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Strategies for beneficial electric vehicle charging

to reduce peak electricity demand and store solar

energy

Zachary A. Needell,"* Wei Wei," and Jessika E. Trancik®"

TInstitute for Data, Systems, and Society, Massachusetts Institute of Technology

tDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology

E-mail: trancik@mit.edu

Abstract

The adoption of battery electric vehicles (BEVs) and photovoltaic electricity generation
increases in many climate change mitigation scenarios. Yet the large-scale deployment of
these technologies , if left uncoordinated, can increase the costs of electricity through posing
risks of increasing peak electricity demand during the evening and causing over-generation
of electricity during midday. Here we examine these risks and how they interact to amplify
or mitigate each other by modeling hourly electricity demand with high penetration of BEVs
and photovoltaic over one year in two cities in the United States: New York, NY and Dal-
las, TX. We then investigate strategies for reducing these risks, measuring effectiveness with
varying local travel and energy use patterns, electric vehicle adoption levels, and installed
photovoltaic capacities. We focus on strategies that are easy to implement, in that they do not
require travel behavior change nor new technology such as vehicle-to-grid capabilities and
coordination between chargers and other networked infrastructure. In both locations consid-
ered, New York, NY and Dallas, TX, we find that easily-accessible strategies for time-shifting

of charging can be very effective. Delayed home charging nearly eliminates the increases in
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peak demand from electric vehicles. Workplace charging can achieve a similar effect on peak
demand reduction while also reducing the amount of curtailed photovoltaic electricity by half.
Our analysis suggests that these two approaches could be mixed and matched to suit local
conditions and decarbonization plans. Importantly, capturing these benefits would require
an acceleration of electric vehicle adoption relative to current rates, through transportation

policies that are timed to match those already set for electricity in many locations.

Introduction

Meeting climate change mitigation goals will require transitioning to less carbon intensive tech-
nologies for both personal vehicle travel and electricity generation, as well as in other end-use
sectors.™” One approach is to concurrently electrify transportation3™ and decarbonize electric-
ity.¢"1! In this scenario, the transport and electricity sectors would become more closely linked,
with technological transitions in one affecting the sustainability, cost effectiveness, and stability
of the other.'»3

There are several risks associated with this transition. Depending on the charging patterns
of an electrified transportation system, '4”'7 the electricity grid may reach generation and distri-
bution limits at certain times, potentially leading to transformer blowouts, electricity shortages,
or reliance on expensive peaking plants to maintain supply '>!7*%. This might occur if, for exam-
ple, peak charging coincides with peak residential electricity demand in the early evening during
higher-demand summer months.*?

Decarbonizing the electricity sector by using intermittent sources such as solar or wind en-
ergy poses another set of risks. In the case of solar energy, an over-supply of electricity during
midday and then decline in the evening hours can result in curtailed solar electricity, lower uti-
lization of other power plants, and an inefficient ramp up of fossil-fuel powered plants to meet
the early evening peak,?° often called the “duck curve”?! If BEVs increase the evening peak de-
mand, these effects may be amplified,**?3 requiring additional underutilized generation capacity

to meet peak loads.?* This phenomenon can increase the costs of electricity, lower the value of



43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

62

63

64

65

66

67

68

69

additional PV installations, and increase emissions due to inefficiencies in plant operation and
delayed retirement of fossil fuel powered plants.?> At the same time, any increase in electricity
prices would raise the life-cycle costs of BEVs compared to conventional vehicles," potentially
providing a new barrier to further electrification of the transport sector. The installation of grid
connected energy storage has been proposed as a solution, but high costs for existing technolo-
gies remain an impediment to widespread installation.?*26

Here we investigate these risks and strategies for minimizing them that are easily-accessible
and implementable without new technology or behavioral changes. We focus in particular on the
excess peak demand from BEVs and the mid-day over-supply of PV, and we build on previous re-
search identifying coordinated BEV charging as a potential tool for mitigating the duck curve and
the need for other storage?7733, 34736, A number of studies have examined various strategies to
balance charging demand with renewable generation,3%32735 yet it is unclear how different strate-
gies compare in terms of balancing electricity demand with supply considering the uncertainties
in BEV adoption and performance and the variations in travel demand, electricity demand from
non-charging related activities, and renewable resource availability over time and across loca-
tions. Accounting for these uncertainties and variations, two effective strategies emerge from
this analysis—last-minute overnight charging, and shifting charging demand from the home to
the work place—with the former greatly mitigating peak load and the latter addressing both peak
load and midday solar overgeneration.

This analysis is novel in two ways. First, it focuses on easily-accessible, ‘low-tech’ solutions to
the problem of electric-vehicle-caused excess peak electricity demand, and the potential for using
electric vehicles for storing solar energy. These solutions do not require the connected charging
devices and real-time communication with centralized control considered in other analyses3*37
nor do they require upgrades to the power system to allow electric vehicle discharging,53® which
have yet to be tested and regulated. >*3° The solutions also do not require changes to travel activity
patterns, thereby removing a significant potential impediment to their adoption.3? Thus these

solutions are more predictably implementable than those relying on technological transitions
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to networked vehicles allowing for optimized charging, or significant changes to drivers’ travel
behaviors. Given the urgency of climate change, it is important to consider solutions that can be
implemented now, alongside working on more advanced options that may become accessible in
the future.

Second, we probe the relationship between three key variables—local travel and energy use
patterns, the level of electric vehicle adoption, and the amount of installed photovoltaic capacity—
to understand how they impact the potential for beneficial electric vehicle charging. Considering
only one or two of these factors, as is the case in the current literature, leaves out consequential
interactions between the transportation system and the electric power system.

Several features of our methodology supported this new approach. While other studies have
probed time-shifting charging4>4! 4?, they have not considered how charging decisions fit within
individual travel patterns. Our approach also adds to existing approaches by accounting for the
variation in fuel economy due to detailed vehicle travel patterns and weather, and thereby adding
to the model fidelity. Finally, because we do not aim to identify a single, optimal result for a
transportation system simulation for a particular place and time,4*43 under a set of assumptions
about the future, and rather we probe the effects of three key variables across several different
locations, the conclusions provide insight on the determinants of beneficial charging that is more
generally applicable, across locations and over time.

This work is not intended to predict how things will change in the future, but instead focuses
on outlining effective solutions that could be pursued. Whether or not these changes will happen
will of course depend on a variety of other factors such as policy design and the preferences of
drivers, 44 to be investigated in future research, alongside timelines and strategies for introducing
more ‘high-tech’, networked solutions.

The paper’s structure is aligned with each of the following steps in our analysis. We use
the TripEnergy model4 to estimate the energy requirements of a fleet of BEVs serving personal
travel needs in Dallas and New York. We then use an optimization model of individual charg-

ing decisions to estimate the time-resolved electricity demand of these vehicles under different
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charging scenarios. Finally, we combine these charging profiles with historical electricity use and
simulated PV generation to study the impacts of different technology and behavioral scenarios on
the electricity grid. TripEnergy builds a detailed picture of personal vehicle energy needs in dif-
ferent cities, capturing the impacts of differing travel patterns, weather, and traffic conditions on

8.46-48 We combine this personal vehicle energy model with historical weather

vehicle energy use.
records% and historical electricity demand>®>!, estimating both average behavior and the rare,

more extreme days that determine yearly capacity constraints.

Results

Magnitude of BEV-induced peak load and midday PV overgeneration

We begin by examining the consequences of BEV and PV transitions in isolation, using the Nissan
Leaf, with a 62 kWh battery, as a representative lower-cost BEV.' We choose this vehicle because
it costs less than the average car purchased in the US5%, and therefore could be affordable to a
significant fraction of households purchasing new vehicles. We also examine BEVs with a larger
battery capacity of 100 kWh in section 2 of the Supplementary Information (SI). The TripEnergy
model 4753, described in more detail in the Methods section below and section 1 of the SI, predicts
that this vehicle can meet the range needs of 93% and 91% of vehicles in Dallas and New York
respectively on a given weekday with once-daily charging and 95% and 93% respectively when
Level 1 work place charging is also available. These days whose energy demand can be met with
once-daily charging account for 84% and 82% of total personal vehicle energy consumption in
Dallas and New York respectively. In our analysis, we only consider levels of BEV adoption as
high as the portion of vehicle-days (days when a vehicle is used) that can be met with the given
level of infrastructure availability. For example, with only home charger availability, 93% BEV
adoption means that all vehicles that can meet their charging requirements are indeed replaced

with BEVs.
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By combining predicted hourly BEV charging demand and PV generation with historical elec-
tricity demand from April 2016 to April 2017, we estimate net electricity demand at each hour
of the day, for each weekday of the year. For an illustrative example of excess charging demand,
we assume that BEVs account for 50% of all vehicles driven and have access to 6.6 kW Level 2
charging at home, and for an example of excess PV supply we let PV generation account for 25%
of total electricity demand. Under these two scenarios, we measure grid impacts in terms of peak
area and valley area, compared to a base case of no substantial BEV charging or PV generation.
Peak area is defined as the total amount by which electricity demand exceeds the observed yearly
peak demand. If PV is installed as well, peak area is measured against the peak in net demand
because, absent BEVs, adding PV capacity could allow for retirement of existing fossil fuel plants
or avoidance of the need to construct new plants to meet increased demand. Therefore, peak area
measures the extent to which BEVs change total generation requirements from peaking plants.
Valley area is defined as the total amount by which net electricity load drops below a two week
rolling minimum hourly demand, measuring the amount of either PV or baseload generation that
must be attenuated. To allow comparison across cities, peak area is normalized by yearly week-
day non-BEV electricity demand, and valley area is normalized by yearly weekday PV generation
(both quantities are defined quantitatively in the SI).

Both of these quantities are shown in Figure 1 for a summer week and over a year. We find that
loads close to the yearly peak are only reached on extreme days, clustered in the summer months.
On these extreme days, BEV charging causes the highest observed hourly demand to increase by
approximately 5-10% in both cities, an effect that is worsened because peak charging loads tend
to coincide with peak existing loads in the early evening. We find that midday overgeneration,
on the other hand, takes place throughout the year and tends to be most extreme in Spring and
Fall months, when up to 30% of PV generation of some days competes with baseload generation.
In both cities, but especially in Dallas, PV generation outpaces existing demand around noon but
fails to entirely address high loads in the early evening as the sun begins to set. The remainder of

this paper examines the degree to which BEV charging loads can be plausibly shifted to address



s this mismatch between supply and demand.
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Figure 1: Hourly electricity load during a summer week in Dallas (top row) and New York (second
row) in the case of 50% BEV adoption without additional PV (left column) and PV accounting
for 25% of total electricity generation but no BEVs (right column). Shaded regions in the first
two columns show peak area (left), measuring the extent to which BEV increases peak loads, and
valley area (right), showing the extent to which PV installation displaces baseload generation. The
bottom two rows show daily measurements for peak area (left) and valley area (right), unitless
quantities representing the portion of electricity supply that is generated when total net demand
is above or below peak and baseload demand levels, respectively, with values colored by daily
high temperature. These yearly plots show that days meeting peak load constraints occur during
the hottest days of the Summer but that midday overgeneration is spread throughout the year,
especially temperate Spring and Fall days.
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Impact of different charging patterns on BEV electricity load

Next, we examine how effectively changes in charger availability and charging preferences can
shift BEV electricity loads away from high-demand times and to times when PV is generating.
Along with the base case of only Level 2 charging with a charging power of 6.6 kW available
at home, we examine a set of scenarios where vehicles have access to Level 1 charging at 1.8
kW when parked at work. When charging is available at both locations, we consider scenarios
when charging at home either begins immediately when the vehicle is parked (the default case,
which produces charging profiles similar to those observed from early BEV adopters45¢) or is
delayed so that it finishes one hour before the first trip of the day (the “Home (Delayed)” case.
The presence of this one hour buffer does not significantly affect the results). We also consider
two types of charging location preference: where drivers charge as much as possible at any stop
where a charger is available (the default case), and where drivers maximize the amount of their
charging that takes place at the work place (the “Work (Preferred)” case, which is consistent with
cases where workplace charging is free and unconstrained>>). This leads to five total charging
patterns for which hourly electricity demand is calculated over the course of a year. We examine
more scenarios of charging availability and charging power in the SI. A schematic of individual
vehicle charging patterns, including mean per-vehicle charging loads averaged over all vehicles
across the entire year and aggregate loads on the single day with the highest observed total load,
is shown in Figure 2.

Access to work place charging increases the number of daily vehicle travel patterns that could
be met by a BEV. Under the home charging scenario, the always-feasible vehicle-days account for
93% and 91% of weekday vehicle-days and 84% and 82% of personal vehicle energy consumption
in Dallas and New York, respectively. Under the Home and Work charging scenario, the por-
tion of vehicle-days covered is 95% for Dallas and 93% for New York, and the portion of energy
use accounted for is 85% and 84% respectively. This measure of the value added by work place
charging access is sensitive to differences in weather and travel behavior between cities. Access

to work place charging also causes the peak in charging demand in the early evening to become
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less severe in both cities, as staggered at-home arrival times and smaller charging requirements
mean that fewer vehicles will be charging at once at any given time in the evening.

Given access to work place charging, changes in driver preferences of charge timing and
location can shift charging loads in time across the day. Delaying home charging without a
preference for charging location (the Home (Delayed)+ Work scenario) shifts the majority of
all charging to lower-demand times between midnight and 6 AM, reducing charging demand in
the early evening to near zero. Alternatively, introducing a preference for work place charging
over home charging (the Home + Work (Preferred) scenario) creates a smoother demand profile
over the course of the work day while decreasing the height of the evening peak versus the
Home + Work scenario. Finally, modeling a preference for work place charging along with last-
minute charging at home shifts peak charging demand to approximately 8 AM while also reducing
charging demand in the early evening. In general, we find that overnight home charging is most
effective at reducing peak early evening loads but that a preference for work place charging better

aligns BEV charging demand with solar resource availability.
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Figure 2: BEV charging patterns under different scenarios. Top two rows: Charge timing and
location for 100 individual vehicles randomly selected from the surveyed travel behavior in New
York (top row) and Dallas (second row), under different charging scenarios. Within a sub-figure,
each row represents a different vehicle, and each column represents a consecutive time interval.
Black represents Level 2 home charging, and blue represents Level 1 work place charging, and
white represents no charging. Individual vehicles are assigned to consistent rows horizontally
across sub-figures. Third row: Average per-vehicle hourly grid energy consumption for electric
vehicles in different locations. Bottom row: Hourly charging demand profiles added to hourly
electricity loads for the day with the highest observed hourly electricity load in the two regions
studied, assuming 50% BEV adoption. Note the different axes for New York (L) and Dallas (R). In
the column titles, (D) represents delayed home charging, and (P) represents preferred work place

charging).
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Potential to align BEV charging with solar resource availability

Interactions between BEV charging and PV generation depend on both average hourly demand
and supply profiles and on the relative rate of adoption of the two technologies. Even if BEV
charging aligns closely in time with PV generation, too high a relative BEV charging load would
mean that PV could not fully meet additional electricity demand from BEVs. High relative levels
of PV installation would mean that BEVs would not be able to substantially mitigate midday elec-
tricity oversupply. To quantify this overlap between BEV demand and PV supply, we measure
three quantities as a function of the installed PV capacity per battery electric vehicle. As a mea-
sure of the extent to which BEV charging can successfully divert PV electricity from the electric
grid, we estimate the portion of work place PV generation that could directly power charging
BEVs. As a measure of the degree to which the addition of PV capacity can meet increased elec-
tricity demand from BEVs, we estimate the percentage of BEV weekday energy use that could be
supplied directly by PV. We also measure the relative overlap between the two profiles, taking
the total amount of energy that could be fed directly from PV to BEVs (the minimum of the two
profiles at each hour) and dividing it by the sum of total BEV energy requirements and PV energy
generation. This quantifies the inherent tradeoff between the oppositional goals of maximizing
diversion of PV and minimizing BEV charging load on non-PV sources. These quantities are
shown in Figure 3.

Currently, the transition to PV outpaces the transition to BEVs in terms of electricity supply
and demand interactions. The U.S. installed approximately 11 GW of PV capacity in 20175 and
U.S. consumers bought approximately 200,000 plug in electric vehicles.57 This ratio of approxi-
mately 55 kW PV capacity per EV falls towards the right extreme of the horizontal axes in Figure
3, suggesting that at current rates of deployment increases in PV generation dominate increases
in BEV charging demand. At this extreme, new BEVs are only able to capture a small amount
of electricity generated by new PV installations, but new PV is capable of covering a substantial
portion of new BEV charging demand. The extent to which BEV demand can be supplied by new

PV depends on BEV charging patterns. If BEV drivers prefer to charge at work, approximately

12
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80% of increased electricity demand from charging will be offset by decreases in net demand due
to PV generation. If drivers follow convenience home charging, however, this value is reduced
to under 60%.

In some climate change mitigation scenarios, BEV adoption eventually catches up with PV
installation, potentially leading to situations where BEV charging demand is substantial enough
to offset PV generation. In a recent paper, for example, Wei et al. present a set of scenarios for
decarbonization of the western United States where installed PV capacity ranges from approxi-
mately 40 GW to 150 GW, and where the EV fleet size ranges from approximately 30 million to 50
million. 5 This range of ratios of PV capacity to EV fleet size includes the values of 1.2 kW and 1.0
kW installed PV capacity per EV that optimizes the tradeoff in Dallas and New York respectively
as shown in the right panel of Figure 3. Values of per-vehicle PV capacity around 1.2 kW and 1.0
kW and preferred work place charging yield a PV utilization rate of between 70% and 80% while
still allowing for about half of BEV energy to be supplied by solar panels. These results suggest
that increasing the amount of BEV charging that is done at work increases overall value in this
tradeoft, allowing BEV demand and PV supply to better overlap at any ratio of relative adoption
but especially in situations with higher relative rates of BEV adoption seen in aggressive climate

mitigation scenarios.

Sensitivity of charging load to BEV adoption level

Because any transition to BEVs will be a process with a still unknown extent and pace, we examine
the generation capacity impacts of BEV charging at a range of levels of BEV adoption, with and
without additional PV installation. This analysis quantifies the level of BEV adoption at which
BEV charging demand will lead to significant shifts in aggregate electricity demand patterns, and
it shows how the risks associated with fast BEV adoption, as well as the favorability of different
mitigation strategies, change when installation of PV changes electricity generation patterns.
We first look at the case of different levels of BEV adoption given existing electricity supply,

shown by the top row in Figure 4. In the base case of home Level 2 charging, we find in both
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cities that the generation capacity impacts of BEV charging grow super-linearly with adoption
rate, requiring new or seldom-used generators to supply energy equivalent to over 1% of current
yearly weekday electricity needs, where the additional generation capacity needed from charging
from April 2016 to April 2017 is approximately 114 GWh in New York City and 760 GWh in
Dallas at high levels of BEV adoption. The addition of Level 1 work place decreases this effect
approximately by half in Dallas, and a preference for work place charging reduces it roughly in
half again. A similar impact is observed for New York. We also find that when home charging
is delayed and work charging is available, regardless of whether work charging is preferred, the
peak areas for both Dallas and New York become nearly negligible even at a high BEV adoption
level.

We then look at the impact of the same levels of BEV adoption on net electricity demand
given an already-substantial level of installed PV capacity. The middle row of Figure 4 shows
peak area as a function of BEV adoption with installed PV accounting for 25% of existing yearly
demand (equivalent to 5.2 GW installed capacity in New York and 5.4 GW installed capacity in
Dallas, which can be compared to the 8.6 GW of estimated achievable rooftop PV capacity in New
York City% or the 1.8 GW of installed capacity in Texas at the end of 2017%°). Given just home
charging, we see that adding PV strongly reduces peak area in Dallas but has little effect in New
York. This is the case because peak area is measured against the highest observed net demand
and PV is more effective at reducing peak net demand in New York than it is in Dallas. Therefore
addition of BEVs charging at home in New York comes with the opportunity cost of forgoing a
reduction in peak net loads that could otherwise be achieved with PV. Unlike in the no-PV case,
however, work place charging can reduce peak net loads in New York along with Dallas. Finally,
in the third column we see that work place charging reduces valley area, especially if drivers
prefer it. Overall, we find that work place charging, by shifting charging loads to the middle of
the day, is able to both reduce net demand at sunset and increase the capacity of the grid to absorb

electricity during high-supply midday hours.
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Portion of PV generation to EVs

Figure 3: Utilization of weekday photovoltaic (PV) generation as a function of installed capacity
per BEV, for vehicles in Dallas (top, red) and New York (bottom, blue), over a full year. The left
panel shows the portion of weekday PV electricity generation that can be offset by BEV charging.
The center panel shows the portion of BEV energy consumption that can be supplied by PV.
The right panel shows the amount of PV generation and BEV demand that overlap and can be
directly offset, divided by the total energy generated by PV and used by BEVs. Different line styles
represent different charging patterns. These results illustrate the tradeoff between maximizing
the portion of PV generation that can be diverted to BEVs and maximizing the portion of new
BEV energy requirements that can be supplied by PV, finding that maximizing the amount of
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Figure 4: Levels of BEV adoption versus metrics of electricity grid impacts, for different charging
patterns. The top row shows peak area in a case with no additional PV, the second and third rows
show peak area and valley area, respectively, in a case with PV accounting for 25% of total elec-
tricity generation. Peak and valley area are both unitless, representing the portion of electricity
supply that is generated when total net demand is above or below peak and baseload demand
levels, respectively. From left to right, the columns represent different scenarios: the base case
with only level 2 charging available at home; level 2 charging at home and level 1 charging at
work; and access to level 2 charging at home and level 1 charging at work, =with drivers rely-
ing on last-minute charging when at home. In the right two columns, dashed lines indicate a
scenario where drivers prefer work place charging when it is available. Levels of BEV adoption
tested range from zero to the maximum achievable penetration rate given the modeled charging
availability and fixed travel behavior.
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Discussion

In this research we asked how time-shifting BEV charging can be used to mitigate two commonly-
cited grid integration concerns with BEVs and PV, an increase in the evening peak demand for
electricity and a surplus of solar energy during midday hours. If left unmitigated, these ef-
fects stand to significantly raise costs and potentially impede transport electrification and pho-
tovoltaics adoption. '*?2>24

Our approach builds on previous work3*374° but differs from it in several ways. We con-
strain the solutions to ones that can be pre-programmed, and therefore do not require networked
devices. These solutions do not require behavioral change on the part of drivers in terms of
their travel activity patterns. Schedules and locations of vehicles remain unchanged before and
after implementing the time-shifting of charging, and the behaviors we simulate, such as a pref-
erence for work place charging or delaying home charging, are likely to be relatively easy to
achieve through levers such as simple pricing schemes. In order to accurately estimate the en-
ergy consumption of these activity patterns, we study detailed driving behaviors and the effects
of weather, both of which can significantly affect the fuel economy of vehicles and thus the need
to charge. 45361 Additionally, we compare locations and adoption scenarios for PV and EV, which
provides insights on solutions that apply across locations and can be tailored to local preferences.

We find that delayed home charging nearly eliminates the increase in the evening peak de-
mand for electricity. In this case, drivers would pre-program charging to finish a fixed amount
of time before they intend to leave in the morning. Variability in charging requirements and
departure times mean that that this solution would not lead to the sharp ramp rates associated
with time-of-day-based charging schemes.® The delayed charging solutions proposed here can
eliminate the increase in peak electricity demand coming from BEVs, even for BEV penetration
levels well over 50%. We note that if vehicles within distribution networks do not follow the vari-
ation in travel activity patterns seen across the larger population, then grid reinforcements may
be needed.*® However, there is reason to expect that even within smaller geographic areas, there

is enough heterogeneity in activity patterns such that demand management strategies defined
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here would be effective.’® We acknowledge, however, that some distribution grid upgrades may
still be needed and we point out that those areas can be identified using models such as the one
presented here.

Perhaps most significantly, work-place charging emerges as a simple and effective solution
for abating both the peak increase and the over-supply of PV. With substantial degrees of PV and
BEV adoption, excess peak loads from charging and midday overgeneration of PV are concerns
in both New York and Dallas. Commencing charging when drivers arrive at work reduces BEV
contribution to the evening peak by 70% in New York and 80% in Dallas, and BEV contribution
to the evening peak is practically eliminated when work place charging combined with delayed
home charging. In both cities, a preference for work place charging can triple the the amount
of excess PV generation that can be absorbed by BEVs, reducing PV excess generation by up
to 30% in Dallas and New York. The PV would not need to be located at these work places for
this solution to work. However, work places would need to provide charging infrastructure and
manage any local grid impacts and surges in demand.

We find that the work place charging infrastructure installed need not be of the faster and
more expensive Level 2 variety. Level 2 charging would provide little additional benefit to Level
1 charging in terms of extending the vehicles’ range sufficiently to allow more vehicle-days to
be electrified, and can lead to the negative effect of a sharper ramp-up in charging demand at
the beginning of the work day. In addition, Level 1 charging at work has the practical benefit of
being cheaper to install, potentially allowing work places to install more stations more quickly,
so that drivers need not move their vehicles to allow others to charge. Further, widespread and
affordable at-work charging infrastructure may make BEV ownership a more attractive option for
commuters without access to dedicated charging infrastructure at home,®? allowing for greater
BEV adoption through once-daily charging at work.47

While the two cities are similar in terms of the effectiveness of work place charging and
delayed home charging, the reasons these strategies work are different, and these differences

shed light on how the strategies might be expanded to other locations. In both locations, peak-
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capacity requirements are defined by a small number of days with an extreme in demand for
electricity. We find that New York drivers use less energy per vehicle-day than Dallas drivers
and fewer New York commuters drive to work. But per-capita electricity peak use in the New
York area, which tracks closely with weather extremes, is less than it is for Dallas. These effects
partially cancel, leading to some of the observed similarity between New York and Dallas in terms
of the peak electricity impacts of BEVs (as a percentage of the baseline peak electricity demand
without BEVs). This begins to suggest that in cities with high driving mode share, long commutes,
and relatively low per capita electricity use, BEVs could lead to peak-capacity problems at lower
adoption rates than suggested in this paper. In other words, cities with high energy consumption
in personal vehicles but lower weather extremes may, somewhat counterintuitively, experience
the greatest percent increase in peak electricity demand from BEVs.

The general conclusions drawn here using the two US cities may apply more broadly to other
locations and can be robust to future uncertainties in BEV battery capacity. This is because the
conclusions stem from the diurnal cycle that determines human travel and electricity consump-
tion behavior.

These results should be taken as an estimate of a technical mitigation potential of time-shifting
BEV charging to mitigate peak loads and align with PV electricity generation. We do not consider
the willingness of drivers to adopt these charging strategies, or of policymakers and employers to
incentivize and develop the charging infrastructure that would be needed. Additional behavioral
research could improve our understanding of the willingness of drivers to modify their charging
routines in response to incentives or outreach programs.

We also do not consider the effect of the vehicle-days in this dataset that cannot be electrified
by the BEV model considered, since their energy demand exceeds the battery capacity and charg-
ing opportunities modeled (in the Results and SI). These higher energy days can have impacts in
a variety of ways, including the willingness of consumers to purchase BEVs under current models
of vehicle ownership, and therefore the adoption potential that is achievable. Households with

more than one car or access to other supplementary vehicles may face lower barriers initially.
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There are several core implications of these results for policy-makers, technology developers,
and various investors. The first relates to the striking effectiveness of work place charging for
mitigating peak electricity demand and the over-supply of photovoltaics electricity. The instal-
lation of work place charging may be attractive to employers and policy makers, including local
governments. Last-minute overnight charging, which delays home charging from when drivers
arrive at home to as late as possible so that charging finishes one hour before the first trip of the
next day, is effective at abating increases in peak electricity demand from BEVs and requires the
least new infrastructure. Although it does need buy-in from drivers who might otherwise be-
gin charging immediately. Neither of these proposed interventions requires advanced, optimized
charging strategies nor networked devices with their own energetic costs and questions about
robustness. These strategies also do not require V2G capabilities or fast chargers. More advanced
strategies and hardware may ultimately be preferred, but these results point to the potential
advantages of lower-tech, as-simple-as-possible approaches. These strategies may require only
small design and regulatory changes, which may make them more likely to be adopted, which
could be effective even if introduced piecemeal at a local level and without coordination.? Our
results give a set of strategies that can be mixed and matched to different technology penetration
scenarios in different locations.

The results contribute to ongoing policy discussions on interactions across transportation
and electric power sectors to achieve deep decarbonization.®3% The results also highlight the
importance of coordinating decarbonization of electricity and transportation policies to encour-
age compatible growth rates in electric vehicles and photovoltaics. A similar role for BEVs might
be possible in the case of wind energy as well, though this requires further study. In many re-
gions, this would require an increase in the growth rate of BEV adoption, if BEVs are to serve as
storage technologies to absorb excess midday solar energy through workplace charging, while
supporting a low-carbon transition in both end-use sectors. Many transportation decarbonization
policies lag behind those for electricity sectors, for example among U.S. states, and this research

highlights the urgency of planning across energy services to ensure that synergies are captured.
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Methods

Overview: In this analysis, BEV charging profiles are constructed for individual vehicles for
each day of the year. For each vehicle, trip energy requirements are estimated on a given day
given the local temperature at the time of each trip and trip distance and duration. Charging
patterns are then estimated for that vehicle based on trip energy requirements, charger availabil-
ity, and charging preferences. The charging profiles for all vehicles whose travel patterns can be
electrified are aggregated, and this aggregate charging load is scaled to estimate a day’s charging
profile for a given level of BEV adoption. This process was repeated for every weekday of the

year to estimate yearly profiles.

Data: Travel patterns are taken from the 2017 National Household Travel Survey.®® Personal
vehicle trips are isolated from two areas, the Dallas Core Based Statistical Area (CBSA) and the
New York CBSA, where in the later area trips were only considered if their household was located
in New York State. Weather conditions, which influence vehicle energy consumption due to heat-
ing and cooling, were taken from hourly historical observations in the National Solar Radiation
Data Base.4? High resolution drive cycle data is taken from a set of GPS travel surveys.®” "% Sim-
ulated hourly photovoltaic generation were estimated using historical weather data for the same
set of dates as the historical electricity demand. Solar irradiation was also taken from the National
Solar Radiation Data Bases and potential PV generation was estimated from solar irradiation us-
ing the method of Sengupta et al.,7>7* with the cell’s nameplate generation capacity varied as a
model input. Historical electricity demand, in these two locations and for the same time periods
as the weather data, is taken from ISO databases. The Dallas study area roughly aligns with the
ERCOT North Central electric grid division.>® For New York, the study area roughly aligns with

the New York City, Long Island, Dunwoodie, and Millwood grid regions reported by NYISO.>*

Energy model: For energy calculations, the test vehicle used was the 2016 Nissan Leaf, a rel-

atively affordable and widely adopted BEV, equipped with a 62 kWh battery (consistent with the
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2019 model year). Each trip’s energy consumption was estimated for the Leaf using the TripEn-
ergy model% by matching that trip with a set of one second resolution real-world speed profiles
that were taken under similar conditions and feeding matched speed profiles into an energy model
that considers ambient temperature, capturing variability in energy use due to trip profile and

weather conditions.

Charging model: Charging patterns were modeled using a linear programming approach,
where charging decisions are constrained by charger availability, trip energy requirements, bat-
tery capacity, and a requirement that battery state of charge is the same at the day’s start and end
(more details are given in the SI). For different charging behavior scenarios, a flexible objective
function is tuned to model preference for charging at certain locations or times, or for immediate

or delayed charging.

Data availability

Travel data used for this model comes from the 2017 National Household Travel Survey.®® His-
torical weather and solar irratiation data come from the National Solar Radiation Data Base.””
Electricity load data are taken from New York Independent System Operator>' and the Electric

Reliability Council of Texas.>°

Code availability

Full details of the charging algorithm are given in the Supplementary Appendix. Details on the

TripEnergy model are given in previous papers47>3 and in US patent number US20180045526A1.

22



421

423

424

425

426

427

428

429

430

431

432

433

434

436

437

438

439

440

1

4

N

442

443

References

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

()

(10)

Miotti, M.; Supran, G. J.; Kim, E. J.; Trancik, J. E. Personal vehicles evaluated against climate

change mitigation targets. Environmental science & technology 2016, 50, 10795-10804.

Trancik, J. E.; Chang, M. T.; Karapataki, C.; Stokes, L. C. Effectiveness of a Segmental Ap-

proach to Climate Policy. Environ Sci Technol 2014, 48, 27-35.

Williams, J. H.; Debenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow III, W. R;;
Price, S.; Torn, M. S. The technology path to deep greenhouse gas emissions cuts by 2050:

the pivotal role of electricity. Science 2012, 335, 53—60.

Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nature

Climate Change 2015, 5, 329—332.

Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity

sectors through V2G. Energy Policy 2008, 36, 3578-3587.

Williams, J. H.; Haley, B.; Kahrl, F.; Moore, ]J.; Jones, A. D.; Torn, M. S.; McJeon, H. Pathways

to Deep Decarbonization in the United States; 2014.

Meinrenken, C. J.; Lackner, K. S. Fleet view of electrified transportation reveals smaller po-

tential to reduce GHG emissions. Applied Energy 2015, 138, 393—403.

Karabasoglu, O.; Michalek, J. Influence of driving patterns on life cycle cost and emissions

of hybrid and plug-in electric vehicle powertrains. Energy Policy 2013, 60, 445—461.

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature

2012, 488, 294—303.

Dowds, J.; Hines, P. D.; Blumsack, S. Estimating the impact of fuel-switching between liquid
fuels and electricity under electricity-sector carbon-pricing schemes. Socio-Economic Plan-

ning Sciences 2013, 47, 76—88.

23



444

445

446

447

448

449

450

451

452

453

454

456

457

458

459

460

461

463

464

465

466

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Sims, R. et al. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working
Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Edenhofer, O. et al. , Eds.; Cambridge University Press: Cambridge, United Kingdom and

New York, NY, USA, 2014; Chapter 8.

Green, R. C.; Wang, L.; Alam, M. The impact of plug-in hybrid electric vehicles on distribu-

tion networks: a review and outlook. Renewable and Sustainable Energy Reviews 2011, 15,

544-553.

Richardson, D. B. Electric vehicles and the electric grid: A review of modeling approaches,

Impacts, and renewable energy integration. Renewable and Sustainable Energy Reviews 2013,

19, 247-254.

Mwasilu, F.; Justo, J. J.; Kim, E.-K,; Do, T. D.; Jung, J.-W. Electric vehicles and smart grid in-
teraction: A review on vehicle to grid and renewable energy sources integration. Renewable

and Sustainable Energy Reviews 2014, 34, 501-516.

Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure
planning: An analysis of electric vehicle charging behaviour. Energy Policy 2016, 89, 257—
270.

Kelly, J. C.; MacDonald, J. S.; Keoleian, G. a. Time-dependent plug-in hybrid electric vehicle
charging based on national driving patterns and demographics. Applied Energy 2012, 94,
3957405.

Hadley, S. W.; Tsvetkova, A. A. Potential impacts of plug-in hybrid electric vehicles on re-

gional power generation. The Electricity Journal 2009, 22, 56—68.

Coignard, J.; MacDougall, P.; Stadtmueller, F.; Vrettos, E. Will Electric Vehicles Drive Distri-

bution Grid Upgrades?: The Case of California. IEEE Electrification Magazine 2019, 7, 46—56.

24



467

468

469

470

471

472

474

475

476

477

478

479

480

483

484

485

486

487

488

489

(19) ElNozahy, M. S.; Salama, M. M. A comprehensive study of the impacts of PHEVs on residen-

tial distribution networks. IEEE Transactions on Sustainable Energy 2014, 5, 332—342.

(20) Denholm, P.; O’Connell, M.; Brinkman, G.; Jorgenson, J. Overgeneration from Solar Energy

in California. A Field Guide to the Duck Chart; 2015.
(21) Lazar, J. Teaching the" duck" to Fly; Regulatory Assistance Project, 2016.

(22) Markel, T.; Meintz, A.; Hardy, K.; Chen, B.; Bohn, T.; Smart, J.; Scoffield, D.; Hovsapian, R;;
Saxena, S.; MacDonald, J., et al. Multi-Lab EV Smart Grid Integration Requirements Study.

Providing Guidance on Technology Development and Demonstration; 2015.

(23) Muratori, M. Impact of uncoordinated plug-in electric vehicle charging on residential power

demand. Nature Energy 2018, 3, 193—201.

(24) Denholm, P.; Margolis, R. Energy storage requirements for achieving 50% solar photovoltaic

energy penetration in California. Golden, CO: National Renewable Energy Laboratory 2016,

(25) Janko, S. A.; Arnold, M. R;; Johnson, N. G. Implications of high-penetration renewables for
ratepayers and utilities in the residential solar photovoltaic (PV) market. Applied Energy

2016, 180, 37-51.

(26) Braff, W. A.; Mueller, J. M.; Trancik, J. E. Value of storage technologies for wind and solar

energy. Nature Climate Change 2016, 6, 964.

(27) Younghein, M.; Martinot, E. Beyond 33% Renewables: Grid Integration Policy for a Low-

Carbon Future. California Public Utilities Commission Staff Whitepaper

(28) Birnie, D. P. Solar-to-vehicle (S2V) systems for powering commuters of the future. Journal

of Power Sources 2009, 186, 539—542.

(29) O’Connor, P.; Jacobs, M. Charging Smart: Drivers and Utilities Can Both Benefit from Well-

Integrated Electric Vehicles and Clean Energy; 2017.

25



490

491

492

493

494

495

496

497

498

499

500

501

503

504

505

506

507

508

509

511

512

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

Nunes, P.; Farias, T.; Brito, M. C. Day charging electric vehicles with excess solar electricity

for a sustainable energy system. Energy 2015, 8o, 263 — 274.

Brinkman, G.; Jorgenson, J.; Ehlen, A.; Caldwell, ]J. H. Low carbon grid study: Analysis of a

50% emission reduction in California; 2016.

Zhang, J.; Jorgenson, J.; Markel, T.; Walkowicz, K. Value to the Grid From Managed Charging
Based on California’s High Renewables Study. IEEE Transactions on Power Systems 2018, 34,

831-840.

Szinai, J. K.; Sheppard, C. J.; Abhyankar, N.; Gopal, A. R. Reduced grid operating costs and
renewable energy curtailment with electric vehicle charge management. Energy Policy 2020,

136, 111051.

Kong, F.; Liu, X. Distributed Deadline and Renewable Aware Electric Vehicle Demand Re-

sponse in the Smart Grid. Proceedings - Real-Time Systems Symposium 2016, 2016-Janua,

23-32.

Sehar, F.; Pipattanasomporn, M.; Rahman, S. Demand management to mitigate impacts of

plug-in electric vehicle fast charge in buildings with renewables. Energy 2017, 120, 642—651.

Mowry, A. M.; Mallapragada, D. S. Grid impacts of highway electric vehicle charging and

role for mitigation via energy storage. Energy Policy 2021, 157.

Mukherjee, J. C.; Gupta, A. A review of charge scheduling of electric vehicles in smart grid.

IEEE Systems Journal 2015, 9, 1541-1553.

Sortomme, E.; El-Sharkawi, M. a. Optimal charging strategies for unidirectional vehicle-to-

grid. IEEE Trans Smart Grid 2011, 2, 119—126.

Kabalci, Y. A survey on smart metering and smart grid communication. Renewable and Sus-

tainable Energy Reviews 2016, 57, 302—318.

26



513

514

515

516

517

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

(40) Coignard, J.; Saxena, S.; Greenblatt, J.; Wang, D. Clean vehicles as an enabler for a clean

electricity grid. Environmental Research Letters 2018, 13, 54031.

(41) Schey, S.; Scoffield, D.; Smart, J. A first look at the impact of electric vehicle charging on the

electric grid in the EV project. World Electric Vehicle Journal 2012, 5, 667-678.

(42) Ding, Z.; Guo, J.; Lai, K.; Lee, W. J. Spatial-Temporal Demand Management and Benefit Al-
location for Geo-Distributed Charging Station and EV Aggregators. IEEE Transactions on

Industry Applications 2020, 56, 6238—6249.

(43) Saber, A.Y.; Venayagamoorthy, G. K. Plug-in vehicles and renewable energy sources for cost

and emission reductions. IEEE Trans Ind Electron 2011, 58, 1229—-1238.

(44) Wolinetz, M.; Axsen, J.; Peters, J.; Crawford, C. Simulating the value of electric-vehicle-grid

integration using a behaviourally realistic model. Nature Energy 2018, 3, 132-139.

(45) McNerney, J.; Needell, Z. A.; Chang, M. T.; Miotti, M.; Trancik, J. E. TripEnergy: Estimating
POV energy consumption given limited travel survey data. Transportation Research Record:

Journal of the Transportation Research Board (In Press) 2017,

(46) Yuksel, T.; Michalek, J. Effects of Regional Temperature on Electric Vehicle Efficiency, Range,

and Emissions in the United States. Environ Sci Technol 2015, 49, 3974—3980.

(47) Needell, Z. A.; McNerney, J.; Chang, M. T.; Trancik, J. E. Potential for widespread electrifi-

cation of personal vehicle travel in the United States. Nature Energy 2016, 1, 16112.

(48) Ericsson, E. Independent driving pattern factors and their influence on fuel-use and exhaust

emission factors. Transportation Research Part D: Transport and Environment 2001, 6, 325-

345.

(49) Wilcox, S. National solar radiation database 1991-2010 update: User’s manual; 2012.

(50) Electric Reliability Council of Texas, Hourly Load Data Archives. http://www.ercot.com/

gridinfo/load/load_hist/.

27



537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

New York Independent System Operator, Load Data. http://www.nyiso.com/public/

markets_operations/market_data/load_data/index. jsp.

Miotti, M.; Supran, G. J.; Trancik, J. E. carboncounter.com | Cars evaluated against climate

targets. 2016; http://carboncounter. com.

McNerney, J.; Needell, Z. A.; Chang, M. T.; Miotti, M.; Trancik, J. E. TripEnergy: Estimating
Personal Vehicle Energy Consumption Given Limited Travel Survey Data. Transportation

Research Record: Journal of the Transportation Research Board 2017, 58—66.

Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Figenbaum, E.; Jakobsson, N.;
Jochem, P.; Kinnear, N., et al. A review of consumer preferences of and interactions with
electric vehicle charging infrastructure. Transportation Research Part D: Transport and Envi-

ronment 2018, 62, 508-523.

Nicholas, M.; Tal, G. Charging for charging at work: increasing the availability of charging

through pricing; 2015.
Feldman, D. J.; Hoskins, J.; Margolis, R. M. Q2/Q3 2017 Solar Industry Update; 2017.

Loveday, S. December 2017 Plug-In Electric Vehicle Sales Report Card. 2017; https://

insideevs.com/december-2017-plugin-electric-vehicle-sales-report-card/.

Wei, M.; Nelson, J. H.; Greenblatt, J. B.; Mileva, A.; Johnston, ]J.; Ting, M.; Yang, C.; Jones, C.;
McMahon, J. E.; Kammen, D. M. Deep carbon reductions in California require electrification

and integration across economic sectors. Environmental Research Letters 2013, 8, 014038.

Gagnon, P.; Margolis, R.; Melius, J.; Phillips, C.; Elmore, R. Rooftop Solar Photovoltaic Techni-

cal Potential in the United States. A Detailed Assessment; 2016.

Solar Energy Industries Association, Solar Spotlight: Texas. {https://www.seia.org/

sites/default/files/2018-01/Federal_2017Q3_Texas.pdf}.

28



561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

582

583

(61) Tamayao, M.-A. M.; Michalek, J. J.; Hendrickson, C.; Azevedo, I. M. Regional Variability and
Uncertainty of Electric Vehicle Life Cycle CO2 Emissions across the United States. Environ

Sci Technol 2015, 49, 8844-8855.

(62) Franke, T.; Krems, J. F. What drives range preferences in electric vehicle users? Transport

Policy 2013, 30, 56—62.

(63) National Academies of Sciences, Engineering, and Medicine, Accelerating Decarbonization

of the U.S. Energy System. 2021.

(64) Brown, A. L.; Sperling, D.; Austin, B.; DeShazo, J.; Fulton, L.; Lipman, T.; Murphy, C;

Saphores, J. D.; Tal, G. Driving California’s Transportation Emissions to Zero. 2021.

(65) Virginia Department of Energy, Modeling Decarbonization: Report Summary and Policy
Brief for Virginia Governor’s Office Administration and Policymakers. 2021; www. governor.

virginia.gov.
(66) US Department of Transportation, zo17 National Household Travel Survey; 2018.

(67) Texas Department of Transportation, 2002 - 2011 Regional Travel Surveys with GPS data for
Abilene, Austin, El Paso, Houston Galveston, Laredo, Rio Grande Valley, San Antonio, Tyler

Longview, and Wichita Falls. 2002-2011.
(68) Atlanta Regional Commission, Regional Travel Survey: Final Report. 2011.

(69) DOE National Renewable Energy Laboratory, California Household Transportation Survey.

2012.

(70) Sengupta, M.; Habte, A.; Kurtz, S.; Dobos, A.; Wilbert, S.; Lorenz, E.; Stoffel, T.; Renné, D.;
Gueymard, C. A.; Myers, D. Best practices handbook for the collection and use of solar resource

data for solar energy applications; 2015.

(71) Reda, L; Andreas, A. Solar position algorithm for solar radiation applications. Solar energy

2004, 76, 577-589.

29



s (72) Maxwell, E. L. METSTAT—The solar radiation model used in the production of the National

585 Solar Radiation Data Base (NSRDB). Solar Energy 1998, 62, 263—279.

30





