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ABSTRACT OF THE DISSERTATION 

 
 
 
 

Genome-wide Association Discovery, Replication, and Validation in Mouse Models 
 
 
 
 

by 
 
 
 

Xinzhu Zhou 
 

Doctor of Philosophy in Biomedical Sciences 
 
 

University of California, San Diego, 2020 
 
 

Professor Abraham Palmer, Chair 
 
 

The “replication crisis” has highlighted the apparent lack of replication across 

scientific fields. Assessing the true effect size of a genetic variant and designing an 

adequately powered study remain difficult when replicating genome-wide association 

studies (GWAS) results. Functional replication studies that validate the identified loci have 

also been scarce. Given the importance of replication, my thesis focuses on the 

computational and the functional aspects of replication. In chapter 1, I explored replication 

in a mouse model using an advanced intercross line (AIL), which is a multigenerational 

intercross between two inbred strains. I used genotyped and re-genotyped data from two 
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cohorts of the LG/J x SM/J AIL mice (F34, n=428; F39-43, n=600). For the subset of traits 

that were measured in both cohorts (locomotor activity, body weight, and coat color), I 

attempted to replicate loci identified in either F34 or F39-43 in the other cohort. Coat color 

was robustly replicated; locomotor activity and body weight were only partially replicated, 

which was inconsistent with our power simulations. We used a random effects model to 

show that the partial replications could not be explained by Winner’s Curse but could be 

explained by study-specific heterogeneity. Despite this heterogeneity, I performed a 

mega-analysis by combining F34 and F39-43 cohorts (n=1,028). In chapter 2, I followed up 

on a candidate gene, Azi2, which had previously been identified in a GWAS for locomotor 

response to methamphetamine using an outbred Carworth Farms White (CFW) 

population. To validate Azi2 as a putative causal gene for methamphetamine sensitivity, 

I created an Azi2 knockout mouse line using CRISPR/Cas9 and established the mutant 

phenotype of locomotor response to methamphetamine. In addition, I investigated a 

published hypothesis that an independent transcript that matches to the second half of 

the 3’UTR sequence of Azi2 is a downregulator of Slc6a3, which encodes the dopamine 

transporter (DAT), in the ventral tegmental area (VTA) region of midbrain. To test this 

hypothesis, I examined the possible correlations among Azi2, Azi2 3’UTR, and Slc6a3 

expression in the Azi2 KO line and in naïve CFW mice.  



 

1 
 

INTRODUCTION 

The “replication crisis” has been a topic of extensive discussion in many scientific 

fields. The concern for such a crisis was substantiated in the exemplary field of 

psychology when the Open Science Collaboration merely yielded 36 successful 

replication efforts out of the 100 original publications sampled in top-tier journals 

(Collaboration, 2015; Shrout & Rodgers, 2018). Maxwell, Lau and Howard (2015) 

(Maxwell et al., 2015) argued that the apparent lack of replication is due to the myriad of 

complications when designing a replication study. Researchers would have to first 

determine the appropriate level of power for the replication study. Then they need to adopt 

an effect size that is generally extrapolated from the original study to estimate the sample 

size needed to achieve the desired level of power. However, the assumed effect size 

could be wildly uncertain. Sampling variability that does not represent the population 

variability in the original study could result in an erroneous estimate of the true effect size. 

Publication bias for statistically significant results could give the wrong illusion that effect 

sizes are larger than they are (Shrout & Rodgers, 2018). Even if the estimated effect size 

in the original study was true, the power analysis for the replication study usually relies 

on a single value of effect size, instead of a range of values that portray the possible 

distribution of effect sizes (e.g., a confidence interval for the estimated effect size). The 

matter is worsened by the fact that the correlation between effect size and sample size is 

nonlinear; at a given level of power, a small decrease in effect size equates to a much 

larger increase in sample size. As Maxwell, Lau and Howard (2015) pointed out, although 

not being able to confirm the original results at the same statistical significance and/or 

with the same magnitude of effect size do not immediately indicate that the original 

findings are false positives, designing an adequately powered replication study remains 
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a challenging feat (Maxwell et al., 2015). In the field of genome-wide association studies 

(GWAS), much of the difficulty in replicating genetic effect is attributed to a phenomenon 

dubbed “Winner’s Curse” (Poirier et al., 2015; Xiao & Boehnke, 2009; Zöllner & Pritchard, 

2007) (also known as “Beavis Effect”; (Beavis et al., 1991, 1994; Keele et al., 2019; King 

& Long, 2017; Paterson, 2019; Xu, 2003), in which published effect sizes of genetic 

variants tend to be much larger in magnitude than the subsequent replication studies. 

Indeed, winning once may seem to exclude the opportunity to win future replication 

games. 

Shrout and Rodgers (2018) elaborated on the distinctions among three definitions 

of replication: direct replication, systematic replication, and conceptual replication (Shrout 

& Rodgers, 2018). Direct replication refers to a new study that employs the same set of 

subjects, materials and protocol as the original study. Systematic replication is similar to 

direct replication except a few minor changes in the auxiliary measures from the original 

study. Conceptual replication is an intentional diversion from the original study where the 

generalizability of the results could be assessed. In addition to the formal definitions of 

replication, which tend to refer to single replication attempts, meta-analysis is another 

way of replicating and refining the results. Meta-analysis compares results from multiple 

studies, yielding not only more accurate estimates of the distribution of effect sizes in a 

population but also the factors that modulate the effect sizes in subgroups (Shrout & 

Rodgers, 2018). GWAS as a field has adopted and benefited tremendously from meta-

analysis. Complex diseases tend to be highly polygenic where the effect sizes for the risk 

gene variants, which tend to be rare alleles, are very small. While single GWAS for 

complex diseases may not be able to identify significant associations due to difficulties in 



 

3 
 

recruiting, surveying, and testing thousands and thousands of human subjects in one 

particular place and time, meta-analysis allows for combining multiple large-scale studies, 

leading to the increase of the power and the identification of the majority of the genetic 

risk variants for complex diseases (Evangelou & Ioannidis, 2013). Multitudes of methods 

and software applications that correct for heterogeneity between the studies have been 

developed and applied in meta-analysis efforts (as reviewed in (Begum et al., 2012)).  

Mega-analysis is a special case of meta-analysis. Instead of weighing summary 

statistics from individual studies, mega-analysis is an approach where samples from 

different studies are directly combined and analyzed. Mega-analysis is generally used 

when there is no perceived difference between the study samples; the samples may come 

from the same population and the samples may have been genotyped together. 

Apart from replicating the association between genetic variant and trait, evaluating 

whether an identified locus is functionally linked to the trait is essential. One could argue 

that functional validation of genetic variants is another form of replication. Positive 

validation would enhance the credibility of the variant-trait association markedly, at least 

in the biological system tested. Negative validation could imply suboptimal validation 

design, limited evidence for the GWAS association, and/or alternative genetic variants 

that may contribute to the trait (e.g., variants that reside within the linkage disequilibrium 

block of the significant genetic variant). Despite the prolific publication of GWAS results 

across disease areas, functional validation studies have not been routinely performed to 

follow up on the top candidate genes. A few barriers may discourage the pursuit of 

validation studies. First, the significance level of the association signal and the magnitude 

of the estimated effect size from a single study could be overly optimistic, as discussed 
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in paragraphs above; researchers may not trust the evidence presented and fear for 

failure. Second, choosing the adequate biological system to perform the functional 

validation could be tricky. For instance, functional validation of genetic risk loci identified 

for a complex disease in humans is challenging because 1) no genetic manipulation could 

be done in humans, 2) designing, executing and interpreting phenotype measurements 

in the next best system (e.g., other mammalian model organisms such as rats and mice) 

may not be straightforward, and 3) complex behavioral traits measured in human GWAS 

may not always be faithfully remodeled in an animal system. The third barrier might simply 

be the invisible dichotomy between the GWAS community and the experimental scientists 

who are interested in specific phenotypes, biological pathways, molecular mechanisms 

or genes: scientists who perform GWAS may not be scientifically invested in every 

candidate gene they uncover, and experimental scientists may not be aware of every new 

GWAS report that implicates their favorite gene. 

Given the importance of replication in the context of GWAS, my thesis touches on 

multiple concepts of replication and aims to exemplify both the computational and the 

functional aspects of replication in GWAS.  All of my work is based on the model organism 

of mice. There are a few advantages of using mice as the system to perform the 

discovery, replication and validation of GWAS findings. In the discovery stage, using 

laboratory mice allows for stringent environmental control, thus reducing the non-genetic 

variance introduced to the phenotypic variance. In the replication stage, multiple cohorts 

of the same population of mice could be employed for direct replication and mega-

analysis. In the validation stage, genetic manipulation could be carried out to create a 

mutant mouse line; the effect of the mutation on the associated trait and on the 
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underpinning molecular function could be examined in detail. These advantages are 

meaningful to consider in light of the fact that using animal models allows for multiple 

avenues of hypothesis testing, many of which are not attainable using human subjects. 

Chapter 1 of my thesis investigates the rate of replication in mouse GWAS. We 

used an advanced intercross line (AIL), which is a multigenerational intercross between 

two inbred mouse lines, LG/J and SM/J. Genotypes and phenotypes have been collected 

from multiple generations; the availability of cohorts from the same population serves as 

a convenient vehicle to conduct replication studies and mega-analysis. In particular, mice 

from the 34th generation (F34; n=428) had been genotyped using a custom Illumina 

Infinium genotyping microarray to obtain genotypes for 4,593 SNPs (Cheng et al., 2010; 

Parker et al., 2014) F34 mice were later re-genotyped using genotyping-by-sequencing 

(GBS), which is a reduced-representation sequencing method (Davey et al., 2011; Elshire 

et al., 2011; Fitzpatrick et al., 2013) to obtain a much denser set of SNPs (~60K) in the 

F34 cohort. Using the same cohort of F34 mice, we directly compared GWAS results using 

the array and the GBS SNPs and examined how SNP density influenced loci 

identification. In later generations, more traits were collected in mice from the 39th – 43rd 

generations (F39-43; n=600). F39-43 mice were also genotyped using GBS in the same batch 

as the F34 animals that were re-genotyped. Between the phenotype data measured in the 

F34 and the F39-43 cohorts, coat color, body weight, and locomotor response to 

methamphetamine are the three tests that were measured using identical protocol. 

Therefore, we directly compared GWAS findings for coat color, body weight, and 

locomotor response to methamphetamine between the F34 and the F39-43 cohorts. To set 

our expectations for replication, we performed simulations to estimate the power for these 
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replication studies. Because the actual rate of replication was lower than predicted by the 

power analysis, we used a random effects model to evaluate the role of Winner’s Curse 

and study-specific heterogeneity in the low rate of replication. Finally, because the two 

cohorts were genotyped together, we combined the two cohorts (n=1028) and performed 

mega-analysis for the three shared trait coat color, body weight, and locomotor response.  

 Chapter 2 of my thesis describes a gene validation study following up on a 

candidate gene, 5-azacytidine–induced gene 2 (Azi2), which had previously been 

identified in a GWAS for locomotor response to methamphetamine. Using 1,200 male 

Carworth Farms White (CFW) mice, a commercially available outbred population, Parker 

et al (2016) identified a locus on chromosome 9 (chr9.117763640, rs46497021) for 

locomotor response to methamphetamine (p-value=1.58 × 10−6; (Parker et al., 2016a)). 

To further identify the genes responsible for the gene-trait associations, Parker et al 

(2016) performed an eQTL using CFW brain regions hippocampus (n=79), striatum 

(n=55), and prefrontal cortex (n=54) and discovered a cis-eQTL on chromosome 9 

(chr9.118150749, rs234453358) for Azi2 expression in the striatum (p-value=1.2 × 10−8; 

Parker et al 2016). The GWAS locus for locomotor response to methamphetamine 

injection and the eQTL for Azi2 expression in the striatum are in the same implicated 

region (r2>0.4; Parker et al 2016), indicating that Azi2 expression may be a causative 

factor for the locomotor response to methamphetamine injection. To validate Azi2 as a 

causal gene for methamphetamine sensitivity, we created an Azi2 knockout mouse line 

using the CRISPR/Cas9 system and established the mutant phenotype of locomotor 

response to methamphetamine in the knockout line. 
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 Despite the plethora of studies on Azi2 focusing on its functions in NFκB activation, 

TNF-induced cell death, and immune response (e.g., (Bozóky et al., 2013a; Fujita et al., 

2003; Goncalves et al., 2011; Lafont et al., 2018)), no previous study has linked Azi2 to 

the dopaminergic processes of methamphetamine sensitivity. Liu et al (2018) identified 

AZI23’UTR, an independent transcript that matches to the second half of the 3’UTR 

sequence of Azi2, as a downregulator of Slc6a3, which encodes the dopamine transporter 

(DAT), in the ventral tegmental area (VTA) region of midbrain (K. Liu et al., 2018a). If 

true, these findings could explain the corroborative evidence from both the GWAS and 

eQTL studies that Azi2 plays a critical role in the reward sensitization pathway of 

methamphetamine. To test the hypothesis that Azi2 or Azi2 3’UTR downregulates Slc6a3 

expression in the VTA region of midbrain, we examined the possible correlations among 

Azi2, the Azi2 3’UTR, and Slc6a3 expression in VTA in the Azi2 KO line and in naïve 

CFW mice, where the Azi2 locus was originally identified. 

Both chapter 1 and chapter 2 examine the trait methamphetamine sensitivity. 

Methamphetamine is a psychomotor stimulant of abuse. Affecting the brain and the 

central nervous system, methamphetamine produces the feeling of euphoria, heightened 

energy, and enhanced focus. The positive psychoactive sensations induced by 

methamphetamine have made the drug popular among abusers: in the U.S. alone, 

approximately 1.9 million people reported using methamphetamine in the past year (2018 

National Survey on Drug Use and Health (Lipari, 2018)). Among the large base of users, 

individual sensitivity to methamphetamine is far from uniform; studies on both humans 

and animals have shown that individual response to methamphetamine intake is highly 

varied (Deminiere et al., 1989; Ettenberg, 2009; Glick & Hinds, 1985; Piazza et al., 1989; 
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Seale, 1991; Smith et al., 2016). In addition, dosage and frequency of methamphetamine 

use also dictate differential outcome, which would be further categorized into acute 

response and chronic addiction (Meredith et al., 2005; Russell et al., 2008). 

GWAS have facilitated the identification of thousands of loci for complex traits such 

as substance abuse (Buchwald et al., 2020; Hancock et al., 2018), depression (Forstner 

et al., 2019; W. Liu et al., 2020), and alcohol addiction (Kinreich et al., 2019; Liu et al., 

2019; Sanchez-Roige et al., 2019; Walters et al., 2018; Zhou et al., 2020). Our approach 

to study methamphetamine sensitivity - discover, replicate and validate significant loci in 

multiple mouse populations - could be more widely applied to other complex traits. Given 

the increasing availability of large-scale collaboration datasets and consortiums in 

humans and model organisms and the relative ease of creating a KO line using the 

CRISPR/Cas9 system, more replication studies and functional validation studies could be 

carried out such that the credibility of loci identified in association studies could be 

assessed and prioritized.  
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CHAPTER 1: Genome-wide Association Study in Two Cohorts from a Multi-generational 

Mouse Advanced Intercross Line Highlights the Difficulty of Replication Due to Study-
specific Heterogeneity 

 

1.1 Abstract 

 There has been extensive discussion of the "Replication Crisis" in many fields, 

including genome-wide association studies (GWAS). We explored replication in a mouse 

model using an advanced intercross line (AIL), which is a multigenerational intercross 

between two inbred strains. We re-genotyped a previously published cohort of LG/J x 

SM/J AIL mice (F34; n = 428) using a denser marker set and genotyped a new cohort of 

AIL mice (F39-43; n = 600) for the first time. We identified 36 novel genome-wide significant 

loci in the F34 and 25 novel loci in the F39-43 cohort. The subset of traits that were 

measured in both cohorts (locomotor activity, body weight, and coat color) showed high 

genetic correlations, although the SNP heritabilities were slightly lower in the F39-43 cohort. 

For this subset of traits, we attempted to replicate loci identified in either F34 or F39-43 in 

the other cohort. Coat color was robustly replicated; locomotor activity and body weight 

were only partially replicated, which was inconsistent with our power simulations. We 

used a random effects model to show that the partial replications could not be explained 

by Winner's Curse but could be explained by study-specific heterogeneity. Despite this 

heterogeneity, we performed a mega-analysis by combining F34 and F39-43 cohorts (n = 

1,028), which identified four novel loci associated with locomotor activity and body weight. 

These results illustrate that even with the high degree of genetic and environmental 

control possible in our experimental system, replication was hindered by study-specific 

heterogeneity, which has broad implications for ongoing concerns about reproducibility. 



 
 

16 
 

1.2  Introduction 

 Genome-wide association studies (GWAS) in model organisms can use 

genetically identical cohorts phenotyped under extremely similar conditions, which would 

be expected to enhance the success of replication. We sought to investigate replication 

in model organism GWAS using a mouse advanced intercross line (AIL). The use of 

GWAS in model organisms such as mice (Talbot et al. 1999; Demarest et al. 2001; Yalcin 

et al. 2004; Valdar et al. 2006; Ghazalpour et al. 2008; Samocha et al. 2010; Churchill et 

al. 2012; Collaborative Cross Consortium 2012; Parker et al. 2012, 2016; Svenson et al. 

2012; Carbonetto et al. 2014; Chesler 2014; Coyner et al. 2014; Gatti et al. 2014; Nicod 

et al. 2016; Hernandez Cordero et al. 2018, 2019), rats (Baud et al. 2014), chickens 

(Besnier et al. 2011; Johnsson et al. 2018), fruit flies (King et al. 2012; Mackay et al. 2012; 

Kislukhin et al. 2013; Marriage et al. 2014; Vonesch et al. 2016), C. elegans (Doitsidou et 

al. 2016) and various plant species (Rishmawi et al. 2017; Cockram and Mackay 2018; 

Diouf et al. 2018) has become increasingly common over the last decade. These mapping 

populations can further be categorized as multi-parental crosses, which are created by 

interbreeding two or more inbred strains, and various outbred populations, in which the 

founders are of unknown provenance. An F2 cross between two inbred strains is the 

prototypical mapping population; however, F2s provide poor mapping resolution (Parker 

and Palmer 2011). To improve mapping resolution, Darvasi and Soller (Darvasi and Soller 

1995) proposed the creation of advanced intercross lines (AILs), which are produced by 

intercrossing F2 mice for additional generations. AILs accumulate additional crossovers 

with every successive generation, leading to a population with shorter linkage 
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disequilibrium (LD) blocks, which improves mapping precision, albeit at the expense of 

power (Parker and Palmer 2011; Gonzales and Palmer 2014). 

 The longest running mouse AIL was generated by crossing LG/J and SM/J inbred 

strains, which had been previously selected for large and small body size prior to 

inbreeding and subsequent intercrossing. We obtained this AIL in 2006 at generation 33 

from Dr. James Cheverud (Jmc: LG,SM-G33). Since then, we have collected genotype 

and phenotype information from multiple generations, including F34 (Cheng et al. 2010; 

Lionikas et al. 2010; Samocha et al. 2010; Parker et al. 2011, 2014; Bartnikas et al. 2012; 

Carroll et al. 2017; Gonzales et al. 2018) and F39-F43. Our previous publications using the 

F34 generation employed a custom Illumina Infinium genotyping microarray to obtain 

genotypes for 4,593 SNPs (Cheng et al. 2010; Parker et al. 2014); we refer to this set of 

SNPs as the ‘sparse markers’. Those genotypes were used to identify significant 

associations for numerous traits, including locomotor activity in response to 

methamphetamine (Cheng et al. 2010), pre-pulse inhibition (Samocha et al. 2010), 

muscle weight (Lionikas et al. 2010; Hernandez Cordero et al. 2019), body weight (Parker 

et al. 2011), open field (Parker et al. 2014), conditioned fear (Parker et al. 2014), red 

blood cell parameters (Bartnikas et al. 2012), and muscle weights (Carroll et al. 2017). 

Although not previously published, we also collected phenotype information from the F39-

43 generations, including body weight, fear conditioning, locomotor activity in response to 

methamphetamine, and the light dark test for anxiety.  

 While the prior GWAS using the F34 generation detected many significant loci, the 

sparsity of the markers likely precluded the discovery of some true loci and also made it 

difficult to clearly define the boundaries of the loci that we did identify. For example, Parker 
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et al. conducted an integrated analysis of F2 and F34 AILs (Parkeret al. 2011). One of their 

body weight loci spanned from 87.93–102.70 Mb on chromosome 14. Denser markers 

might have more clearly defined the implicated region.  

 In the present study, we used genotyping-by-sequencing (GBS), which is a 

reduced-representation sequencing method (Davey et al. 2011; Elshire et al. 2011; 

Fitzpatrick et al. 2013), to obtain a much denser set of SNPs in the F34 cohort and, for the 

first time, genotyped mice from the F39-43 generations. With this denser set of SNPs, we 

attempted to identify novel loci in the F34 cohort that were not detected using the sparse 

SNPs. We also performed GWAS using the mice from the F39-43 AILs. We explored 

whether imputation from the array SNPs could have provided the additional coverage we 

obtained using the denser GBS genotypes. Because F39-43 AILs are the direct 

descendants of the F34, they are uniquely suited to serve as a replication population for 

GWAS in the F34 generation. For the subset of traits measured in both cohorts, we 

attempted to replicate the results discovered in one cohort in the other. To set our 

expectations for replication, we performed simulations to estimate the power for these 

replication studies. Because the actual rate of replication was lower than predicted by the 

power analysis, we used a random effects model to evaluate the role of Winner’s Curse 

and study-specific heterogeneity in the low rate of replication. Finally, we also performed 

a mega-analysis on a subset of traits common to both cohort.
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1.3  Materials and methods 

Animals 

 All mice used in this study were members of the LG/J x SM/J AIL that was originally 

created by Dr. James Cheverud (Loyola University Chicago, Chicago, IL). This AIL has 

been maintained in the Palmer laboratory since generation F33. Age and exact number of 

animals tested in each phenotype are described in Table S1. Several previous 

publications (Samocha et al. 2010; Cheng et al. 2010; Parker et al. 2014; Lionikas et al. 

2010; Carroll et al. 2017; Parker et al. 2011; Bartnikas et al. 2012) have reported 

association analyses of the F34 mice (n=428). No prior publications have described the 

F39-43 generations (n=600). The sample size of F34 mice reported in this study (n=428) is 

smaller than that in previous publications of F34 (n=688) because we only genotyped a 

subset of F34 animals using GBS.  

 

F34, F39-43 Phenotypes 

 All phenotypes are listed in Table S1. We have previously described the 

phenotyping of F34 animals for locomotor activity and locomotor response to 

methamphetamine (Cheng et al. 2010), fear conditioning (Parker et al. 2014), open field 

(Parker et al. 2014), coat color, body weight (Parker et al. 2011), complete blood counts 

(Bartnikas et al. 2012), heart and tibia measurements (Lionikas et al. 2010), muscle 

weight (Lionikas et al. 2010). Iron content in liver and spleen, which have not been 

previously reported in these mice, was measured by atomic absorption 

spectrophotometry, as described in Gardenghi et al. (Gardenghi et al. 2007) and 

Graziano, Grady and Cerami (Graziano et al. 1974). Although the phenotyping of F39-43 



 

20 
 

animals has not been previously reported, we followed previously published protocols for 

locomotor activity and locomotor response to methamphetamine (Cheng et al. 2010), coat 

color, body weight (Parker et al. 2011), and light/dark test for anxiety (Sittig et al. 2016). 

We point out here that even though “locomotor activity” was measured in both the F34 and 

F39-43 using the Versamax software (AccuScan Instruments, Columbus, OH), “open field” 

in the F34 cohort was also measured using Versamax, whereas “open field” in the F39-43 

cohort was measured using the EthoVision XT software (Noldus system; (Noldus et al. 

2001)). Because there are meaningful differences in these experimental procedures, we 

did not attempt to use “open field” data for replication. In summary, we performed GWAS 

on all traits collected in individual cohorts. For the replication analysis between the F34 

and F39-43 cohorts, we only directly compared a number of traits that had been measured 

in both cohorts: body weight, two Mendelian coat color traits (albino and agouti), and three 

locomotor activity traits (locomotor activity on day 1 and on day 2, and activity on day 3 

following a methamphetamine injection). 

 

F34 AIL Array Genotypes 

 F34 animals had been genotyped on a custom SNP array on the Illumina Infinium 

platform (Cheng et al. 2010; Parker et al. 2014), which yielded a set of 4,593 SNPs on 

autosomes and X chromosome that we refer to as ‘sparse SNPs’.  

 

F34 and F39-43 GBS Genotypes 

 F34 and F39-43 animals were genotyped using genotyping-by-sequencing (GBS), 

which is a reduced-representation genome sequencing method (Parker et al. 2016; 
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Gonzales et al. 2017). We used the same protocol for GBS library preparation that was 

described in Gonzales et al (Gonzales et al. 2017). We called GBS genotype probabilities 

using ANGSD (Korneliussen et al. 2014). GBS identified 1,667,920 autosomal and 43,015 

X-chromosome SNPs. To fill in missing genotypes at SNPs where some but not all mice 

had calls, we ran within-sample imputation using Beagle v4.1, which generated hard call 

genotypes as well as genotype probabilities (Browning & Browning, 2007). After 

imputation, only SNPs that had dosage r2 > 0.9 were retained. We removed SNPs with 

minor allele frequency < 0.1 and SNPs with p < 1.0×10-6 in the Chi-square test of Hardy–

Weinberg Equilibrium (HWE) (Table S2). All phenotype and GBS genotype data are 

deposited in GeneNetwork2 (http://gn2.genenetwork.org/).  

 

QC of individuals  

 We have found that large genetic studies are often hampered by cross-

contamination between samples and sample mix-ups. We used four features of the data 

to identify problematic samples: heterozygosity distribution, proportion of reads aligned 

to sex chromosomes, pedigree/kinship, and coat color. We first examined heterozygosity 

across autosomes and removed animals where the proportion of heterozygosity was 

more than 3 standard deviations from the mean (Figure S1). Next, we sought to identify 

animals in which the recorded sex did not agree with the sequencing data. We compared 

the ratio of reads mapped to the X and Y chromosomes. The 95% CI for this ratio was 

196.84 to 214.3 in females and 2.13 to 2.18 in males. Twenty-two F34 and F39-43 animals 

were removed because their sex (as determined by reads ratio) did not agree with their 

recorded sex; we assumed this discrepancy was due to sample mix-ups. To further 
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identify mislabeled samples, we calculated kinship coefficients based on the full AIL 

pedigree using QTLRel. We then calculated a genetic relatedness matrix (GRM) using 

IBDLD (Abney, 2008; L. Han & Abney, 2011), which estimates identity by descent using 

genotype data. The comparison between pedigree kinship relatedness and genetic 

kinship relatedness identified 7 pairs of animals that showed obvious disagreement 

between kinship coefficients and the GRM, these animals were excluded from further 

analysis. Lastly, we excluded 14 F39-43 animals that showed discordance between their 

recorded coat color and their genotypes at markers flanking Tyr, which causes albinism 

in mice. The numbers of animals filtered at each step are listed in Table S2. Some animals 

were detected by more than one QC step, substantiating our evidence that these samples 

were erroneous. 

 At the end of SNP and sample filtering, we had 59,561 autosomal and 831 X 

chromosome SNPs in F34, 58,966 autosomal and 824 X chromosome SNPs in F39-43, and 

57,635 autosomal and 826 X chromosome SNPs in the combined F34 and F39-43 set (Table 

S2). GBS genotype quality was estimated by examining concordance between the 66 

SNPs that were present in both the array and GBS genotyping results (Figure S3).  

 

LD decay 

 Average LD (r2) was calculated using allele frequency matched SNPs (MAF 

difference < 0.05) within 100,000 bp distance, as described in Parker et al. (Parker et al. 

2016).  
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Imputation to LG/J and SM/J reference panels 

 F34 array genotypes (n=428) and F34 GBS genotypes (n=428) were imputed to 

LG/J and SM/J whole genome sequence data (Nikolskiy et al. 2015) using BEAGLE 

(Browning & Browning, 2007).  For F34 array imputation, we used a large window size 

(100,000 SNPs and 45,000 SNPs overlap). Imputation to reference panels yielded 4.3 

million SNPs for F34 array and F34 GBS imputed sets. Imputed SNPs with R2 > 0.9, MAF 

> 0.1, HWE p-value > 1.0×10-6 were retained, resulting in 4.1M imputed F34 GBS SNPs 

and 4.3M imputed F34 array SNPs. 

  

Genome-wide association analysis (GWAS) 

We used the linear mixed model, as implemented in GEMMA (X. Zhou & Stephens, 

2012), to perform a GWAS that accounted for the complex familial relationships among 

the AIL mice (Cheng et al. 2010; Gonzales et al. 2017). We used the leave-one-

chromosome-out (LOCO) approach to calculate the GRM, which effectively circumvented 

the problem of proximal contamination (Cheng et al. 2013). We used the univariate linear 

mixed model described in Zhou and Stephens (X. Zhou & Stephens, 2012): 

( ) ( )1 1
        ;   ~  0,  ,   ~  0,  ,

n n n
y W x u u MVN K MVN Iα β ε λτ ε τ− −= + + +  

 where y  is a n-vector of traits for n individuals; W  is a n×c matrix of covariates 

(fixed effects); α  is a c-vector of the corresponding coefficients; x  is an n-vector of 

genotypes; β  is the effect size of the genotype; u  is an n-vector of random effects; ε is 

an n-vector of errors; 1τ − is the variance of the residual errors; λ  is the ratio between the 

two variance components; K  is a known n × n relatedness matrix and n
I  is an n × n 
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identity matrix. n
MVN  stands for the n-dimensional multivariate normal distribution (X. 

Zhou & Stephens, 2012).  

 Separate GWAS were performed using the F34 array genotypes, the F34 GBS 

genotypes, and the F39-43 GBS genotypes. Apart from coat color (binary trait), raw 

phenotypes were quantile normalized prior to analysis. Coat color traits were coded as 

follows: albino: 1 = white, 0 = non-white; agouti: 1 = tan, 0 = black, NA=white. Because 

F34 AIL had already been studied, we used the same covariates as described in Cheng 

et al. (Cheng et al. 2010) in order to examine whether our array and GBS GWAS would 

replicate their findings. We included sex and body weight as covariates for locomotor 

activity traits (see covariates used in (Cheng et al. 2010)) and sex, age, and coat color as 

covariates for fear conditioning and open field test in F34 AILs (see covariates used in 

(Parker et al. 2014)). We used sex and age as covariates for all other phenotypes. 

Covariates for each analysis are shown in Table S1. Finally, we performed mega-analysis 

of F34 and F39-43 animals (n=1,028) for body weight, coat color, and locomotor activity, 

since these traits were measured in the same way in both cohorts. We quantile 

transformed all continuous phenotypes in each cohort and then combined the 

transformed phenotypes for the mega-analysis (Coat color traits were not quantile 

normalized because they are binary).  

 

Identifying dubious SNPs 

 Some significant SNPs in the F34 GWAS were dubious because the flanking SNPs, 

which would have been expected to be in high LD with the significant SNP (a very strong 

assumption in an AIL), did not have high -log10(p) values. We only examined SNPs that 
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obtained significant p-values; close examinations revealed that these SNPs had dubious 

ratios of heterozygotes to homozygotes calls and had corresponding HWE p-values that 

were close to our 1.0×10-6 threshold (Table S3). We chose the 1.0×10-6 as the filter 

threshold of the HWE p-values based on a gene-dropping exercise. We used the F33-34 

family pedigree and the F34 genetic map to simulate the genotypes in F34 (QTLRel; 

(Cheng et al. 2011)). The p-value of the chi-square test for Hardy-Weinberg equilibrium 

in the simulated F34 population was 7.24329×10-06, which was close to the HWE threshold 

used in Gonzales et al. (Gonzales et al. 2018). To avoid counting these as novel loci, we 

removed those SNPs prior to summarizing our results as they likely reflected genotyping 

errors.  

 

Selecting independent significant SNPs 

 To identify independent “lead loci” among significant GWAS SNPs that surpassed 

the significance threshold, we used the LD-based clumping method in PLINK v1.9. We 

empirically chose clumping parameters (r2 = 0.1 and sliding window size = 12,150kb) that 

gave us a conservative set of independent SNPs (Table S4). For the coat color 

phenotypes, we found that multiple SNPs remained significant even after LD-based 

clumping, presumably due to the extremely significant associations at these Mendelian 

loci. In these cases, we used a stepwise model selection procedure in GCTA (Yang et al. 

2011) and performed association analyses conditioning on the most significant SNPs.  
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Significance thresholds  

 We used MultiTrans to set significance thresholds for GWAS (B. Han et al. 2009; 

Joo et al. 2016). MultiTrans is a method that assumes multivariate normal distribution of 

the phenotypes, which in LMM models, contain a covariance structure due to various 

degrees of relatedness among individuals. We were curious to see whether MultiTrans 

produced significance thresholds that were different from the thresholds we obtained from 

a standard permutation test (‘naïve permutation’ as per Cheng et al. (Cheng et al. 2013)). 

We performed 1,000 permutations using the F34 GBS genotypes and the phenotypic data 

from locomotor activity (days 1, 2, and 3).  We found that the 95th percentile values for 

these permutations were 4.65, 4.79, and 4.85, respectively, which were very similar to 

4.85, the threshold obtained from MultiTrans using the same data. Thus, the thresholds 

presented here were obtained from MultiTrans but are similar (if anything slightly more 

conservative) to the thresholds we would have obtained had we used permutation. 

Because the effective number of tests depends on the number of SNPs and the specific 

animals used in GWAS, we obtained a unique adjusted significance threshold for each 

SNP set in each animal cohort (Table S5). 

 

Credible set analysis 

 We followed the method described in (The Wellcome Trust Case Control 

Consortium et al. 2012). Credible set analysis is a Bayesian method of selecting an 

interval of SNPs that are likely to contain the causal SNPs; we used LD r2 threshold = 0.8, 

posterior probability =0.99. The R script could be found on GitHub: 

https://github.com/hailianghuang/FM-summary/blob/master/getCredible.r 
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Power analysis 

 To estimate the power of replication of a SNP from the discovery set in the 

replication set, we simulated GWAS with 50 varying effect sizes for the discovery SNP 

using the LMM model. We first fit the trait in a null model (i.e., no genotype effect), and 

obtained estimates of model parameters including the intercept and the genetic variance 

component. Using these model parameters, we added the genotype effect to the random 

numbers generated from the null model to recreate a trait. For each simulated effect size, 

we scanned every simulated trait 2,500 times and examined the ratio of association tests 

whose test statistics surpassed the significance thresholds (both the genome-wide 

significance threshold for the cohort and the nominal p-value of 0.05).  

 

Replication analysis between F34 and F39-43 GWAS studies 

 We modeled the replication between F34 and F39-43 GWAS studies using two 

random effects models (Zou et al. 2019). Both models take as input a set of z-scores for 

variants computed from an association study (“summary statistics”).   

 The WC model accounts only for Winner’s Curse.  We assume that there is a 

shared genetic effect (�) that is responsible for the observed association signal in both 

studies. To model random noise contributing to Winner's Curse, we model the summary 

statistics for each variant � from the discovery and replication studies as normally 

distributed random variables (��
(�)~ 
(�, 1) and ��

()~ 
(�, 1) , respectively).  We define 

the prior probability of the true genetic effect to be �~
�0, ��
�, where the variance in the 

true genetic effect is learned through a maximum likelihood procedure.  We correct for 
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the effect of Winner's Curse in the discovery study by computing the conditional 

distribution of the replication summary statistics given the discovery summary statistic. 

 The WC+C model accounts for Winner’s Curse and study-specific heterogeneity. 

In this model, we partition the total effect sizes observed into genetic effects (�) and study-

specific effects (�(�) and �()).  We model the statistics for each variant � from the initial 

and discovery studies as normally distributed random variables (��
(�)~ 
�� +  �(�), 1� and 

��
()~ 
�� +  �(), 1� , respectively).  In addition to the prior on the genetic effect defined 

in the WC model, we define the prior probabilities of the study-specific effects to be 

�(�)~
�0, ���
 �,  and �()~
�0, ���

 �, where the variance parameters are learned through 

a maximum likelihood procedure.  We correct for the effect of Winner's Curse in the 

discovery study and study-specific effects by computing the conditional distribution of the 

replication summary statistic given the discovery summary statistic. 

 We applied each of these models once using F34 as the discovery study and once 

using F39-43 as the discovery study. We used the genome-wide significance thresholds in 

Table S5 to identify variants in each discovery study and used the results as input to the 

random effects models.  We then used a Bonferroni corrected threshold (p=0.05/M) for 

the replication study, where M is the number of genome-wide significant variants in the 

initial study. We computed the “empirical replication rate” as the proportion of variants 

passing the genome-wide significant threshold in the discovery study that also passed 

this Bonferroni corrected threshold in the replication study.  Since the estimation of the 

model parameters requires at least two variants, we only applied this method to 

phenotypes with at least two genome-wide significant variants in the discovery study.  
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 To assess how well the WC and WC+C models explained the observed patterns 

of replication, we computed the predicted replication rates under each model. For each 

variant that passed the genome-wide significant threshold in the discovery study, we used 

the conditional distributions previously learned to compute the probability that the variant 

passed the Bonferroni corrected threshold in the replication study.  For each phenotype, 

we computed the average of these predicted replication rates and compared this average 

to the empirical replication rates.  

 

Genetic correlation and heritability estimates between F34 and F39-43 phenotypes 

 Locomotor activity, body weight, and coat color traits had been measured in both 

F34 and F39-43 populations. We calculated both SNP heritability and genetic correlations 

between F34 and F39-43 animals using GCTA-GREML analysis and GCTA bivariate 

GREML analysis (Yang et al. 2011).  

 

LocusZoom Plots 

 LocusZoom plots were generated using the standalone implementation of 

LocusZoom (Pruim et al. 2010), using LD scores calculated from PLINK v.1.9 --ld option 

and mm10 gene annotation file downloaded from UCSC genome browser.  
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1.4 Results 

 We used 214 males and 214 females from generation F34 (Aap:LG,SM-G34) and 

305 males and 295 females from generations F39-43. For the F34 AIL 79 traits were 

available from previously published and unpublished work; for the F39-43 AIL 49 

unpublished traits were available (Table S1). F34 mice had been previously genotyped on 

a custom SNP array (Cheng et al. 2010; Parker et al. 2014). The average minor allele 

frequency (MAF) of those 4,593 array SNPs was 0.388 (Figure 1). To obtain a denser set 

of SNP markers, we used GBS in F34 and F39-43 AIL mice. Since data on the F39-43 AIL 

mice had been collected over the span of approximately two years, we carefully 

considered the possibility of sample contamination and sample mislabeling (Toker et al. 

2016) and removed these samples (see Methods; Figure S1 and S2). The final SNP sets 

included 60,392 GBS-derived SNPs in 428 F34 AIL mice, 59,790 GBS-derived SNPs in 

600 F39-43 AIL mice, and 58,461 GBS-derived SNPs that existed in both F34 and F39-43 AIL 

mice (Table S2). The MAF for the GBS SNPs was 0.382 in F34, 0.358 in F39-43, and 0.370 

in F34 and F39-43 (Figure 1). There were 66 SNPs called from our GBS data that were also 

present on the genotyping array. The genotype concordance rate for those 66 SNPs, 

which reflects the sum of errors from both sets of genotypes, was 95.4% (Figure S3). We 

found that LD decay rates using F34 array, F34 GBS, F39-43 GBS, and F34 and F39-43 GBS 

genotypes were generally similar to one another, though levels of LD using the GBS 

genotypes appear to be slightly reduced in the later generations of AILs (Figure S4).  
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GBS genotypes produced more significant associations than array genotypes in 

F34  

 We used a linear mixed model (LMM) as implemented in GEMMA (Zhou & 

Stephens, 2012) to perform GWAS. We used the leave-one-chromosome-out (LOCO) 

approach to address the problem of proximal contamination, as previously described 

(Listgarten et al. 2012; Cheng et al. 2013; Yang et al. 2014; Gonzales et al. 2017). We 

performed GWAS using both the sparse array SNPs and the dense GBS SNPs to 

determine whether additional SNPs would produce more genome-wide significant 

associations. Autosomal and X chromosome SNPs were included in all GWAS. We 

obtained a significance threshold for each SNP set using MultiTrans (B. Han et al. 2009; 

Joo et al. 2016). To select independently associated loci (“lead loci”), we used an LD-

based clumping method implemented in PLINK to group SNPs that passed the adjusted 

genome-wide significance thresholds over a large genomic region flanking the index SNP 

(Purcell et al. 2007). Applying the most stringent clumping parameters (r2 = 0.1 and sliding 

window size = 12,150kb, Table S4), we identified 109 significant lead loci in 49 out of 79 

F34 phenotypes using the GBS SNPs (Table S7). In contrast, we identified 83 significant 

lead loci in 45 out of 79 F34 phenotypes using the sparse array SNPs (Table S6, Table 

S7). Among the loci identified in the F34, 36 were uniquely identified using the GBS 

genotypes, whereas 11 were uniquely identified using the array genotypes. These unique 

loci could be explained by the disparity of the marker density between the GBS and array 

genotypes. Some unique loci captured haplotype blocks that were not picked up in the 

other SNP set. Other unique loci were only slightly above the significance threshold in 

one SNP set where the corresponding loci in the other SNP set had sub-threshold 
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significance (i.e., p-value ~ 10-5 but below the significance threshold of the cohort; Table 

S7). Overall, GBS SNPs consistently yielded more significant lead loci compared to array 

SNPs regardless of the clumping parameter values (Table S4), indicating that a dense 

marker panel was able to detect more association signals compared to a sparse marker 

panel.  

 To determine the boundaries of each locus, we performed a Bayesian-framework 

credible set analysis, which estimated a posterior probability for association at each SNP 

(r2 threshold = 0.8, posterior probability threshold = 0.99; (The Wellcome Trust Case 

Control Consortium et al. 2012)). The physical positions of the SNPs in the credible set 

were used to determine the boundaries of each locus. As expected, the greater density 

of the GBS genotypes allowed us to better define each interval. For instance, the lead 

locus at chr17:27130383 was associated with distance travelled in periphery in the open 

field test in F34 AILs (Figure 2). However, no SNPs were genotyped between 26.7 and 

28.7 Mb in the array SNPs, which makes the size of this LD block ambiguous. In contrast, 

the LocusZoom plot portraying GBS SNPs in the same region shows that SNPs in high 

LD with chr17:27130383 are between 27 Mb and 28.3 Mb. The more accurate definition 

of the implicated intervals allowed us to better refine the list of the coding genes and non-

coding variants associated with the phenotype (Table S6). 

 In our prior studies using the sparse marker set, we did not attempt to increase the 

number of available markers by using imputation. Therefore, we examined whether the 

disparity between the numbers of loci identified by the two SNP sets could be resolved 

by imputation, which should increase the number of markers available for GWAS. We 

used LG/J and SM/J whole genome sequencing data as reference panels (Nikolskiy et 
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al. 2015) and performed imputation on array and GBS SNPs using Beagle v4.1 (Browning 

& Browning, 2007). After QC filtering, we obtained 4.3M SNPs imputed from the array 

SNPs and 4.1M SNPs imputed from the GBS SNPs. More imputed GBS SNPs were 

filtered out because GBS SNPs were called from genotype probabilities, thus introducing 

uncertainty in imputed SNPs. We found that imputed array genotypes and imputed GBS 

genotypes did not meaningfully increase the number of loci discovered, presumably 

because the utility of imputation is inherently limited in a two-strain cross. 

 Under a polygenic model where a large number of additive common variants 

contribute to a complex trait, heritability estimates could be higher when more SNPs are 

considered (Yang et al. 2017). Given that there were more GBS SNPs than array SNPs, 

we used autosomal SNPs to examine whether GBS SNPs would generate higher SNP 

heritability estimates compared to the sparse array SNPs. Heritability estimates were 

similar for the two SNP sets, with the exception of agouti coat color, which showed 

marginally greater heritability for the GBS SNPs (Figure S5; Table S8). Our results show 

that while the denser GBS SNP set was able to identify more genome-wide significant 

loci, greater SNP density did not improve the polygenic signal.  

 

Partial replication of loci identified in F34 or F39-43 and mega-analysis  

 We identified 25 genome-wide significant loci for 21 phenotypes in the F39-43 cohort 

(Table S9). A subset of those traits: coat color, body weight, and locomotor activity, were 

also phenotyped in the F34 AILs. To assess replication, we determined whether the loci 

that were significant in one cohort (either F34 or F39-43) would also be significant in the 

other. We termed the cohort in which a locus was initially discovered as its “discovery set” 
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and the cohort we attempted replication in as the “replication set” (Table 1). Coat color 

phenotypes (both albino and agouti) are Mendelian traits and thus served as positive 

controls. All coat color and body weight loci were replicated. The three body weight loci 

identified in the F34 were replicated at nominal levels of significance (p<0.05) in F39-43; 

similarly, one body weight locus identified in F39-43 was replicated in F34 (p<0.05). 

However, none of the locomotor activity loci were replicated in the reciprocal (replication) 

cohorts. 

 We found that using a broader definition of an association region rather than a 

single SNP did not improve replication between the F34 cohort and the F39-43 cohorts. 

Confidence intervals (e.g., (Baud et al. 2013; Nicod et al. 2016)) and the LOD support 

interval (Conneally et al. 1985; Lander & Botstein, 1989) have been used to define a QTL. 

LOD support interval is very sensitive to the density of the SNPs where sparse markers 

would produce misleadingly large support intervals. In contrast, the credible set interval 

is an estimate of the posterior probability for association at markers neighboring the 

discovery SNP, and thus defines the size of the association region. As a result, we 

extended the replication comparison from the discovery SNP position to the credible set 

interval. We found that in the replication cohort, the p-value at the discovery SNP and that 

at the top SNP within the credible set interval (defined by the discovery QTL) were 

generally similar (Table S10). The replication of the locus chr14.79312393 (discovered in 

the F34 cohort) in the F39-43 cohort was more successful using the discovery QTL region 

defined by the credible set interval; the p-value at the top SNP within the credible set 

interval was noticeably more significant (chr14.82586326; p-value = 1.48×10-6) than the 

p-value at the discovery SNP (chr14.79312393; p-value = 0.0237; Table S10). Our results 
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suggest that for the most part, the discovery SNP accurately represented the association 

strength of the loci, presumably because of its strong linkage with the neighboring SNPs. 

In our case, defining a QTL region by the credible set interval did not increase the count 

of replicated sites between the two cohorts.  

 We then considered the more liberal “sign test”, a statistical method to test for 

consistent differences between pairs of observations, to determine whether the directions 

of the effect (beta) of the coat color, body weight and activity loci were in the same 

direction between the discovery and replication cohorts. Specifically, we compared 

whether the sign (direction) of the beta estimates are consistently above or below zero. 

We found that 11 of 12 comparisons passed this much less stringent test of replication. 

The one locus (at chr15.67627183) that did not pass the sign test was the locomotor locus 

“discovered” in F39-43 (Table 1).   

 In light of the failure to replicate the locomotor activity findings, we conducted a 

series of 2,500 simulations per trait to estimate the expected power of our replication 

cohorts. For each phenotype we used the kinship relatedness matrix and variance 

components estimated from the replication set. For the coat color traits, we found that we 

had 100% power to replicate the association at either genome-wide significant levels or 

the more liberal p<0.05 threshold (Figure S6). For body weight and locomotor activity, 

power to replicate at a genome-wide significance threshold ranged from 20% to 85%, 

whereas power to replicate at the p<0.05 threshold was between 80% and 100% (Figure 

S6). These power estimates were inconsistent with our empirical observations for the 

locomotor activity traits, none of which replicated at even the p<0.05 threshold, where we 

should have had almost 100% power (Table 1; Figure S6). However, our power 
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simulations did not account for Winner’s Curse (Zöllner & Pritchard, 2007) or study-

specific heterogeneity (Zou et al. 2019). 

 To determine whether these factors could explain the lower than expected rate of 

replication, we applied a statistical framework that jointly models Winner’s Curse and 

study-specific heterogeneity in two GWAS studies of the same phenotype (Zou et al. 

2019). This framework proposes two random effects models. The first model (WC) only 

accounts for Winner’s Curse, while the second model accounts for both Winner’s Curse 

and study-specific heterogeneity due to confounding (WC+C). In this context, we define 

confounding as any biological or technical effect present in one study but not the other. 

We applied each of these models once using F34 as the discovery study and once using 

F39-43 as the discovery study. The models can be used to assess how well Winner’s Curse 

explains the observed levels of replication. For example, when F34 is used as the 

replication study for the albino coat color phenotype, the expected value of the replication 

summary statistics after accounting for Winner’s Curse is the same as the expected value 

after accounting for Winner’s Curse and confounding (Figure S7). While the 95% 

confidence intervals for the WC+C model are larger than the WC model, both models 

seem to explain the observed data well. However, when F34 is used as the discovery study 

for the locomotor activity on day 1 or body weight, the WC+C model explains the data 

better than the WC model.  
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 In order to quantitatively assess how well each of these models explain the 

observed patterns of replication, we computed the predicted replication rates under each 

model (Methods) and compared these with the empirical replication rates.  In this 

analysis, we defined the empirical replication rate to be the proportion of variants passing 

the genome-wide significance threshold in the discovery study that also pass the 

Bonferroni corrected threshold in the replication study. We used this definition of 

replication for this analysis instead of replication of lead SNPs to allow for a larger number 

of variants to be included in the model fitting process. For all phenotypes tested, the WC 

model predicts that all the variants passing the genome-wide significance threshold in the 

discovery study should pass the Bonferroni corrected threshold in the replication study, 

which is dramatically different from the observed replication of body weight and locomotor 

activity on day 1 and 2 phenotypes (Table 2). While the replication in the agouti coat color 

phenotype is not well predicted by the WC+C model, this may be due to the fact that the 

agouti phenotype is a dominant trait, while our model assumes additive allele effects. 

These results suggest that the sample sizes are sufficiently large that Winner’s Curse 

cannot account for the lack of replication. However, in these cases, the WC+C model has 

predicted replication rates that are much closer to the true (observed) values, indicating 

that the lack of replication in these phenotypes is more likely to be due to study-specific 

heterogeneity that is potentially caused by confounding.  

 We evaluated whether or not the traits showed genetic correlations across the two 

cohorts. High genetic correlations would indicate a high degree of additive genetic effect 

that is shared between the two cohorts, and the low genetic correlations would indicate 

limited potential for replication. We used all autosomal SNPs to calculate genetic 
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correlations between the F34 and F39-43 generations for body weight, coat color, and 

locomotor activity phenotypes (Table S11), using GCTA-GREML (Yang et al. 2011). 

Albino and agouti coat color, body weight and locomotor activity on days 1 and 2 were 

highly genetically correlated (rGs >0.7; Table S11). In contrast, locomotor activity on day 

3 showed a significant but weaker genetic correlation (rG=0.577), perhaps reflecting 

variability in the quality of the methamphetamine injection, which were only given on day 

3. Overall, these results suggest that genetic influences on these traits were largely 

similar in the two cohorts; however, the genetic correlations were less than 1, suggesting 

an additional barrier to replication that was not accounted for in our power simulations.   

 We also calculated the SNP heritability for all traits using GCTA.  SNP heritability 

was consistently lower in the F39-43 cohort compared to the F34 cohort, including the 

Mendelian traits of coat color. The ± 1 × standard error intervals of the F34 and F39-43 SNP 

heritability estimates for the coat color trait albino overlapped. This observation indicates 

that SNP heritability for albino in the two cohorts is comparable. In contrast, the ± 1 × 

standard error intervals of the F34 and F39-43 SNP heritability estimates for the coat color 

trait agouti did not overlap. We could not explain the differential SNP heritability for the 

binary trait agouti in the two cohorts. The lower SNP heritability in F39-43 for the rest of the 

quantitative traits could be a result of increased experimental variance (Figure 3; Table 

S12; (Falconer, 1960; Lynch & Walsh, 1996; Mhyre et al. 2005; Zöllner & Pritchard, 2007; 

Visscher et al. 2008; Zaitlen & Kraft, 2012)).  

 Due to the relatively high genetic correlations (Table S11), we suspected that a 

mega-analysis using the combined sample set would allow for the identification of 

additional loci; indeed, mega-analysis identified four novel genome-wide significant 
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associations (Figure 4; Table S13). The significance level of five out of six loci identified 

by the mega-analysis was greater than that in either individual cohort. For instance, the 

p-values obtained by mega-analysis for chr14:82672838 (p-value = 7.93×10-9) for body 

weight were lower than the corresponding p-values for the same loci for F34 

(chr14:79312393, p-value = 7.53×10−6) and F39-43 (chr14.82586326, p-value = 2.63×10-6; 

Table S13; Table 1).  
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1.5 Discussion 

 We used F34 and F39-43 generations of a LG/J x SM/J AIL to perform GWAS, SNP 

heritability estimates, genetic correlations, replication and mega-analysis. We had 

previously performed several GWAS using a sparse marker set in the F34 cohort. In this 

study we used a denser set of SNPs, obtained using GBS, to reanalyze the F34 cohort. 

We found 109 significant loci, 36 of which had not been identified in our prior studies 

using the sparse marker set. We used a new, previously unpublished F39-43 cohort for 

GWAS and showed that genetic correlations were high for the subset of traits that were 

measured in both cohorts. Despite this, we found that many loci were not replicated 

between cohorts, even when we used a relatively liberal definition of replication (p<0.05). 

The failure to replicate some of our findings was not predicted by our power simulations. 

Therefore, we performed an analysis to determine whether Winner’s Curse and study-

specific heterogeneity could account for the lower than expected replication rate. Winner’s 

Curse alone could not explain the failure to replicate. However, modeling both Winner’s 

Curse and study-specific heterogeneity better explained the observed replication rate. 

Finally, mega-analysis of the two cohorts allowed us to discover four additional loci. Taken 

together, our results provide a set of refined regions of association for numerous 

physiological and behavioral traits in multiple generations of AILs. These loci could serve 

as benchmarks for future GWAS results in intercross mouse lines. More broadly, this 

study illustrates the difficulty of replication even when using a highly controlled model 

system. 

 Previous publications from our lab used a sparse set of array genotypes for 

GWAS of various behavioral and physiological traits in 688 F34 AILs (Cheng et al. 2010; 



 

41 
 

Lionikas et al. 2010; Samocha et al. 2010; Parker et al. 2011, 2014; Carroll et al. 2017; 

Hernandez Cordero et al. 2018; Gonzales et al. 2018). In this study we obtained a much 

denser marker set for 428 of the initial 688 AIL mice using GBS. The denser genotypes 

allowed us to identify most of the loci obtained using the sparse set, as well as 

many additional loci. For instance, using the sparse markers we identified a significant 

locus on chromosome 8 for locomotor day 2 activity that contained only one 

gene: Csmd1 (CUB and sushi multiple domains 1). Gonzales et al. (Gonzales et al. 

2018) replicated this finding in F50-56 AILs and identified a cis-eQTL mapped to the same 

region. Csmd1 mutant mice showed increased locomotor activity compared to wild-type 

and heterozygous mice, indicating that Csmd1 is likely a causal gene for locomotor and 

related traits (Gonzales et al. 2018). We replicated this locus in the analysis of the 

F34 cohort that used the denser marker set (Figure S8). We also replicated a locus on 

chromosome 17 for distance traveled in the periphery in the open field test (Figure 

4; (Parker et al. 2014)), three loci on chromosomes 4, 6, and 14 for body weight (Figure 

S8; (Parker et al. 2011)), one locus on chromosome 7 for mean corpuscular hemoglobin 

concentrations (MCHC, complete blood count; Figure S8; (Bartnikas et al. 2012)), and 

numerous loci on chromosome 4, 6, 7, 8, and 11 for muscle weights (Figure S8; (Lionikas 

et al. 2010)). We noticed that even using original sparse markers, some previously 

published loci were not replicated in the current GWAS. The most likely explanation is 

that we had only 428 of the 688 mice used in the previous publications.  

 QTL mapping studies have traditionally used a 1.0~2.0 LOD support interval to 

approximate the size of the association region (see (Cervino et al. 2005; Logan et al. 

2013)). The LOD support interval, proposed by Conneally et al. (Conneally et al. 
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1985) and Lander & Botstein (Lander & Botstein, 1989), is a simple confidence interval 

method involving converting the p-value of the peak locus into a LOD score, subtracting 

“drop size” from the peak locus LOD score, and finding the two physical positions to the 

left and to the right of the peak locus location that correspond to the subtracted LOD 

score. Although Mangin et al. (Mangin et al. 1994) showed via simulation that the 

boundaries of LOD support intervals depend on effect size, others observed that a 1.0 ~ 

2.0 LOD support interval accurately captures ~95% coverage of the true location of the 

loci when using a dense set of markers (Lander & Botstein, 1989; Dupuis & Siegmund, 

1999; Manichaikul et al. 2006). In the present study, we considered using LOD support 

intervals but found that the sparse array SNPs produced misleadingly large support 

intervals. Various methods have been proposed for calculating confidence intervals in 

analogous situations (e.g. (Baud et al. 2013; Nicod et al. 2016)). We performed credible 

set analysis and compared LocusZoom plots of the same locus region between array 

SNPs and the GBS SNPs (Figure S8; (Pruim et al. 2010)). For example, the benefit of the 

denser SNP coverage is easily observed in the locus on chromosome 7 (array lead SNP 

chr7:44560350; GBS lead SNP chr7:44630890) for the complete blood count trait “retic 

parameters cell hemoglobin concentration mean, repeat”; denser SNPs delineate the 

start and the end of an association block much more clearly. Thus, there are advantages 

of dense SNP sets that go beyond the ability to discover additional loci.   

 LD in the LG/J x SM/J AIL mice is more extensive than in the Diversity Outbred 

mice and Carworth Farms White mice (Parker et al. 2016). Some of the loci that we 

identified are relatively broad, making it difficult to infer which genes are responsible for 

the association. We focused on loci that contained 5 or fewer genes (Table S6). 
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We highlight a few genes that are supported by the existing literature for their role in the 

corresponding traits. The lead SNP at chr1:77255381 is associated with tibia length in 

F34 AILs (Table S6; S8 Fig). One gene at this locus, EphA4, codes for a receptor for 

membrane-bound ephrins. EphA4 plays an important role in the activation of the tyrosine 

kinase Jak2 and the signal transducer and transcriptional activator Stat5B in 

muscle, promoting the synthesis of insulin-like growth factor 1 (IGF-1) (Lai et al. 2004; 

Hyun, 2013; Sawada et al. 2017). Mice with mutated EphA4 shows significant defect in 

body growth (Hyun, 2013). Curiously, another gene at this locus, Pax3, has been shown 

as a transcription factor expressed in resident muscle progenitor cells and is essential for 

the formation of skeletal muscle in mice (Relaix et al. 2006). It is possible that 

both EphA4 and Pax3 are associated with the trait tibia length because they 

are both involved in organismal growth. Another region of interest is the locus at 

chr4:66866758, which is associated with body weight (Table S6; Table S13). The lead 

SNP is immediately upstream of Tlr4, Toll-like receptor 4, which recognizes Gram-

negative bacteria by its cell wall component, lipopolysaccharide (Hoshino et al. 1999; 

Takeuchi et al. 1999). TLR4 responds to the high circulating level of fatty acids and 

induces inflammatory signaling, which leads to insulin resistance (Shi et al. 2006).  Kim et 

al showed TLR4-deficient mice were protected from the increase in proinflammatory 

cytokine level and gained less weight than wild-type mice when fed on high fat diet (Kim 

et al. 2012). The association between Tlr4 and body weight in the AILs corroborates 

these findings.  

 We considered both the F34 and the F39-43 as both “discovery” and “replication” 

cohorts. Significant loci for coat color, which are monogenic and served as positive 
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controls, were replicated, between the two cohorts, as expected. One locus for body 

weight was replicated (p<0.05) between F34 and F39-43. However, the loci for locomotor 

activity were not replicated. Power analyses predicted a much higher rate of replication, 

which led us to conduct additional analyses to better understand the lower than expected 

rate of replication.   

 First, we used a newly introduced method to determine whether Winner’s Curse 

(Zöllner & Pritchard, 2007)) which has also been termed the Beavis Effect (Beavis et al. 

1991, 1994; Xu, 2003; King & Long, 2017; Keele et al. 2019; Paterson, 2019) could 

account for the lower than expected rate of replication. Beavis’ original report described 

a lack of replication of QTL for agronomic traits between small populations of maize 

(Beavis et al. 1991). Using progeny sizes ranging from 100 to 1000, Beavis simulated 

interval mapping to evaluate the accuracy of the estimates of phenotypic variance 

explained at the statistically significant QTL (Beavis et al. 1994; Xu, 2003; Paterson, 

2019). Simulations showed that progeny sizes greatly influenced the estimates of 

phenotypic variance explained; smaller progeny sizes (n=100) generated highly 

overestimated estimates of phenotypic variances, whereas larger progeny sizes (n=1000) 

generated estimates of phenotypic variances similar to the actual value (Paterson, 2019; 

Xu, 2003). King and Long (King & Long, 2017) further examined the Beavis Effect in the 

next-generation mapping populations in Drosophila melanogaster. The authors found that 

sample size was the major determinant for the overestimation of phenotypic variance 

explained at the significant QTL in both the GWAS-based Drosophila Genetic Reference 

Panel (DGRP) and the multi-parental Drosophila Synthetic Population Resource (DSPR). 

When sample size remained constant and the true phenotypic variance explained at the 
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significant QTL was small, the estimation bias was more pronounced. In contrast, 

estimates for the phenotypic variance explained at all simulated QTL, significant or not, 

were generally centered at the true values. In an analogous study of power and replication 

in Collaborative Cross mice, Keele et al. (Keele et al. 2019) found that the Beavis Effect 

was most striking when the number of strains and true effect size of the QTL were small. 

This estimation bias indicates that mapping statistically significant QTL across 

experiments, populations, and panels can be problematic (Macdonald & Long, 2004; 

Gruber et al. 2007; Najarro et al. 2015). The analyses we performed indicated that 

Winner’s Curse alone could not explain the lack of replication, but a model that also 

included study-specific heterogeneity could.  

 Our analysis does cannot explain the source of the study-specific heterogeneity. 

Possible sources of confounding could include maternal effects, which could differentiate 

the F34 cohort and the F39-43 cohort because F33 animals were transported to the 

University of Chicago from Washington University in St. Louis. In contrast, the breeder 

animals of the F39-43 cohort have already acclimated to the environment for multiple 

generations. Another possible source of confounding is that the phenotyping of the F39-

43 occurred over five generations (more than a year) during which time numerous 

environmental factors may have changed (e.g. several technicians performed the data 

collection). Such factors are known to be an important potential source of confounding; 

(Falconer, 1960; Lynch & Walsh, 1996; Crabbe et al. 1999; Mhyre et al. 2005; Visscher 

et al. 2008; Zaitlen & Kraft, 2012; Sorge et al. 2014). Our analyses did not correct for the 

fact that six phenotypes were examined, thus somewhat increasing the chances that at 
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least one of our significant associations could have been a false positive that would not 

be expected to replicate.  

 Interestingly, we found that the genetic correlations between the discovery and 

replication samples were relatively high for all traits; however, some traits replicated well 

and others replicated poorly. Our subsequent analysis showed that study-specific 

heterogeneity was low for the coat color traits, but higher for the body weight and 

locomotor traits. This makes an important point, namely that a strong genetic correlation 

can exists in the presence or absence of study-specific heterogeneity. Finally, it was 

notable that replication (at p<0.05) was relatively successful for body weight, despite the 

significant evidence of study-specific heterogeneity and low predicted replication (Table 

2). Power analyses predicted that the body weight loci should replicate at the genome-

wide significance threshold, whereas we only observed replication when at the less 

stringent p<0.05 level (Table 1). The lack of replication at the genome-wide significance 

threshold for the body weight phenotype was likely due to study-specific heterogeneity 

due to confounding that was not accounted for in the power analyses. In Table 2, 

“predicted replication” refers to replication using a Bonferroni significance threshold that 

accounts for the number of significant SNPs in the discovery study. The low predicted 

replication rate under the WC+C model for the body weight phenotype is consistent with 

the low replication (genome-wide) reported in Table 1. Thus, both body weight and 

locomotor traits were strongly impacted by study specific confounding; however, nominal 

replication was still possible for body weight but not for the locomotor traits.  

  Finally, we performed a mega-analysis using F34 and F39-43 AIL mice. The 

combined dataset allowed us to identify four novel genome-wide significant associations 
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that were not detected in either the F34 or the F39-43 cohorts presumably because of the 

increased sample size in the mega-analysis (Visscher et al. 2017). As is true for all 

GWAS, the loci identified in the mega-analysis could be false positives.  

 In addition to performing many GWAS and related analyses that led to the 

identification of dozens of novel loci for locomotor activity, open field test, fear 

conditioning, light dark test for anxiety, complete blood count, iron content in liver and 

spleen, and muscle weight, our study also tested our expectations about replication of 

GWAS findings. We did not obtain the expected rate of replication. We used a method 

that can distinguish between Winner’s Curse and study-specific heterogeneity to show 

that the lower than expected rate of replication was due to study-specific heterogeneity. 

This indicates that study-specific heterogeneity can have a major impact of replication 

even when in a model system when a genetically identical population is tested under 

conditions that are designed to be as similar as possible.  

 

 



 
 

48 
 

1.6 Availability of data and materials 

 All relevant data are within the paper and its Supporting Information files. 

Genotypes and phenotypes of F34 (“LGSM AI G34 Palmer (Array)”: GN655; “LGSM AI 

G34 Palmer (GBS)”: GN656), F39-43 (“LGSM AI G39-43 Palmer (GBS)”: GN657), and 

mega-analysis cohort (“LGSM AI G34 G39-43 Palmer (GBS)”: GN654) of AIL are 

uploaded to GeneNetwork2 (http://gn2.genenetwork.org/). Code used to perform the 

analyses is included in the supplementary materials on FigShare: 

https://doi.org/10.25387/g3.11674221. 
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1.7 Figures 

 
 

Figure 1.1. Minor allele frequency (MAF) distributions for F34 array, F34 GBS, F39-F43 
GBS, and F34 and F39-F43 GBS SNP sets. The average MAF of those 4,593 array SNPs 
was 0.388; the average MAF of the 60,392 GBS-derived SNPs in 428 F34 AIL mice was 
0.382; the average MAF of the 59,790 GBS-derived SNPs in 600 F39-43 AIL mice was 
0.358; the average MAF of the 58,461 GBS-derived SNPs that existed in both F34 and 
F39-43 AIL mice was 0.370 (Table S2). MAF distributions are highly comparable between 
AIL generations. 
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Figure 1.2. Significant loci on chromosome 17 for open field, distance traveled in 
periphery in F34 AIL. As exemplified in this pair of LocusZoom plots, GBS SNPs defined 
the boundaries of the loci much more precisely than array SNPs. GBS SNPs that are in 
high LD (r2 > 0.8, red dots) with lead SNP chr17:27130383 resides between 27 ~ 28.3 
Mb. In contrast, too few SNPs are present in the array plot to draw any definitive 
conclusion about the boundaries or LD pattern in this region. Purple track shows the 
credible set interval. LocusZoom plots for all loci identified in this paper are in Figure S8. 
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Figure 1.3. SNP-heritability estimates in F34 and F39-43 AILs. Square dots represent 
the SNP heritability estimated by the GCTA-GREML analysis (Yang et al. 2011). The 
whiskers flanking the square dots show the ± 1 × standard error of the heritability estimate. 
All heritability estimates are highly significant (p < 1.0×10-05; see Table S12).  
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Figure 1.4. Manhattan plots comparing F34 GBS, F39-43 GBS, and mega-analysis on 
locomotor day 1 test using 57,170 shared SNPs in all AIL generations. We performed 
mega-analysis of F34 and F39-43 animals (n=1,028) for body weight, coat color, and 
locomotor activity, the set of traits that were measured in the same way in both cohorts.  
 

 

  



 
 

53 
 

1.8 Tables 

Table 1.1. Replication of significant SNPs between F34 and F39-43 AIL 

association analyses. 
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Table 1.2. Predicted replication rates. 
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CHAPTER 2: A Null Allele of Azi2 Enhances Sensitivity to Methamphetamine, 

Replicating a Finding from a Mouse Genome-wide Association Study 

 

2.1 Abstract 

Methamphetamine is a widely abused psychostimulant. In a previous genome-

wide association study (GWAS), we identified a locus that influenced the locomotor 

sensitivity to methamphetamine and found that this locus was also an eQTL for the gene 

Azi2. In this study, we proposed that heritable differences in the expression of Azi2 were 

causally related to the differential response to methamphetamine. We created an Azi2 

KO line. We found that homozygous Azi2 mutant mice with lower Azi2 expression in the 

striatum showed an enhanced locomotor response to methamphetamine; this direction of 

effect is opposite to the findings from the previously published GWAS. A recent report 

suggested that in the ventral tegmental area (VTA) the 3’UTR of Azi2 mRNA 

downregulates the expression of Slc6a3, a gene that encodes the dopamine transporter 

(DAT), which is a direct target of methamphetamine. We evaluated the relationship 

between Azi2/Azi2 3’UTR and Slc6a3 expression in the VTA in the Azi2 KO line and in a 

new cohort of CFW mice. We did not observe any correlation between Azi2 and Slc6a3 

in the VTA in either cohort. However, gene expression analysis confirmed that the 

mutation in Azi2 mutant mice altered Azi2 expression and also revealed a number of 

potentially important genes and pathways that were regulated by Azi2, including the 

metabotropic glutamate receptor group III pathway and nicotinic acetylcholine receptor 

signaling pathway. Our results support a role for Azi2 in methamphetamine sensitivity; 
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however, the exact mechanism does not appear to involve regulation of Slc6a3 and thus 

remains unknown. 
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2.2 Introduction 

Methamphetamine is a widely abused psychomotor stimulant. In the United States, 

approximately 1.6 million people reported using methamphetamine in the past year 

(NIDA, 2020). Methamphetamine can produce feelings of euphoria, heightened energy, 

and enhanced focus. Although most users experience stimulants such as 

methamphetamine, amphetamine and cocaine as pleasurable, studies in both humans 

and animals have found marked individual differences (Deminiere et al., 1989; Ettenberg, 

2009; Glick & Hinds, 1985; Piazza et al., 1989; Seale, 1991; Smith et al., 2016). 

Significant evidence suggests that these differences are at least partially genetic (Hart et 

al., 2012; Phillips & Shabani, 2015). These differences are believed to alter the behavioral 

and subjective response to methamphetamine and may therefore alter risk for 

methamphetamine abuse. Such individual differences are often modeled by studying the 

acute locomotor response to drug use in rodents, which may influence risk of progressing 

from initial use to problematic use and addiction (de Wit & Phillips, 2012; Steketee & 

Kalivas, 2011) 

Over the last decade, large scale genome-wide association studies (GWAS) have 

facilitated the identification of thousands of loci that influence complex traits including 

abuse of alcohol and other substances (Buchwald et al., 2020; Kinreich et al., 2019; Liu 

et al., 2019; Sanchez-Roige et al., 2019; Walters et al., 2018; Zhou et al., 2020). GWAS 

in model organisms provide a complementary approach to human GWAS and have also 

identified loci for numerous traits, including several that are related to drug abuse (e.g. 

(Gonzales et al., 2018; Parker et al., 2016)). An advantage of GWAS in model organisms 

is that putatively identified genes can be directly manipulated to assess causality and to 
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better understand the underlying molecular mechanisms; however, such manipulations 

are not frequently performed.  

We previously reported a GWAS that examined a number of behavioral and 

physiological traits, including the acute locomotor stimulant response to 

methamphetamine using 1,200 outbred Carworth Farms White (CFW) male mice (Parker 

et al., 2016). CFW mice are a commercially available outbred population that have 

relatively small linkage disequilibrium blocks, which allow the identification of small loci 

and thus narrow the number of genes that might be causally related to the trait being 

measured (Parker et al., 2016). One of the many genome-wide significant findings from 

that study was an association between a locus on chromosome 9 (rs46497021) and the 

locomotor response to methamphetamine injection. That locus also contained a cis-

expression quantitative trait locus (cis-eQTL) for the gene 5-azacytidine–induced gene 2 

(Azi2) in the striatum (the peak eQTL SNP was rs234453358, which is in strong LD with 

rs46497021). Based on these data, we suggested that heritable differences in Azi2 

expression may be the molecular mechanism by which that locus influenced the acute 

locomotor response to methamphetamine. However, in our prior publication we did not 

directly test that hypothesis by manipulating Azi2 expression.  

Azi2 is known to activate NFκB (Fujita et al., 2003), to be involved in TNF-induced 

cell death (Fukasaka et al., 2013; Goncalves et al., 2011; Lafont et al., 2018; Maruyama 

et al., 2015), and to influence immune response (Bozóky et al., 2013). However, its role 

in methamphetamine sensitivity remains largely unknown. One possible mechanism by 

which Azi2 could influence the response to methamphetamine was proposed by another 

group after the publication of Parker et al (2016) (Parker et al., 2016). Liu et al (2018) 
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identified the second half of 3’ UTR of Azi2 mRNA (AZI23’UTR) as a regulator of Slc6a3 

(Liu et al., 2018), which encodes the dopamine transporter (DAT), a critical membrane 

protein that regulates the level of neurotransmitter dopamine in the synaptic cleft and is 

directly bound by methamphetamine (Kish, 2008). In addition to a number of cellular 

assays, Liu et al (2018) also showed that rats that had been bi-directionally selected for 

alcohol preference showed differential AZI23’UTR expression and differential expression 

of Slc6a3 expression in the ventral tegmental area (VTA) (Liu et al., 2018). Because 

methamphetamine causes dopamine release by acting at the dopamine transporter, we 

considered it highly probable that the effect of Azi2 on methamphetamine sensitivity could 

be mediated through Azi2 induced changes in Slc6a3 expression. 

To test the hypothesis that Azi2 was the gene responsible for the association 

detected in our GWAS, and that its action was mediated via Slc6a3, we created an Azi2 

KO line using CRISPR/Cas9 to generate a frameshifting mutation in exon 3 of Azi2. In 

this study, we will refer to our version of the Azi2 mutation as the ‘Azi2 mutant allele’, all 

progeny of the Azi2 KO founders as the ‘Azi2 KO mice’, and the homozygous Azi2 mutant 

mice as the ‘Azi2 mutant mice'. Using the Azi2 KO mice, we examined the acute 

locomotor response to methamphetamine. We evaluated gene expression in the striatum, 

the brain tissue in which the eQTL for Azi2 expression was identified in Parker et al (2016) 

(Parker et al., 2016), to validate the elimination of Azi2. In an effort to determine whether 

our mutant allele altered the expression of Azi2 3’UTR, and whether such changes might 

alter Slc6a3, as predicted by Liu et al (2018), we measured gene expression in the VTA 

of wildtype, heterozygous and mutant Azi2 KO mice. We also performed parallel studies 

in a new cohort of CFW mice to confirm that the allele identified in Parker et al (2016) was 
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indeed associated with changes in Azi2 and to determine whether it also associated with 

differential Slc6a3 expression in the VTA, a brain region that was not examined in Parker 

et al (2016). 
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2.3 Results 

Creation and characterization of Azi2 mutant allele using CRISPR/Cas9 

To investigate whether Azi2 might be the gene underlying the association 

observed in CFW mice (Parker et al., 2016) between the locus on chromosome 9 and the 

locomotor response to methamphetamine, we created a mutant allele of Azi2 using 

CRISPR/Cas9. Because of technical difficulties generating embryos from CFW, and 

because of the more complicated breeding programs necessary for maintaining a mutant 

allele on an outbred background, we generated the mutant alleles on the C57BL/6J 

background. We designed a sgRNA targeting exon 3 of Azi2 (Figure 1a; Table S1), 

because exon 3 harbors the start codon of Azi2 and is included in all four annotated 

transcripts of Azi2. We selected a mutant mouse line that carried a 7bp frameshifting 

deletion in exon 3 of Azi2 (Table S2).  

Because Parker et al (2016) had identified a coincident eQTL for Azi2 in the 

striatum, we sought to confirm that the mutant allele would reduce Azi2 expression in that 

same brain region. In addition, because the Liu et al study (Liu et al., 2018) study focused 

on the role of Azi2 in the VTA, we also examined Azi2 expression in that brain region. 

Using qRT-PCR in wildtype, heterozygote and mutant Azi2 KO mice, we confirmed that 

the 7bp deletion led to highly significantly decreased abundance of Azi2 mRNA in the 

striatum (Figure 1c, Figure S1). In a separate cohort of mice, we used RNA-Seq in the 

Azi2 KO mice to further demonstrate that that the 7bp deletion led to highly significantly 

decreased abundance of Azi2 mRNA in the striatum (Figure 1b&d, Figure S2a). In 

addition to the decreased mRNA abundance associated with the mutant allele, many of 
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the remaining transcripts are not expected to encode functional protein because they will 

be frameshifted. 

 

Modulated by time bin, locomotor response to methamphetamine was greater in 

Azi2 mutant mice 

Having created a Azi2 mutant allele, we next sought to examine whether Azi2 

mutant mice showed an altered locomotor response to methamphetamine. In particular, 

we sought to precisely replicate the protocol used in Parker et al (2016), in which saline 

was given on days 1 and 2 and 1.5 mg/kg methamphetamine was given on day 3. Parker 

et al. (2016) found that mice with more ‘A’ alleles at rs46497021 exhibited greater 

sensitivity to methamphetamine; those results are plotted in Figure 2a-c. We reanalyzed 

data from Parker et al. (2016) to demonstrate that Azi2 expression was higher in 

individuals that had the ‘A’ allele at rs46497021 (Figure S3a). The same was also true at 

rs234453358, which was in LD with rs46497021 (Figure S3b). In our Azi2 KO line, we 

found that locomotor responses to saline on days 1 and 2 did not differ among the three 

genotype groups (Figure 2d, e), but the response to methamphetamine was different 

among the three genotype groups where the mutant mice had lower Azi2 expression in 

the striatum and higher methamphetamine sensitivity (Figure 2f; Figure S4).  This 

direction of effect is opposite to that of the CFW mice from Parker et al (2016) where mice 

with more ‘A’ alleles at rs46497021 had higher Azi2 expression and higher 

methamphetamine sensitivity (Figure 2c).  
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Azi2 mRNA and Azi2 3’UTR mRNA did not downregulate Slc6a3 expression in Azi2 

KO mice 

 Liu et al (2018) reported that the 3’UTR of Azi2 mRNA negatively regulates Slc6a3 

in the midbrain of rats, and that there was an increase in expression of the 3’UTR of Azi2 

in the non-alcohol preferring rats compared to alcohol preferring rats (Liu et al., 2018). 

Based on those data, Liu et al (2018) argued that regulation of Slc6a3 expression by the 

3’UTR of Azi2 is important for substance use related traits. Based on these data, we 

hypothesized that Azi2 expression in CFW mice might have led to altered response to 

methamphetamine because of its ability to regulate Slc6a3.  

We tested this hypothesis using both qRT-PCR and RNA-Seq. Using qRT-PCR, 

we measured the level of Azi2, Azi2 3’UTR and Slc6a3 mRNA in the VTA (Figure 1a). 

The Azi2 3’UTR on exon 8 that we amplified using qRT-PCR is homologous to the 3’UTR 

amplified in the rat alcohol model (Liu et al., 2018) and is only present in two of the four 

full-length Azi2 transcripts, ENSMUST0000044454.11 and ENSMUST00000133580.7 

(Figure 1b). We found that the expression of both Azi2 and Azi2 3’UTR amplicons were 

decreased in a genotype-dependent manner in the VTA in the mutant mice (Figure S1a; 

Figure S5a). However, there was no significant effect of genotype on Slc6a3 expression 

in the VTA (Figure S1b; Figure S5b). Furthermore, we did not observe any correlation 

between the expression of Azi2, Azi2 3’UTR or Slc6a3 in the VTA (Figure 3a&b).  

We also used RNA-Seq to examine the hypothesis that Azi2/Azi2 3’UTR could 

downregulate Slc6a3 in the VTA in the Azi2 KO line. Expression of Azi2 and Azi2 3’UTR 

were lower in the heterozygote and mutant mice; however, there was no effect of 

genotype on Slc6a3 expression (Figure 3c&d). Taken together, our results do not support 
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the negative correlation between Azi2/Azi2 3’UTR and Slc6a3 in the VTA in our Azi2 KO 

mice. 

 

Azi2 mRNA did not downregulate Slc6a3 regulation in naïve CFW mice in VTA 

 We also examined the relationship between Azi2, Azi2 3’UTR and Slc6a3 in a 

behaviorally and drug naïve CFW mice to address the possibility that the strain difference 

between C57BL/6J and CFW may have contributed to the previously reported negative 

correlation between Azi2/Azi2 3’UTR and Slc6a3 expression. Using 31 male CFW mice, 

we found that there was no correlation between Azi2 nor Azi2 3’UTR and Slc6a3 in the 

VTA (Figure 3e&f; Figure S6; Figure S7). 

 

Analysis of gene expression differences using RNA-Seq in Azi2 KO and in CFW 

mice  

Next, we sought to identity genome-wide changes in gene expression observed in 

the Azi2 KO line using the RNA-Seq data. When comparing wildtype to mutant mice, we 

identified 23 differentially expressed genes in the striatum at FDR < 0.1 (Figure 4a; Table 

S6). In the VTA, the same comparison identified four differentially expressed genes 

(Figure 4b; Table S6). For both tissues, Azi2 was by far the most significantly differentially 

expressed gene. When comparing wildtype to heterozygous mice, we found that Azi2 

was the only differentially expressed gene in both the striatum and the VTA (Figure S8a, 

S8b).  
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We sought to identify genome-wide changes in gene expression observed in the 

CFW mice after stratifying them by rs234453358, which was the peak eQTL SNP for Azi2. 

When comparing ‘AA’ to the ‘GG’ homozygotes, we identified five differentially expressed 

genomic features in the striatum at FDR < 0.1 (Figure 4c; Table S6). In the VTA, the same 

comparison identified only Azi2 as being differentially expressed (Figure 4d; Table S6). 

When comparing the ‘AG’ to the ‘GG’ mice, we found five differentially expressed genomic 

features in the striatum (Figure S8c; Table S6) but none in the VTA (Figure S8d; Table 

S6). As discussed in the prior section, Slc6a3 was not differentially expressed in any of 

these comparisons.  

Finally, we performed PANTHER gene list analysis to reveal pathways implicated 

by these results (Thomas et al., 2003). The mutant vs wildtype comparison in the striatum 

in the Azi2 KO mice and the ‘GG’ vs ‘AA’ comparison in the striatum in the CFW mice 

both identified the Wnt signaling pathway (Table S6). Additional pathways that were 

identified include angiogenesis, Alzheimer disease-presenilin pathway, TGF-beta 

signaling pathway, metabotropic glutamate receptor group III pathway, cadherin signaling 

pathway, Notch signaling pathway, Huntington disease, nicotinic acetylcholine receptor 

signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, 

and cytoskeletal regulation by Rho GTPase (Table S6). A few genes had larger than five 

log2 fold changes but did not pass the FDR < 0.1 threshold, and thus were not considered 

as differentially expressed genes. Nevertheless, PANTHER gene list analysis showed 

that these genes are involved in pathways similar to those of differentially expressed 

genes (Table S7). 
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2.4 Discussion 

This purpose of the current study was to follow up on findings from the mouse 

GWAS by Parker et al (2016), which identified a locus that influenced the locomotor 

simulant response to methamphetamine and identified a co-localized cis-eQTL for the 

gene Azi2, which was hypothesized to be the casual variant. To experimentally test this 

hypothesis, we created a mutant allele of Azi2. The mutant allele reduced Azi2 expression 

in the striatum (Figure 1), which was the tissue that showed an eQTL in Parker et al (2016) 

(Parker et al., 2016). Furthermore, most of all of the remaining transcripts were 

frameshifted and thus non-functional. Importantly, we observed significantly greater 

methamphetamine sensitivity in Azi2 mutant mice (Figure 2F), supporting a role for this 

gene in the responses to methamphetamine. However, based on data from Parker et al 

(2016), we had predicted a positive relationship between Azi2 expression and the 

locomotor response to methamphetamine. Instead, the mutant mice showed that 

elimination of Azi2 increased sensitivity. After the publication of Parker et al (2016), Liu 

et al (Liu et al., 2018) reported that the 3’UTR of Azi2 regulated the expression of the 

dopamine transporter, which is the target of methamphetamine, and suggested that 

findings from Parker et al might be mediated by this mechanism. However, we did not 

observe any correlation between Azi2 and Sla6a3 in either the Azi2 mutant mice or the 

CFW mice that harbor an eQTL for Azi2 (Figure 3). Those observations do not support 

the hypothesis that Azi2’s effects are mediated by regulation of Slc6a3 expression. While 

we did observe effects of the Azi2 mutant allele on the expression of other genes (Figure 

4), future studies will be needed to define the molecular pathway by which Azi2 regulates 

stativity to methamphetamine.   
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A major conclusion from our work is that Azi2 alters the locomotor response to 

methamphetamine. Although we did not exhaustively characterize these mice, they did 

not present any overt physical or behavioral abnormalities, and they did not show 

locomotor differences in the absence of methamphetamine administration (Figure 2d&e), 

suggesting that the effect of the mutation is at least somewhat specific to 

methamphetamine sensitivity. However, Parker et al (2016) found that the eQTL allele 

associated with greater Azi2 expression was also associated with greater locomotor 

response to methamphetamine, whereas the current study found the opposite, namely 

that loss of Azi2 was associated with greater response to methamphetamine. One 

possible explanation for this finding is that the effect of Azi2 is modified by genetic 

background – the eQTL was observed in CFW mice, whereas the mutant allele was 

characterized using a C57BL/6J background. Consistent with this, we have previously 

reported that genetic background can induce directionally opposite effects of other mutant 

alleles (Sittig et al., 2016). Another possibility is that the total loss of Azi2 in the mutant 

line could have different consequences than the differential expression observed in the 

CFW mice. While both explanations are plausible, the difference in direction complicates 

our interpretation of the behavioral results and calls into question whether they should be 

considered to “replicate” or “recapitulate” the findings from Parker et al (2016).  

Along the same lines, Parker et al (2016) examined total activity after 30 minutes 

in males only, whereas in the current study we used males and females and used ANOVA 

to examine the factors sex, genotype and time, in which time was modeled as six 5-minute 

bins making up the full 30-minute test. We observed a significant interaction between 

genotype and time bin; however, post-hoc tests did not identify any specific time bins that 
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were different from one another. Had we instead decided a priori to only examine total 

activity over all 30 minutes, the effect of Azi2 on behavior would not be significant.  

One of the rationales for using an inbred C57BL/6J background was that 

expressing a mutant allele on an isogenic background would enhance our ability to detect 

an effect of the mutation, since it would remove other genetic differences that could be 

confounding. It is notable that despite this advantage, a relatively large sample size was 

required to obtain significant results. We observed a similar result in a prior study in which 

we examined a mutant allele of the gene Csmd1 (Gonzales et al., 2018), which had been 

implicated by a separate mouse GWAS (Cheng et al., 2010). While these two examples 

do not represent a large enough sample to draw general conclusions, it may be that genes 

identified using mouse GWAS have relatively subtle effects that require sample sizes that 

are larger than those often employed when examining mutant mice. Because studies like 

these do not use the alleles identified in the GWAS, power analyses are difficult because 

the expected effect size is unknown. Our observations imply that future studies following 

up on mouse GWAS should consider using relatively large samples (in this case more 

than 100 total subjects) before drawing conclusions.  

The goal of our study was to determine whether Azi2 is the gene responsible for 

the association detected by Parker et al (2016). That locus contained a second candidate 

gene, COX assembly mitochondrial protein 1 (Cmc1), which could also have contained 

regulatory variants for other nearby genes. it is possible that the locus harbored multiple 

causal variants. Studies such as ours are not able to refute other possible causal alleles, 

which is a limitation.  
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In an effort to define the causal pathway by which Azi2 might alter sensitivity to the 

locomotor effects of methamphetamine, we tested the hypothesis that the 3’UTR of Azi2 

regulates Slc6a3, as described by Liu et al (Liu et al., 2018). Using a luciferase reporter 

assay in the human neuroblastoma SK-N-AS cells, Liu et al (2018) identified Azi2 3’UTR 

as a putative downregulator of the promoter activity in only one allele of a dinucleotide 

polymorphism in Intron 1 of SLC6A3, but not the other (Liu et al., 2018). It is possible that 

this allele specificity is the reason for the lack of correlation we observed between the 

3’UTR of Azi2 and the expression of Slc6a3. However, Liu et al (2018) did not detect any 

SLC6A3 allele-dependence in the downregulation of endogenous SLC6A3 mRNA level 

by Azi2 3’UTR in the human neuroblastoma BE(2)-M17 cells. Furthermore, Northern blot 

and qRT-PCR results on Azi2/ Azi2 3’UTR and Slc6a3 expression in the VTA of alcohol 

preferring and non-preferring rats did not distinguish the two alleles of Slc6a3 (Liu et al., 

2018). Thus, we investigated the correlation between Azi2/ Azi2 3’UTR and Slc6a3 

expression in both our Azi2 KO mice and naïve CFW mice, intending to replicate the 

experiments performed on alcohol preferring and non-preferring rats (Liu et al., 2018). 

Our results do not contradict the findings of Liu et al (2018) but they strongly suggest that 

Azi2’s actions observed in our studies are not mediated by Slc6a3. 

Although we did not find evidence to support a role for Slc6a3 in the effects of Azi2, 

we did identify a number of other genes that were differentially expressed in both the Azi2 

mutant line and in the CFW mice (Figure 4). One differentially expressed gene, Slc16a6, 

is mapped to the metabotropic glutamate receptor group III pathway.  Another gene, 

Myh1, is mapped to the nicotinic acetylcholine receptor signaling pathway. Future studies 

should investigate whether these genes and their involvement in synaptic signaling 
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pathways might hold clues about the relationship between Azi2 and sensitivity to 

methamphetamine.  

Our study is not without limitations. For example, the creation of the mutant allele 

using CRISPR/Cas9 could have induced unintended off-target mutations. We 

backcrossed the mutant allele for several generations, and unless putative off-target 

mutations were nearby and thus linked to the mutant allele, they should have segregated 

independently, since all experiments uses wildtype littermate controls. Nevertheless, it is 

technically possible that a linked, off-target mutation may have interfered with our results. 

We also did not characterize the effect of the Azi2 mutation on other doses of 

methamphetamine nor did we examine other behavioral traits of these mice, which might 

have provided clues about the possible role of Azi2 in substance abuse-related traits. 

Finally, we conducted all of the studies intended to examine the role of Slc6a3 in naïve 

C57BL/6J and CFW mice, whereas Liu et al (2018) examined human cell lines, human 

postmortem dopamine neurons, and alcohol preferring and alcohol non-preferring rats 

(Liu et al., 2018). Thus, our conclusions about the lack of correlation between Azi2 and 

Slc6a3 only apply to the mouse systems that we examined. 

The present study is notable because it remains rare to experimentally test specific 

genes identified using model organism or human GWAS. Our results highlight the 

potential for such studies, including their ability to contribute to a molecular understanding 

of how a specific gene influences a specific trait, which is essential for deriving new 

biological insights from GWAS results. However, our results also illustrate challenges, 

including the choice of background, and the criteria needed to claim replication.  
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2.5 Methods and Materials 

Establishment of an Azi2 knockout mouse line using CRISPR/Cas9 

 We followed the JAX protocol of microinjection of CRISPR mix using sgRNA and 

Cas9 mRNA (https://www.jax.org/news-and-insights/1998/july/superovulation-

technique). We designed a sgRNA targeting exon 3 of Azi2 (Vector Name: pRP[CRISPR]-

hCas9-U6>{20nt_GGGCCGAGAACAAGTGAATA}; Table S1).  

 All animal procedures were approved by the local Institutional Animal Care and 

Use Committee and were conducted in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals. The CRISPR microinjection procedures were performed at 

the University of California San Digeo, Moores Cancer Center, Transgenic Mouse Core. 

We ordered five C57BL/6J stud males (7-8 weeks old) and five C57BL/6J females (3-4 

weeks old) from the Jackson Laboratory (Bar Harbor, ME). Upon arrival at the vivarium, 

the stud males were singly-housed and the females were housed in groups of four. On 

Day 1 of the microinjection week, all five females were super-ovulated via 0.1ml pregnant 

mare serum (PMS) intraperitoneal injection per animal. On Day 3, all females were super-

ovulated via 0.1ml human chorionic gonadotropin (HCG) intraperitoneal injection per 

animal. After hormonal priming, each female was placed into the home cage of one stud 

male for mating. On Day 4, ovulation was expected to occur, and females were separated 

from the stud males. Fallopian tubes were dissected out from the mated females and 

were collected in M2 medium. Zygotes were harvested and injected with the CRISPR mix 

(625ng = 3.1ul×200ng/ul of Azi2 sgRNA + 1250ng = 5ul×250ng/ul of Cas9 mRNA + 16.9ul 

ph7.5 IDTE; total volume 25ul). Injected zygotes were surgically transplanted to 

pseudopregnant female C57BL/6JOlaHsd (Harlan) mice. Pregnant surrogate dams were 



 

84 
 

singly caged one week before the expected birth date of the pups. C-sections were carried 

out if necessary.  

  

Azi2 knockout line breeding and genotyping scheme  

 We obtained 14 Azi2 CRISPR founders (five males, nine females). The founders 

were genotyped via Sanger sequencing to verify the presence of deletions. The male 

founders were then backcrossed to wildtype C57BL/6J mice to minimize the effect of off-

targeting. F1/F2 Azi2 KO mice were genotyped via Sanger/NGS again to ensure the 

transmission of mutation. Heterozygous F1s were paired to produce F2s, which were 

genotyped via next-generation sequencing. Among others, we identified one 7bp deletion 

in F2s. This deletion was predicted to cause mRNA degradation of the four full-length 

RefSeq supported Azi2 transcripts, ENSMUST00000044454.11, 

ENSMUST00000133580.7, ENSMUST00000134433.7, and ENSMUST00000154583.7, 

and three shorter, predicted Azi2 transcripts, ENSMUST000000143024.1, 

ENSMUST000000130735.7, and ENSMUST000000127189.1. We genotyped this 

deletion via restriction fragment length polymorphism (RFLP); this mutation harbors the 

StuI restriction enzyme target site, which allows us to easily genotype the mice. From the 

5th generation (F5) and onward, we decided to only keep the line with the 7bp deletion. 

We genotyped the following generations of Azi2 KO animals via PCR and RFLP. The 

sgRNA for the CRISPR/Cas9 procedure and the genotyping primers for Azi2 are included 

in Table S1. 
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Locomotor response to methamphetamine  

 We followed the locomotor response to methamphetamine protocol as described 

in Parker et al 2016 (Parker et al., 2016). Adult male and female mice were tested over a 

three-day period between 0800 and 1700 h. During the experiment mice were group 

housed 2-5 per cage on a 12h/12h light-dark cycle with lights on at 0600 h. Mice were 

transported to the procedure room at least 30 min before testing, which allowed them to 

habituate to the new environment in their home cages. On each day of testing, each 

animal was placed in an individual clean cage. Animals were weighed to determine the 

volume of injection (0.01 ml/g body weight). On day one and day two, mice received an 

i.p. injection of 0.9% saline solution; on day three, mice received an i.p. injection of 

methamphetamine solution (1.5 mg/kg of (+)-Methamphetamine hydrochloride; Sigma 

Life Science, St. Louis, MO). Immediately following injection, each mouse was placed in 

the test chamber for activity recording. All animals were measured using the Versamax 

software (AccuScan Instruments, Columbus, OH). At the end of the 30 min test, mice 

were returned to their home cages. Test chambers were sprayed with 10% isopropanol 

between tests. At the end of each test day, animals were returned to the vivarium. 

We performed the locomotor test in the F9 of Azi2 KO mice. We removed one 

heterozygote and one mutant mice whose locomotor activity on day 3 were more than 

three standard deviations away from the mean. We analyzed a total of 135 mice and the 

ratio of genotypes was as expected: 33 wildtype littermates (18 females, 15 males), 67 

heterozygotes (31 females, 36 males), and 35 mutants (18 females, 17 males).  
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Genotyping CFW naïve mice 

 CFW mice were genotyped via Sanger sequencing. Genotyping primers for CFW 

mice are included in Table S5. We genotyped the GWAS top SNP for the trait “Distance 

traveled, 0–30 min, on day 3” at rs46497021 (rs46497021) and the eQTL top SNP for 

Azi2 expression in the striatum at rs234453358 (rs234453358), as described in Parker et 

al (2016) (Parker et al., 2016).  

 

Brain tissue collection 

Mouse brain tissue was harvested via an adult mouse brain slicer matrix with 1.0 

mm coronal section slice intervals (ZIVIC instruments, Pittsburgh, PA, USA). Striatum 

was collected from slice Bregma 0 to 2 and VTA was collected from slice Bregma -4 to -

2. Four tissue punches, two on the left and two on the right hemisphere, were collected 

for each animal. After dissection, brain tissue was placed in an Eppendorf tube that was 

fully submerged in dry ice.  

 

Analysis of CFW data from Parker et al (2016) 

 Because genotypes in Parker et al (2016) were represented as genotype 

probabilities, we first converted probabilities to dosages and then coded dosages < 0.2 

as homozygous reference, dosages > 0.8 and <1.2 as heterozygous, dosages > 1.8 

homozygous alternative. A hundred and seven mice with intermediate dosage values are 

excluded from the plots. We used likelihood ratio test of nested models (lmtest R package; 

(Zeileis & Hothorn, 2002)) to examine the genotype effect.  
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qRT-PCR  

 Primers and probes selected for Azi2, 3’UTR of Azi2, Slc6a3, and Gapdh gene 

expression assays are shown in Table S2. We used pre-designed TaqMan gene 

expression assays for Azi2, Slc6a3, and Gapdh. We custom-designed the gene 

expression assay for the 3’UTR of Azi2. We custom designed the TaqMan primers and 

the FAM-MGB probe for 3’UTR of Azi2 according to the Custom TaqMan Assay Design 

Tool (https://tools.thermofisher.com/content/sfs/manuals/cms_042307.pdf). We only 

used two replicates per sample instead of the recommended three replicates because of 

the low RNA/cDNA content in our tissue samples. We ran all qRT-PCR experiments on 

the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). 

To demonstrate that the 7bp deletion led to the degradation of full-length Azi2 

mRNA transcripts, we performed qRT-PCR that amplified the exon 6-7 junction in Azi2 

mRNA transcripts ENSMUST00000044454.11, ENSMUST00000133580.7, and 

ENSMUST00000134433.7; in ENSMUST00000154583.7 this same sequence 

corresponds to exon 5-6. This amplicon would detect the four RefSeq Azi2 transcripts 

and three predicted transcripts ENSMUST00000135251.1, ENSMUST00000130735.7, 

and ENSMUST00000133814.1. Our CRISPR/Cas9 deletion scheme ensured that all four 

full-length, RefSeq supported Azi2 transcripts and a few short Azi2 predicted transcripts 

would be degraded via nonsense-mediated mRNA decay due to the deletion. Given the 

mRNA degradation, our qRT-PCR design for whole-gene Azi2 expression would only 

detect the two short, predicted Azi2 transcripts, ENSMUST0000013525.1 and 

ENSMUST00000133814,1, in heterozygous and mutant mice.  
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The Azi2 3’UTR on exon 8 we amplified using qRT-PCR is homologous to the 

3’UTR amplified in the rat alcohol model (Liu et al., 2018) and is only present in two of the 

four full-length Azi2 transcripts, ENSMUST0000044454.11 and 

ENSMUST00000133580.7. 

We measured Azi2 expression in 44 mice from the Azi2 KO line, which included 

15 homozygous mutants. We measured the Azi2 3’UTR expression in an additional 33 

mice from the Azi2 KO line. Each batch of the Azi2 KO mice used for gene expression 

assays were of similar age (199-201 days at sacrifice for the mice used for measuring 

Azi2 mRNA and 226-232 days at sacrifice for the mice used for measuring Azi2 3’UTR 

mRNA). 

We also performed qRT-PCR in CFW mice. We removed three animals whose 

Azi2 or Slc6a3 gene expression was more than three standard deviations away from the 

mean. We analyzed a final set of 31 CFW mice for the Azi2 and Slc6a3 expression in the 

striatum and in the VTA (rs46497021: ‘GG’ n=5, ‘GA’ n=20, ‘AA’ n=6; rs234453358: ‘AA’ 

n=12, ‘AG’ n=13, ‘GG’ n=6). 

 

RNA-Sequencing  

 We extracted RNA from the striatum and VTA of the mouse brain and prepared 

cDNA libraries from 68 samples with RNA integrity scores ≥7.0 (32 Azi2 KO line, 36 CFW 

mice) as measured on a TapeStation (Agilent, Santa Clara, CA, USA). The cDNA libraries 

were prepared with the  NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina 
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(NEW ENGLAND BioLabs, Ipswich, MA, USA) and sequenced on two lanes (two chips, 

one lane on each chip) of an Illumina NovaSeq S4 using 100 bp, paired-end reads. 

 All sequencing reads passed the Illumina sequencing quality score of 20. We used 

HISAT2 (Kim et al., 2015) to align the adapter-trimmed paired-end reads simultaneously 

to mouse reference genome mm10. We used HTSeq to assign reads to gene features, in 

which the union of all the sets of all features overlapping each position i in the read was 

counted (Anders et al., 2015).  We then examined potential expression outliers due to 

technical variance in PCA plots and removed one sample from the F9 of Azi2 KO cohort 

and two samples from the CFW cohort. We used the final set of 31 F9 of Azi2 KO samples 

(16 striatum samples: 5 wildtype, 6 heterozygous, 5 mutant; 15 VTA samples: 3 wildtype, 

7 heterozygous, 5 mutant) and 34 CFW samples (17 striatum samples: 5 ‘AA’, 6 ‘AG’, 6 

‘GG’; 17 VTA samples: 6 ‘AA’, 6 ‘AG’, 5 ‘GG’).  

 We calculated the read counts aligned to each exon feature of Azi2 by providing 

Samtools the genomic coordinates of the exon features (Li et al., 2009). Then, we 

normalized the read counts by dividing the raw reads by the length of the exon feature 

and the total number of reads in the sample. Normalized read counts for Azi2 whole gene 

was calculated by summing normalized read counts aligned to exons 1-8 for transcripts 

ENSMUST00000044454.11, ENSMUST00000133580.7, and ENSMUST00000134433.7 

and exons 1-7 for transcript ENSMUST00000154583.7 (chr9.118040522-

chr9.118069794). Normalized read counts between chr9.118063214-chr9.118063336, 

the mouse genomic region homologous to the second half of Azi2 3’UTR in rats, as 

described in Liu et al (2018) (Liu et al., 2018), were assigned as Azi2 3’UTR normalized 

read counts.  
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We used DESeq2 to perform differential expression analysis (Love et al., 2014). 

Prior to count normalization and differential expression analysis, we calculated the 

average count per million (CPM) within each cohort and tissue combination across genes 

and samples. We only retained genes with CPM larger than 1. Then, we disabled 

independent filtering, which identifies the maximum number of adjusted p values lower 

than a significance level alpha based on the mean of normalized counts. We kept the 

“Cook’s distance” parameter in DESeq2, which removes genes with extreme count 

outliers that do not fit well to the negative binomial distribution. These procedures ensured 

that genes with extremely low and large raw counts are removed and the same set of 

genes are used in differential expression analysis in between-genotype comparisons. At 

the end of filtering steps, we have 14,680 genes in Azi2 KO striatum, 15,003 genes in 

Azi2 KO VTA, 14,594 genes in CFW striatum, 14,936 genes in CFW VTA. All differential 

expression analyses performed on the Azi2 KO mice have the design of ~ genotype + 

sex because we observed a separation by sex effect in PCA plots; analyses on the CFW 

mice only included the genotype factor because all mice were male.  

 



 
 

91 
 

2.6 Figures 

Figure 2.1. A 7bp deletion on exon 3 of Azi2 was generated by CRISPR/Cas9. The 
genomic position of the CRISPR/cas9 deletion and the qRT-PCR amplicons for Azi2 
mRNA and Azi2 3’UTR mRNA are indicated in a. b RNA-Seq reads aligned to the exons 
of Azi2 in a wildtype, a heterozygous, and a mutant mouse in the Azi2 KO line show the 
effect of the CRISPR/Cas9 deletion on mRNA abundance in the striatum. The mutant 
mouse had fewer reads across all the exons than the heterozygote, which in turn had 
fewer reads than the wildtype. The RNA-Seq reads aligned to each exon feature were 
normalized to the length of exon and the total read counts of the sample. To choose the 
most representative sample for each genotype for Azi2 expression in striatum, we 
calculated the average normalized read counts for each genotype and identified the 
sample closest to the average. Note that the tracks include all Azi2 transcripts annotated 
in the comprehensive gene annotation file of GRCm38.p6; only the top four transcripts 
are supported by RefSeq. The genome tracks were plotted using the Python visualization 
tool svist4get (Egorov et al., 2019). c Using qRT-PCR, we showed that Azi2 expression 
in the striatum in mutant Azi2 KO mice is significantly lower than the heterozygous and 
the wildtype mice (F(2,41) = 319.41, p < 2.2×10-16). Delta CT was calculated as the mean 
CT of target gene (Azi2) – the mean CT of the control gene (Gapdh); larger values of - 
delta CT indicate higher gene expression level. Azi2 expression was measured using real 
time PCR in 15 wildtype, 14 heterozygous, and 15 mutant Azi2 KO mice. We used Welch 
two sample t-test to make between group comparisons, which show that all groups were 
different (wildtype vs heterozygote t(26.301) = -9.365, p = 7.312×10-10; heterozygote vs 
mutant t(25.906) = -16.297, p = 3.919×10-15; wildtype vs mutant t(27.944) = -23.3, p < 
2.2×10-16). d Using RNA-Seq we showed that normalized read counts mapped to Azi2 in 
the striatum of the Azi2 KO line also show a significant effect of the CRISPR/Cas9 deletion 
(F(2,13) = 146.04, p = 1.236×10-9). RNA-Seq was performed in 5 wildtype, 6 
heterozygous, and 5 mutant Azi2 KO striatum samples. Between group comparisons 
show that all groups are different (wildtype vs heterozygote t(7.8331) = 8.7235, p = 
2.654×10-5; heterozygote vs mutant t(8.537) = 9.3156, p = 9.272×10-6; wildtype vs mutant 
t(7.8068) = 16.399, p = 2.501×10-7).  
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Figure 2.2. Locomotor response to methamphetamine was moderately heightened 
in mutant Azi2 KO mice. a - c Locomotor activity of CFW (n=898 as previously reported 
in Parker et al 2016) following administration of saline (days 1 and 2) and 
methamphetamine (day 3), plotted in 5 min time bins. The genotype effect was noticeably 
more significant on day 3 of methamphetamine injection (X2(1,2) = 70.598, p < 2.2×10-16) 
than that on day 1 (X2(1,2) = 11.013, p = 0.0009047) and day 2 of saline injection (X2(1,2) 
= 6.5381, p = 0.01056). d - f A total of 135 mice from the Azi2 KO line were tested in the 
locomotor response to methamphetamine experiment. To evaluate the effect of the Azi2 
mutant allele, we used an ANOVA to analyze the effects of genotype, time bin and sex 
on the locomotor response to methamphetamine. The 3-way interaction was not 
significant (see Table S3); however, there was a significant interaction between genotype 
and time bin (F(2,798)= 4.09230, p = 0.0170534). Post-hoc tests did not identify any 
particular time bin that was different, though there were some trends towards differences 
between the wildtype and mutant mice (Tables S3 and S4). 
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Figure 2.3. Azi2 and Azi2 3’UTR did not down-regulate Slc6a3 in the VTA in the Azi2 
KO mice; Azi2 did not down-regulate Slc6a3 in the VTA of naïve CFW mice.  We 
used a 44 Azi2 KO mice (wildtype = 15, heterozygote= 14, mutant= 15) for examining the 
correlation between Azi2 and Slc6a3 expression measured by qRT-PCR, b 33 Azi2 KO 
mice (wildtype = 11, heterozygote= 11, mutant= 11) for examining the correlation between 
Azi2 3’UTR and Slc6a3 expression measured by qRT-PCR, c & d 15 Azi2 KO mice 
(wildtype = 3, heterozygote= 7, mutant= 5) for examining the correlation between 
Azi2/Azi2 3’UTR and Slc6a3 normalized read counts measured by RNA-Seq, and e & f 
17 CFW mice (‘AA’ = 6, ‘AG’ = 6, ‘GG’ = 5) for examining the correlation between 
Azi2/Azi2 3’UTR  and Slc6a3 normalized read counts measured by RNA-Seq. Neither 
Azi2 nor Azi2 3’UTR expression was negatively correlated to Slc6a3 expression in the 
VTA in either cohort of mice. a & b Neither the level of Azi2 (r(42) = 0.05321076, p = 
0.7316) nor Azi2 3’UTR expression (r(31) = 0.01339348, p = 0.941) was negatively 
correlated to the expression of Slc6a3 in the VTA. c & d No significant correlation between 
Azi2 and Slc6a3 (r(13) = -0.2627568, p = 0.3441) or Azi2 3’UTR and Slc6a3 (r(13) = -
0.3786666, p = 0.164) was observed.  e & f Neither Azi2 (r(15) = -0.1771307, p = 0.4964) 
nor Azi2 3’UTR (r(15) = -0.1370425, p = 0.5999) was negatively correlated with Slc6a3 
expression in the VTA at the eQTL top SNP. 
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Figure 2.4. Azi2 (ENSMUSG00000039285.12) was consistently differentially 
expressed between mutant vs wildtype mice in the Azi2 KO line and between 
homozygous alternative (‘GG’) vs homozygous reference (‘AA’) mice at the top 
eQTL SNP for Azi2 expression (Parker et al 2016; rs234453358) in the naïve CFW 
mice. a & b In the Azi2 KO line, differential expression is performed on 16 striatum 
samples (wildtype = 5, heterozygote = 6, mutant = 5) and 15 VTA samples (wildtype = 3, 
heterozygote = 7, mutant = 5). c & d In the CFW mice, differential expression is performed 
on 17 striatum samples (‘AA’ = 5, ‘AG’ = 6, ‘GG’ = 6) and 17 VTA samples (‘AA’ = 6, ‘AG’ 
= 6, ‘GG’ = 5). Genes with FDR p-value < 0.05 are in shown in orange, and genes with 
FDR p-value < 0.1 are shown in black.  
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CONCLUSION 

The present thesis has investigated the discovery, replication, and validation of 

GWAS results using the mouse as the model organism. In chapter 1, we used multiple 

generations of a LG/J x SM/J AIL to perform GWAS, SNP heritability estimates, genetic 

correlations, replication and mega-analysis. Despite the high genetic correlations in a 

subset of traits measured in two cohorts of the AIL population, we found that many loci 

were not replicated between cohorts. We found that the lack of replication was not a result 

of inadequate power in the replication study but a combined result of Winner’s Curse and 

study-specific heterogeneity. Finally, mega-analysis of the two cohorts allowed us to 

discover four additional loci. This work highlights the difficulty of replication due to study-

specific heterogeneity even when tight genetic and environmental control is allowed for. 

In chapter 2, we created an Azi2 KO line, established the mutant Azi2 phenotype of 

locomotor response to methamphetamine, and investigated the hypothesis that an 

independent Azi2 3’UTR transcript could downregulate Slc6a3 expression in the VTA of 

the midbrain. We found a significant gene and 5 min time bin interaction on day three of 

the locomotor test when mice received a methamphetamine injection. We showed that 

locomotor response to methamphetamine was moderately heightened in mutant Azi2 

mice, a trend that is consistent with the CFW mice. We did not observe a negative 

correlation between Azi2/ Azi2 3’UTR expression and Slc6a3 expression in the VTA in 

either the Azi2 KO mice or in naïve CFW mice. Our results support the findings from 

Parker et al (2016) that Azi2, which is localized within the linkage disequilibrium (LD) 

block of the top GWAS and top eQTL loci for methamphetamine sensitivity, may be the 

causal gene for this trait (Parker et al., 2016). Our results do not support findings from Liu 
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et al (2018) that Azi2 3’UTR downregulates Slc6a3 expression in the VTA (Liu et al., 

2018). 

The CRSIPR/Cas9 method for creating a knockout mouse line yields cleaner 

mutations than the traditional method of gene targeting using embryonic stem (ES) cells. 

Targeting vectors that include the homology arms to the targeted region, positive 

selection markers (e.g., neor) and negative selection markers (e.g., HSV-tk) are taken up 

into the ES cells by electroporation (Hall et al., 2009; Limaye et al., 2009). While the 

selection markers facilitate the enrichment of the incorporation of the vectors and the 

exclusion of random integration, the selection markers are left in the modified ES cells, 

which could bring collateral damage to the expression of genes flanking the targeted 

region (Conlon, 2011). As a solution, loxP and Frt sites could be designed to the drug 

selection gene cassette; after drug selection, those markers could be deleted by 

expressing Cre or Flp recombinase in a temporal and spatial-specific manner. However, 

this procedure involves a more complex design of the selection cassette and requires 

additional efforts to express the recombinase, either by inserting a Cre/Flp expression 

vector in ES cells or by mating the KO mouse with a mouse constitutively expressing the 

recombinase (Conlon, 2011). In contrast, CRISPR/Cas9 does not introduce extra 

selection constructs into the targeted region; the resulting transgenic founder mice simply 

have the mutation at the genomic position homologous to the sgRNA. Given the ease 

and precision of creating a KO allele using CRISPR/Cas9, more functional validation 

studies could be carried out to assess genetic variants identified in GWAS using the 

mouse model. 
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 We created a null Azi2 allele and investigated the impact of the Azi2 mutation on 

methamphetamine sensitivity and Slc6a3 expression in the VTA. While we replicated the 

pattern of methamphetamine sensitivity as shown in Parker et al (2016) (Parker et al., 

2016) in the Azi2 KO line, we did not observe any influence of Azi2 mutation on Slc6a3. 

This lack of consequence could be explained by the important concept of degeneracy. 

Degeneracy refers to the wide-spread phenomenon in biological systems where 

multitudes of structurally different elements can yield similar outcome given similar 

constraints on the environment (Edelman & Gally, 2001). Single gene mutations have not 

always resulted in phenotypic changes, which suggests that compensatory mechanisms 

are at play in manipulated organisms. The lack of Azi2/Azi2 3’UTR regulation of Slc6a3 

in mouse could be a case of degeneracy, in which many pathways, networks and systems 

other than Azi2-related could make up the loss of function of Azi2. Thus, understanding 

the network effect of Azi2 on methamphetamine sensitivity and Slc6a3 expression could 

be an alternative approach to replicate the findings of Parker et al (2016) (Parker et al., 

2016). Neurobiological processes, such as response to dopaminergic drugs, are highly 

affected by the interactions among behavior, environment, and neural mechanisms (Seth, 

2005). The study of complex networks has been adopted in the field of neuroscience to 

illuminate the structural and functional connectivity of brain modules, either in isolation or 

in response to external stimuli (Sporns et al., 2004; G. Tononi et al., 1994; G Tononi et 

al., 1996). Furthermore, multiple methods that infer causality in network interactions have 

been developed, including Granger causality (i.e., (Larvie et al., 2016; Seth, 2005; Tam 

et al., 2012)) and selective perturbations (i.e., (Keinan et al., 2004; Pearl, 2000; Giulio 
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Tononi & Sporns, 2003). These methods could be employed to investigate the potential 

causal relation between Azi2 and Slc6a3 in a network context. 

 Evaluating genetic signals in GWAS, either via replication studies or functional 

validation studies, is not straightforward. Much of the challenge stems from the inherent 

properties of GWAS. GWAS results are not causative; LD regions instead of particular 

genetic variants are implicated in the association. Furthermore, only a small fraction of 

the identified genetic variants reside within coding regions (MacArthur et al., 2017). In 

chapter 2 of this thesis, we considered Azi2 as a putative causal gene for 

methamphetamine sensitivity because both the GWAS and the cis-eQTL loci for 

methamphetamine sensitivity include this gene (Parker et al., 2016). Other methods, such 

as transcriptome-wide association studies (TWAS) (Gusev et al., 2016; Mancuso et al., 

2017; Nica et al., 2010) and two-sample, univariable and multivariable Mendelian 

randomization studies (Burgess & Thompson, 2015; Inoue & Solon, 2010; Porcu et al., 

2019; Zhu et al., 2016) can provide additional evidence for the directional causal effect 

from SNP to gene to trait. 

 Complex traits are highly polygenic in which the common alleles tend to have 

relatively small effect sizes. This poses additional hurdles to assess the credibility of the 

collection of genetic signals in GWAS. Replicating the genetic basis of a polygenic trait 

requires an exceedingly large sample size. Functional validation of multiple risk variants 

is also difficult. In order to fully capture the composite effect of multiple risk variants on 

the phenotype, one might wish to create multiple null alleles in one organism. However, 

this strategy may seriously compromise the fit, fertility and survival of the organism, which 

hinders subsequent experiments. Nevertheless, recent development in polygenic risk 
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scores (PRS) methods proves to be useful in profiling individuals that are probabilistically 

at risk for complex diseases (Torkamani et al., 2018).  

Finally, other -omics could be combined with GWAS to demonstrate additional 

support for the identified loci. Genetic and structural variants, gene expression, 

transcriptome modifications, and chromosome conformation patterns associated with a 

trait provide a synergistic view of the processes that contribute to phenotypic variation 

(Gorkin et al., 2019).  

 There are many limitations to this thesis. In particular, the lack of replication 

presented in both chapters underlines the limitations of designing studies that do not have 

identical genetic background of the subjects and experimental conditions. For example, 

the two AIL cohorts included in the study presented in chapter 1 are a few generations 

apart. As a result, multiple technicians collected, processed, and recorded genotype and 

phenotype data spanning a couple of years. This may contribute to the study-specific 

heterogeneity that we observed between the two cohorts. A more ideal study design 

would include two consecutive generations of AIL mice handled by the same technician, 

at least for each phenotype. Another example is demonstrated in the study presented in 

chapter 2. We created the Azi2 KO on the C57BL/6J background, which is different from 

the outbred population of CFW mice where the Azi2 locus was initially identified. While 

we intended to generate the Azi2 KO using the most popular laboratory strain so that the 

results may be more generalizable to behavioral studies performed on the C57BL/6J 

background, the strain difference between the C57BL/6J and the CFW mice may lead to 

differential behavioral performance in methamphetamine sensitivity. In addition, we 

conducted all of the Azi2 gene validation experiments in the Azi2 KO line and in naïve 
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CFW mice, whereas Liu et al (2018) examined Azi2/ Azi2 3’UTR in human cell lines, 

human postmortem nigral dopamine neurons, and in rats that had been selected for the 

binary trait alcohol preferring and alcohol non-preferring (Liu et al., 2018). As a result, 

despite the fact that we did not corroborate the findings from Liu et al (2018) that Azi2 

3’UTR is a regulator of Slc6a3, we could not definitively argue that Azi2 3’UTR does not 

downregulate Slc6a3 expression in the VTA in any biological system. The limitations of 

my thesis reveal the dilemma of the replication studies: replicating a result exactly 

requires conforming to the design of the original study, a practice that confines the 

generalizability of scientific discoveries. 

Improvements in GWAS design and analysis facilitate better definition of the 

genetic architecture of disease. This is the first step of enhancing human health; 

ultimately, insights from human and model organism GWAS can be translated to efforts 

that improve diagnosis, fasten drug discovery, and invent new therapeutics (Boerwinkle 

& Heckbert, 2014). Replication and validation of GWAS findings, together with the 

multitude of methods that provide auxiliary evidence for the identified genetic variants, 

are essential in this undertaking. 
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