantCalls_EEE_SV-Pop_1/EEE_SV-Pop_1.
ALL.sites.20181204.vcf.gz.
The genotype predictions for each method benchmarked are available at
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.
html?prefix=vgsv2019/vcfs/
The yeast assemblies were downloaded from (https://yjx1217.github.io/
Yeast_PacBio_2016/data/) The sequencing reads were downloaded from
SRA: SRR4074413 [50], SRR4074412 [51], SRR4074411 [52], SRR4074394 [53],
SRR4074385 [54], SRR4074384 [55], SRR4074383 [56], SRR4074358 [57],
SRR4074258 [58], SRR4074257 [59], SRR4074256 [60], SRR4074255 [61].
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