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Abstract�

The adoption of battery electric vehicles (BEVs) and photovoltaic electricity generation�

increases in many climate change mitigation scenarios. Yet the large-scale deployment of�

these technologies , if left uncoordinated, can increase the costs of electricity through posing�

risks of increasing peak electricity demand during the evening and causing over-generation�

of electricity during midday. Here we examine these risks and how they interact to amplify�

or mitigate each other by modeling hourly electricity demand with high penetration of BEVs�

and photovoltaic over one year in two cities in the United States: New York, NY and Dal-�

las, TX. We then investigate strategies for reducing these risks, measuring e�ectiveness with��

varying local travel and energy use patterns, electric vehicle adoption levels, and installed��

photovoltaic capacities. We focus on strategies that are easy to implement, in that they do not��

require travel behavior change nor new technology such as vehicle-to-grid capabilities and��

coordination between chargers and other networked infrastructure. In both locations consid-��

ered, New York, NY and Dallas, TX, we �nd that easily-accessible strategies for time-shifting��

of charging can be very e�ective. Delayed home charging nearly eliminates the increases in��
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peak demand from electric vehicles. Workplace charging can achieve a similar e�ect on peak��

demand reductionwhile also reducing the amount of curtailed photovoltaic electricity by half.��

Our analysis suggests that these two approaches could be mixed and matched to suit local��

conditions and decarbonization plans. Importantly, capturing these bene�ts would require��

an acceleration of electric vehicle adoption relative to current rates, through transportation��

policies that are timed to match those already set for electricity in many locations.��

Introduction��

Meeting climate change mitigation goals will require transitioning to less carbon intensive tech-��

nologies for both personal vehicle travel and electricity generation, as well as in other end-use��

sectors.�,� One approach is to concurrently electrify transportation�–� and decarbonize electric-��

ity.�–�� In this scenario, the transport and electricity sectors would become more closely linked,��

with technological transitions in one a�ecting the sustainability, cost e�ectiveness, and stability��

of the other.��,����

There are several risks associated with this transition. Depending on the charging patterns��

of an electri�ed transportation system,��–�� the electricity grid may reach generation and distri-��

bution limits at certain times, potentially leading to transformer blowouts, electricity shortages,��

or reliance on expensive peaking plants to maintain supply��,��,��. This might occur if, for exam-��

ple, peak charging coincides with peak residential electricity demand in the early evening during��

higher-demand summer months.����

Decarbonizing the electricity sector by using intermittent sources such as solar or wind en-��

ergy poses another set of risks. In the case of solar energy, an over-supply of electricity during��

midday and then decline in the evening hours can result in curtailed solar electricity, lower uti-��

lization of other power plants, and an ine�cient ramp up of fossil-fuel powered plants to meet��

the early evening peak,�� often called the “duck curve.”�� If BEVs increase the evening peak de-��

mand, these e�ects may be ampli�ed,��,�� requiring additional underutilized generation capacity��

to meet peak loads.�� This phenomenon can increase the costs of electricity, lower the value of��
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additional PV installations, and increase emissions due to ine�ciencies in plant operation and��

delayed retirement of fossil fuel powered plants.�� At the same time, any increase in electricity��

prices would raise the life-cycle costs of BEVs compared to conventional vehicles,� potentially��

providing a new barrier to further electri�cation of the transport sector. The installation of grid��

connected energy storage has been proposed as a solution, but high costs for existing technolo-��

gies remain an impediment to widespread installation.��,����

Here we investigate these risks and strategies for minimizing them that are easily-accessible��

and implementable without new technology or behavioral changes. We focus in particular on the��

excess peak demand from BEVs and the mid-day over-supply of PV, and we build on previous re-��

search identifying coordinated BEV charging as a potential tool for mitigating the duck curve and��

the need for other storage��–��, ��–��. A number of studies have examined various strategies to��

balance charging demand with renewable generation,��,��–�� yet it is unclear how di�erent strate-��

gies compare in terms of balancing electricity demand with supply considering the uncertainties��

in BEV adoption and performance and the variations in travel demand, electricity demand from��

non-charging related activities, and renewable resource availability over time and across loca-��

tions. Accounting for these uncertainties and variations, two e�ective strategies emerge from��

this analysis—last-minute overnight charging, and shifting charging demand from the home to��

the work place—with the former greatly mitigating peak load and the latter addressing both peak��

load and midday solar overgeneration.��

This analysis is novel in twoways. First, it focuses on easily-accessible, ‘low-tech’ solutions to��

the problem of electric-vehicle-caused excess peak electricity demand, and the potential for using��

electric vehicles for storing solar energy. These solutions do not require the connected charging��

devices and real-time communication with centralized control considered in other analyses��,����

nor do they require upgrades to the power system to allow electric vehicle discharging,�,�� which��

have yet to be tested and regulated.��,�� The solutions also do not require changes to travel activity��

patterns, thereby removing a signi�cant potential impediment to their adoption.�� Thus these��

solutions are more predictably implementable than those relying on technological transitions��

�



to networked vehicles allowing for optimized charging, or signi�cant changes to drivers’ travel��

behaviors. Given the urgency of climate change, it is important to consider solutions that can be��

implemented now, alongside working on more advanced options that may become accessible in��

the future.��

Second, we probe the relationship between three key variables—local travel and energy use��

patterns, the level of electric vehicle adoption, and the amount of installed photovoltaic capacity—��

to understand how they impact the potential for bene�cial electric vehicle charging. Considering��

only one or two of these factors, as is the case in the current literature, leaves out consequential��

interactions between the transportation system and the electric power system.��

Several features of our methodology supported this new approach. While other studies have��

probed time-shifting charging��,�� ��, they have not considered how charging decisions �t within��

individual travel patterns. Our approach also adds to existing approaches by accounting for the��

variation in fuel economy due to detailed vehicle travel patterns and weather, and thereby adding��

to the model �delity. Finally, because we do not aim to identify a single, optimal result for a��

transportation system simulation for a particular place and time,��,�� under a set of assumptions��

about the future, and rather we probe the e�ects of three key variables across several di�erent��

locations, the conclusions provide insight on the determinants of bene�cial charging that is more��

generally applicable, across locations and over time.��

This work is not intended to predict how things will change in the future, but instead focuses��

on outlining e�ective solutions that could be pursued. Whether or not these changes will happen��

will of course depend on a variety of other factors such as policy design and the preferences of��

drivers,�� to be investigated in future research, alongside timelines and strategies for introducing��

more ‘high-tech’, networked solutions.��

The paper’s structure is aligned with each of the following steps in our analysis. We use��

the TripEnergy model�� to estimate the energy requirements of a �eet of BEVs serving personal��

travel needs in Dallas and New York. We then use an optimization model of individual charg-��

ing decisions to estimate the time-resolved electricity demand of these vehicles under di�erent��
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charging scenarios. Finally, we combine these charging pro�les with historical electricity use and��

simulated PV generation to study the impacts of di�erent technology and behavioral scenarios on��

the electricity grid. TripEnergy builds a detailed picture of personal vehicle energy needs in dif-��

ferent cities, capturing the impacts of di�ering travel patterns, weather, and tra�c conditions on���

vehicle energy use.�,��–�� We combine this personal vehicle energy model with historical weather���

records�� and historical electricity demand��,��, estimating both average behavior and the rare,���

more extreme days that determine yearly capacity constraints.���

Results���

Magnitude of BEV-induced peak load and midday PV overgeneration���

We begin by examining the consequences of BEV and PV transitions in isolation, using the Nissan���

Leaf, with a �� kWh battery, as a representative lower-cost BEV.� We choose this vehicle because���

it costs less than the average car purchased in the US��, and therefore could be a�ordable to a���

signi�cant fraction of households purchasing new vehicles. We also examine BEVs with a larger���

battery capacity of ��� kWh in section � of the Supplementary Information (SI). The TripEnergy���

model��,��, described in more detail in the Methods section below and section � of the SI, predicts���

that this vehicle can meet the range needs of ��% and ��% of vehicles in Dallas and New York���

respectively on a given weekday with once-daily charging and ��% and ��% respectively when���

Level � work place charging is also available. These days whose energy demand can be met with���

once-daily charging account for ��% and ��% of total personal vehicle energy consumption in���

Dallas and New York respectively. In our analysis, we only consider levels of BEV adoption as���

high as the portion of vehicle-days (days when a vehicle is used) that can be met with the given���

level of infrastructure availability. For example, with only home charger availability, ��% BEV���

adoption means that all vehicles that can meet their charging requirements are indeed replaced���

with BEVs.���
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By combining predicted hourly BEV charging demand and PV generation with historical elec-���

tricity demand from April ���� to April ����, we estimate net electricity demand at each hour���

of the day, for each weekday of the year. For an illustrative example of excess charging demand,���

we assume that BEVs account for ��% of all vehicles driven and have access to �.� kW Level ����

charging at home, and for an example of excess PV supply we let PV generation account for ��%���

of total electricity demand. Under these two scenarios, we measure grid impacts in terms of peak���

area and valley area, compared to a base case of no substantial BEV charging or PV generation.���

Peak area is de�ned as the total amount by which electricity demand exceeds the observed yearly���

peak demand. If PV is installed as well, peak area is measured against the peak in net demand���

because, absent BEVs, adding PV capacity could allow for retirement of existing fossil fuel plants���

or avoidance of the need to construct new plants to meet increased demand. Therefore, peak area���

measures the extent to which BEVs change total generation requirements from peaking plants.���

Valley area is de�ned as the total amount by which net electricity load drops below a two week���

rolling minimum hourly demand, measuring the amount of either PV or baseload generation that���

must be attenuated. To allow comparison across cities, peak area is normalized by yearly week-���

day non-BEV electricity demand, and valley area is normalized by yearly weekday PV generation���

(both quantities are de�ned quantitatively in the SI).���

Both of these quantities are shown in Figure � for a summerweek and over a year. We �nd that���

loads close to the yearly peak are only reached on extreme days, clustered in the summer months.���

On these extreme days, BEV charging causes the highest observed hourly demand to increase by���

approximately �–��% in both cities, an e�ect that is worsened because peak charging loads tend���

to coincide with peak existing loads in the early evening. We �nd that midday overgeneration,���

on the other hand, takes place throughout the year and tends to be most extreme in Spring and���

Fall months, when up to ��% of PV generation of some days competes with baseload generation.���

In both cities, but especially in Dallas, PV generation outpaces existing demand around noon but���

fails to entirely address high loads in the early evening as the sun begins to set. The remainder of���

this paper examines the degree to which BEV charging loads can be plausibly shifted to address���

�



this mismatch between supply and demand.���
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Figure �: Hourly electricity load during a summer week in Dallas (top row) and New York (second
row) in the case of ��% BEV adoption without additional PV (left column) and PV accounting
for ��% of total electricity generation but no BEVs (right column). Shaded regions in the �rst
two columns show peak area (left), measuring the extent to which BEV increases peak loads, and
valley area (right), showing the extent towhich PV installation displaces baseload generation. The
bottom two rows show daily measurements for peak area (left) and valley area (right), unitless
quantities representing the portion of electricity supply that is generated when total net demand
is above or below peak and baseload demand levels, respectively, with values colored by daily
high temperature. These yearly plots show that days meeting peak load constraints occur during
the hottest days of the Summer but that midday overgeneration is spread throughout the year,
especially temperate Spring and Fall days.
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Impact of di�erent charging patterns on BEV electricity load���

Next, we examine how e�ectively changes in charger availability and charging preferences can���

shift BEV electricity loads away from high-demand times and to times when PV is generating.���

Along with the base case of only Level � charging with a charging power of �.� kW available���

at home, we examine a set of scenarios where vehicles have access to Level � charging at �.����

kW when parked at work. When charging is available at both locations, we consider scenarios���

when charging at home either begins immediately when the vehicle is parked (the default case,���

which produces charging pro�les similar to those observed from early BEV adopters��,��) or is���

delayed so that it �nishes one hour before the �rst trip of the day (the “Home (Delayed)” case.���

The presence of this one hour bu�er does not signi�cantly a�ect the results). We also consider���

two types of charging location preference: where drivers charge as much as possible at any stop���

where a charger is available (the default case), and where drivers maximize the amount of their���

charging that takes place at the work place (the “Work (Preferred)” case, which is consistent with���

cases where workplace charging is free and unconstrained��). This leads to �ve total charging���

patterns for which hourly electricity demand is calculated over the course of a year. We examine���

more scenarios of charging availability and charging power in the SI. A schematic of individual���

vehicle charging patterns, including mean per-vehicle charging loads averaged over all vehicles���

across the entire year and aggregate loads on the single day with the highest observed total load,���

is shown in Figure �.���

Access to work place charging increases the number of daily vehicle travel patterns that could���

be met by a BEV. Under the home charging scenario, the always-feasible vehicle-days account for���

��% and ��% of weekday vehicle-days and ��% and ��% of personal vehicle energy consumption���

in Dallas and New York, respectively. Under the Home and Work charging scenario, the por-���

tion of vehicle-days covered is ��% for Dallas and ��% for New York, and the portion of energy���

use accounted for is ��% and ��% respectively. This measure of the value added by work place���

charging access is sensitive to di�erences in weather and travel behavior between cities. Access���

to work place charging also causes the peak in charging demand in the early evening to become���
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less severe in both cities, as staggered at-home arrival times and smaller charging requirements���

mean that fewer vehicles will be charging at once at any given time in the evening.���

Given access to work place charging, changes in driver preferences of charge timing and���

location can shift charging loads in time across the day. Delaying home charging without a���

preference for charging location (the Home (Delayed)+ Work scenario) shifts the majority of���

all charging to lower-demand times between midnight and � AM, reducing charging demand in���

the early evening to near zero. Alternatively, introducing a preference for work place charging���

over home charging (the Home + Work (Preferred) scenario) creates a smoother demand pro�le���

over the course of the work day while decreasing the height of the evening peak versus the���

Home + Work scenario. Finally, modeling a preference for work place charging along with last-���

minute charging at home shifts peak charging demand to approximately �AMwhile also reducing���

charging demand in the early evening. In general, we �nd that overnight home charging is most���

e�ective at reducing peak early evening loads but that a preference for work place charging better���

aligns BEV charging demand with solar resource availability.���
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Figure �: BEV charging patterns under di�erent scenarios. Top two rows: Charge timing and
location for ��� individual vehicles randomly selected from the surveyed travel behavior in New
York (top row) and Dallas (second row), under di�erent charging scenarios. Within a sub-�gure,
each row represents a di�erent vehicle, and each column represents a consecutive time interval.
Black represents Level � home charging, and blue represents Level � work place charging, and
white represents no charging. Individual vehicles are assigned to consistent rows horizontally
across sub-�gures. Third row: Average per-vehicle hourly grid energy consumption for electric
vehicles in di�erent locations. Bottom row: Hourly charging demand pro�les added to hourly
electricity loads for the day with the highest observed hourly electricity load in the two regions
studied, assuming ��% BEV adoption. Note the di�erent axes for New York (L) and Dallas (R). In
the column titles, (D) represents delayed home charging, and (P) represents preferred work place
charging).
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Potential to align BEV charging with solar resource availability���

Interactions between BEV charging and PV generation depend on both average hourly demand���

and supply pro�les and on the relative rate of adoption of the two technologies. Even if BEV���

charging aligns closely in time with PV generation, too high a relative BEV charging load would���

mean that PV could not fully meet additional electricity demand from BEVs. High relative levels���

of PV installation would mean that BEVs would not be able to substantially mitigate midday elec-���

tricity oversupply. To quantify this overlap between BEV demand and PV supply, we measure���

three quantities as a function of the installed PV capacity per battery electric vehicle. As a mea-���

sure of the extent to which BEV charging can successfully divert PV electricity from the electric���

grid, we estimate the portion of work place PV generation that could directly power charging���

BEVs. As a measure of the degree to which the addition of PV capacity can meet increased elec-���

tricity demand from BEVs, we estimate the percentage of BEV weekday energy use that could be���

supplied directly by PV. We also measure the relative overlap between the two pro�les, taking���

the total amount of energy that could be fed directly from PV to BEVs (the minimum of the two���

pro�les at each hour) and dividing it by the sum of total BEV energy requirements and PV energy���

generation. This quanti�es the inherent tradeo� between the oppositional goals of maximizing���

diversion of PV and minimizing BEV charging load on non-PV sources. These quantities are���

shown in Figure �.���

Currently, the transition to PV outpaces the transition to BEVs in terms of electricity supply���

and demand interactions. The U.S. installed approximately �� GW of PV capacity in ������ and���

U.S. consumers bought approximately ���,��� plug in electric vehicles.�� This ratio of approxi-���

mately �� kW PV capacity per EV falls towards the right extreme of the horizontal axes in Figure���

�, suggesting that at current rates of deployment increases in PV generation dominate increases���

in BEV charging demand. At this extreme, new BEVs are only able to capture a small amount���

of electricity generated by new PV installations, but new PV is capable of covering a substantial���

portion of new BEV charging demand. The extent to which BEV demand can be supplied by new���

PV depends on BEV charging patterns. If BEV drivers prefer to charge at work, approximately���
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��% of increased electricity demand from charging will be o�set by decreases in net demand due���

to PV generation. If drivers follow convenience home charging, however, this value is reduced���

to under ��%.���

In some climate change mitigation scenarios, BEV adoption eventually catches up with PV���

installation, potentially leading to situations where BEV charging demand is substantial enough���

to o�set PV generation. In a recent paper, for example, Wei et al. present a set of scenarios for���

decarbonization of the western United States where installed PV capacity ranges from approxi-���

mately �� GW to ��� GW, and where the EV �eet size ranges from approximately ��million to �����

million.�� This range of ratios of PV capacity to EV �eet size includes the values of �.� kW and �.����

kW installed PV capacity per EV that optimizes the tradeo� in Dallas and New York respectively���

as shown in the right panel of Figure �. Values of per-vehicle PV capacity around �.� kW and �.����

kW and preferred work place charging yield a PV utilization rate of between ��% and ��% while���

still allowing for about half of BEV energy to be supplied by solar panels. These results suggest���

that increasing the amount of BEV charging that is done at work increases overall value in this���

tradeo�, allowing BEV demand and PV supply to better overlap at any ratio of relative adoption���

but especially in situations with higher relative rates of BEV adoption seen in aggressive climate���

mitigation scenarios.���

Sensitivity of charging load to BEV adoption level���

Because any transition to BEVswill be a processwith a still unknown extent and pace, we examine���

the generation capacity impacts of BEV charging at a range of levels of BEV adoption, with and���

without additional PV installation. This analysis quanti�es the level of BEV adoption at which���

BEV charging demand will lead to signi�cant shifts in aggregate electricity demand patterns, and���

it shows how the risks associated with fast BEV adoption, as well as the favorability of di�erent���

mitigation strategies, change when installation of PV changes electricity generation patterns.���

We �rst look at the case of di�erent levels of BEV adoption given existing electricity supply,���

shown by the top row in Figure �. In the base case of home Level � charging, we �nd in both���
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cities that the generation capacity impacts of BEV charging grow super-linearly with adoption���

rate, requiring new or seldom-used generators to supply energy equivalent to over �% of current���

yearlyweekday electricity needs , where the additional generation capacity needed from charging���

from April ���� to April ���� is approximately ��� GWh in New York City and ��� GWh in���

Dallas at high levels of BEV adoption. The addition of Level � work place decreases this e�ect���

approximately by half in Dallas, and a preference for work place charging reduces it roughly in���

half again. A similar impact is observed for New York. We also �nd that when home charging���

is delayed and work charging is available, regardless of whether work charging is preferred, the���

peak areas for both Dallas and New York become nearly negligible even at a high BEV adoption���

level.���

We then look at the impact of the same levels of BEV adoption on net electricity demand���

given an already-substantial level of installed PV capacity. The middle row of Figure � shows���

peak area as a function of BEV adoption with installed PV accounting for ��% of existing yearly���

demand (equivalent to �.� GW installed capacity in New York and �.� GW installed capacity in���

Dallas, which can be compared to the �.�GWof estimated achievable rooftop PV capacity in New���

York City�� or the �.� GW of installed capacity in Texas at the end of ������). Given just home���

charging, we see that adding PV strongly reduces peak area in Dallas but has little e�ect in New���

York. This is the case because peak area is measured against the highest observed net demand���

and PV is more e�ective at reducing peak net demand in New York than it is in Dallas. Therefore���

addition of BEVs charging at home in New York comes with the opportunity cost of forgoing a���

reduction in peak net loads that could otherwise be achieved with PV. Unlike in the no-PV case,���

however, work place charging can reduce peak net loads in New York along with Dallas. Finally,���

in the third column we see that work place charging reduces valley area, especially if drivers���

prefer it. Overall, we �nd that work place charging, by shifting charging loads to the middle of���

the day, is able to both reduce net demand at sunset and increase the capacity of the grid to absorb���

electricity during high-supply midday hours.���
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Figure �: Utilization of weekday photovoltaic (PV) generation as a function of installed capacity
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The center panel shows the portion of BEV energy consumption that can be supplied by PV.
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supply that is generated when total net demand is above or below peak and baseload demand
levels, respectively. From left to right, the columns represent di�erent scenarios: the base case
with only level � charging available at home; level � charging at home and level � charging at
work; and access to level � charging at home and level � charging at work, =with drivers rely-
ing on last-minute charging when at home. In the right two columns, dashed lines indicate a
scenario where drivers prefer work place charging when it is available. Levels of BEV adoption
tested range from zero to the maximum achievable penetration rate given the modeled charging
availability and �xed travel behavior.
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Discussion���

In this researchwe asked how time-shifting BEV charging can be used tomitigate two commonly-���

cited grid integration concerns with BEVs and PV, an increase in the evening peak demand for���

electricity and a surplus of solar energy during midday hours. If left unmitigated, these ef-���

fects stand to signi�cantly raise costs and potentially impede transport electri�cation and pho-���

tovoltaics adoption.��,��,��,�����

Our approach builds on previous work��,��,�� but di�ers from it in several ways. We con-���

strain the solutions to ones that can be pre-programmed, and therefore do not require networked���

devices. These solutions do not require behavioral change on the part of drivers in terms of���

their travel activity patterns. Schedules and locations of vehicles remain unchanged before and���

after implementing the time-shifting of charging, and the behaviors we simulate, such as a pref-���

erence for work place charging or delaying home charging, are likely to be relatively easy to���

achieve through levers such as simple pricing schemes. In order to accurately estimate the en-���

ergy consumption of these activity patterns, we study detailed driving behaviors and the e�ects���

of weather, both of which can signi�cantly a�ect the fuel economy of vehicles and thus the need���

to charge.��,��,�� Additionally, we compare locations and adoption scenarios for PV and EV, which���

provides insights on solutions that apply across locations and can be tailored to local preferences.���

We �nd that delayed home charging nearly eliminates the increase in the evening peak de-���

mand for electricity. In this case, drivers would pre-program charging to �nish a �xed amount���

of time before they intend to leave in the morning. Variability in charging requirements and���

departure times mean that that this solution would not lead to the sharp ramp rates associated���

with time-of-day-based charging schemes.�� The delayed charging solutions proposed here can���

eliminate the increase in peak electricity demand coming from BEVs, even for BEV penetration���

levels well over ��%. We note that if vehicles within distribution networks do not follow the vari-���

ation in travel activity patterns seen across the larger population, then grid reinforcements may���

be needed.�� However, there is reason to expect that even within smaller geographic areas, there���

is enough heterogeneity in activity patterns such that demand management strategies de�ned���
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here would be e�ective.�� We acknowledge, however, that some distribution grid upgrades may���

still be needed and we point out that those areas can be identi�ed using models such as the one���

presented here.���

Perhaps most signi�cantly, work-place charging emerges as a simple and e�ective solution���

for abating both the peak increase and the over-supply of PV. With substantial degrees of PV and���

BEV adoption, excess peak loads from charging and midday overgeneration of PV are concerns���

in both New York and Dallas. Commencing charging when drivers arrive at work reduces BEV���

contribution to the evening peak by ��% in New York and ��% in Dallas, and BEV contribution���

to the evening peak is practically eliminated when work place charging combined with delayed���

home charging. In both cities, a preference for work place charging can triple the the amount���

of excess PV generation that can be absorbed by BEVs, reducing PV excess generation by up���

to ��% in Dallas and New York. The PV would not need to be located at these work places for���

this solution to work. However, work places would need to provide charging infrastructure and���

manage any local grid impacts and surges in demand.���

We �nd that the work place charging infrastructure installed need not be of the faster and���

more expensive Level � variety. Level � charging would provide little additional bene�t to Level���

� charging in terms of extending the vehicles’ range su�ciently to allow more vehicle-days to���

be electri�ed, and can lead to the negative e�ect of a sharper ramp-up in charging demand at���

the beginning of the work day. In addition, Level � charging at work has the practical bene�t of���

being cheaper to install, potentially allowing work places to install more stations more quickly,���

so that drivers need not move their vehicles to allow others to charge. Further, widespread and���

a�ordable at-work charging infrastructure maymake BEV ownership amore attractive option for���

commuters without access to dedicated charging infrastructure at home,�� allowing for greater���

BEV adoption through once-daily charging at work.�����

While the two cities are similar in terms of the e�ectiveness of work place charging and���

delayed home charging, the reasons these strategies work are di�erent, and these di�erences���

shed light on how the strategies might be expanded to other locations. In both locations, peak-���
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capacity requirements are de�ned by a small number of days with an extreme in demand for���

electricity. We �nd that New York drivers use less energy per vehicle-day than Dallas drivers���

and fewer New York commuters drive to work. But per-capita electricity peak use in the New���

York area, which tracks closely with weather extremes, is less than it is for Dallas. These e�ects���

partially cancel, leading to some of the observed similarity between New York and Dallas in terms���

of the peak electricity impacts of BEVs (as a percentage of the baseline peak electricity demand���

without BEVs). This begins to suggest that in cities with high drivingmode share, long commutes,���

and relatively low per capita electricity use, BEVs could lead to peak-capacity problems at lower���

adoption rates than suggested in this paper. In other words, cities with high energy consumption���

in personal vehicles but lower weather extremes may, somewhat counterintuitively, experience���

the greatest percent increase in peak electricity demand from BEVs.���

The general conclusions drawn here using the two US cities may apply more broadly to other���

locations and can be robust to future uncertainties in BEV battery capacity. This is because the���

conclusions stem from the diurnal cycle that determines human travel and electricity consump-���

tion behavior.���

These results should be taken as an estimate of a technicalmitigation potential of time-shifting���

BEV charging to mitigate peak loads and align with PV electricity generation. We do not consider���

the willingness of drivers to adopt these charging strategies, or of policymakers and employers to���

incentivize and develop the charging infrastructure that would be needed. Additional behavioral���

research could improve our understanding of the willingness of drivers to modify their charging���

routines in response to incentives or outreach programs.���

We also do not consider the e�ect of the vehicle-days in this dataset that cannot be electri�ed���

by the BEVmodel considered, since their energy demand exceeds the battery capacity and charg-���

ing opportunities modeled (in the Results and SI). These higher energy days can have impacts in���

a variety of ways, including the willingness of consumers to purchase BEVs under current models���

of vehicle ownership, and therefore the adoption potential that is achievable. Households with���

more than one car or access to other supplementary vehicles may face lower barriers initially.���
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There are several core implications of these results for policy-makers, technology developers,���

and various investors. The �rst relates to the striking e�ectiveness of work place charging for���

mitigating peak electricity demand and the over-supply of photovoltaics electricity. The instal-���

lation of work place charging may be attractive to employers and policy makers, including local���

governments. Last-minute overnight charging, which delays home charging from when drivers���

arrive at home to as late as possible so that charging �nishes one hour before the �rst trip of the���

next day, is e�ective at abating increases in peak electricity demand from BEVs and requires the���

least new infrastructure. Although it does need buy-in from drivers who might otherwise be-���

gin charging immediately. Neither of these proposed interventions requires advanced, optimized���

charging strategies nor networked devices with their own energetic costs and questions about���

robustness. These strategies also do not require V�G capabilities or fast chargers. More advanced���

strategies and hardware may ultimately be preferred, but these results point to the potential���

advantages of lower-tech, as-simple-as-possible approaches. These strategies may require only���

small design and regulatory changes, which may make them more likely to be adopted, which���

could be e�ective even if introduced piecemeal at a local level and without coordination.� Our���

results give a set of strategies that can be mixed and matched to di�erent technology penetration���

scenarios in di�erent locations.���

The results contribute to ongoing policy discussions on interactions across transportation���

and electric power sectors to achieve deep decarbonization.��–�� The results also highlight the���

importance of coordinating decarbonization of electricity and transportation policies to encour-���

age compatible growth rates in electric vehicles and photovoltaics. A similar role for BEVs might���

be possible in the case of wind energy as well, though this requires further study. In many re-���

gions, this would require an increase in the growth rate of BEV adoption, if BEVs are to serve as���

storage technologies to absorb excess midday solar energy through workplace charging, while���

supporting a low-carbon transition in both end-use sectors. Many transportation decarbonization���

policies lag behind those for electricity sectors, for example among U.S. states, and this research���

highlights the urgency of planning across energy services to ensure that synergies are captured.���
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Methods���

Overview: In this analysis, BEV charging pro�les are constructed for individual vehicles for���

each day of the year. For each vehicle, trip energy requirements are estimated on a given day���

given the local temperature at the time of each trip and trip distance and duration. Charging���

patterns are then estimated for that vehicle based on trip energy requirements, charger availabil-���

ity, and charging preferences. The charging pro�les for all vehicles whose travel patterns can be���

electri�ed are aggregated, and this aggregate charging load is scaled to estimate a day’s charging���

pro�le for a given level of BEV adoption. This process was repeated for every weekday of the���

year to estimate yearly pro�les.���

Data: Travel patterns are taken from the ���� National Household Travel Survey.�� Personal���

vehicle trips are isolated from two areas, the Dallas Core Based Statistical Area (CBSA) and the���

New York CBSA, where in the later area trips were only considered if their household was located���

in New York State. Weather conditions, which in�uence vehicle energy consumption due to heat-���

ing and cooling, were taken from hourly historical observations in the National Solar Radiation���

Data Base.�� High resolution drive cycle data is taken from a set of GPS travel surveys.��–�� Sim-���

ulated hourly photovoltaic generation were estimated using historical weather data for the same���

set of dates as the historical electricity demand. Solar irradiation was also taken from the National���

Solar Radiation Data Bases and potential PV generation was estimated from solar irradiation us-���

ing the method of Sengupta et al.,��,�� with the cell’s nameplate generation capacity varied as a���

model input. Historical electricity demand, in these two locations and for the same time periods���

as the weather data, is taken from ISO databases. The Dallas study area roughly aligns with the���

ERCOT North Central electric grid division.�� For New York, the study area roughly aligns with���

the New York City, Long Island, Dunwoodie, and Millwood grid regions reported by NYISO.�����

Energy model: For energy calculations, the test vehicle used was the ���� Nissan Leaf, a rel-���

atively a�ordable and widely adopted BEV, equipped with a �� kWh battery (consistent with the���
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���� model year). Each trip’s energy consumption was estimated for the Leaf using the TripEn-���

ergy model�� by matching that trip with a set of one second resolution real-world speed pro�les���

that were taken under similar conditions and feedingmatched speed pro�les into an energymodel���

that considers ambient temperature, capturing variability in energy use due to trip pro�le and���

weather conditions.���

Charging model: Charging patterns were modeled using a linear programming approach,���

where charging decisions are constrained by charger availability, trip energy requirements, bat-���

tery capacity, and a requirement that battery state of charge is the same at the day’s start and end���

(more details are given in the SI). For di�erent charging behavior scenarios, a �exible objective���

function is tuned to model preference for charging at certain locations or times, or for immediate���

or delayed charging.���

Data availability���

Travel data used for this model comes from the ���� National Household Travel Survey.�� His-���

torical weather and solar irratiation data come from the National Solar Radiation Data Base.�����

Electricity load data are taken from New York Independent System Operator�� and the Electric���

Reliability Council of Texas.�����

Code availability���

Full details of the charging algorithm are given in the Supplementary Appendix. Details on the���

TripEnergy model are given in previous papers��,�� and in US patent number US�����������A�.���
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