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EPIGRAPH

To laugh often and much;

To win the respect of intelligent people and the affection of children;

To earn the appreciation of honest critics and endure the betrayal of false friends;

To appreciate beauty;

To find the best in others;

To leave the world a bit better, whether by a healthy child, a garden patch, or a redeemed social

condition;

To know even one life has breathed easier because you have lived.

This is to have succeeded.

—Ralph Waldo Emerson
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ABSTRACT OF THE DISSERTATION

Prediction in Time Series Models and Model-free Inference with a Specialization in
Financial Return Data

by

Jie Chen

Doctor of Philosophy in Mathematics (with a specialization in Statistics)

University of California San Diego, 2018

Professor Dimitris N. Politis, Chair

The main aim of this dissertation is to study the prediction of financial returns or squared

financial returns. As is known, financial returns data have the distribution with fatter tails than

the normal and often show significant correlation and the phenomenon of volatility clustering.

To capture these features is the most challenging thing in modeling financial returns data. The

most popular nonlinear time series models for financial returns data now are ARCH (Autore-

gressive Conditional Heteroscedasticity) and GARCH (Generalized Autoregressive Conditional

Heteroscedasticity) models. Early this century, a Model-free prediction approach was also derived

to understand this complex type of data. One application of the model-free approach, NoVaS

xiv



(Normalizing and Variance-Stabilizing) transformation has been proved to outperform ARCH and

GARCH models under stationary financial data. In Chapter 1, we extend the realm of application

of NoVaS to non-stationary data and compare the performance with GARCH in the one-step

point prediction and prediction intervals of squared financial returns. In addition, we show the

applicability of NoVaS transformation for estimating realized volatility. A new approach to the

multi-step ahead prediction of squared financial returns is defined and analyzed in Chapter 2.

Our work on linear time series model such as Autoregression are shown in the last two chapters.

Chapter 3 describes in detail the situations that a simplified autoregressive models should be

considered and the theoretical support was also given there for further study. In the last Chapter,

we construct the prediction intervals of regression with model selections in the bootstrap world,

which give better performance than the standard bootstrap methods. All the work here are mainly

focusing on financial returns time series.
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Chapter 1

Time-varying NoVaS vs. GARCH: Point

Prediction, Volatility Estimation and

Prediction Intervals

The NoVaS methodology was introduced by Politis (2003, 2007) for stationary data in

prediction of squared financial returns. In this chapter, we extend the realm of applicability

of NoVaS methodology to non-stationary data(local stationarity and/or structural breaks) for

one-step ahead point prediction of squared returns. In addition, we show the applicability of

NoVaS transformation for estimating realized volatility. Finally, we construct prediction intervals

of squared returns for both stationary and non-stationary data. Our empirical results show that

the NoVaS methodology performs better than the benchmark GARCH(1,1) models for point and

interval prediction as well as in the estimation of realized volatility in situations where (global)

stationarity of financial returns fails. Furthermore, it’s shown that the point prediction based

on NoVaS outperform those based on the benchmark GARCH(1,1) even when the true data

generating model is GARCH(1,1). In change point problems, the NoVaS methodology adapts

fast to the new regime that occurs after the unknown/undetected change point.

1



1.1 Introduction

In empirical financial research work, accurate volatility forecasting is always of great

importance. Auto-Regressive Conditional Heteroscedasticity models (ARCH) and Generalized

Auto-Regressive Conditional Heteroscedasticity models (GARCH) have gained prominence

and are widely used in financial engineering since they were introduced by Engle (1982) and

Bollerslev (1986). The simple GARCH(1,1) model is particularly most popular; see book of

Francq and Zakoian (2011). Nevertheless, ARCH/GARCH models with respect to normal errors

can account only partly for the degree of heavy tails empirically found in the distribution of returns.

Consequently, researchers and practitioners have been resorting to ARCH/GARCH models with

heavy-tailed errors; for example, the t-distribution with degrees of freedom empirically chosen to

match the apparent degree of heavy tails in the residuals; see Shephard (1996) and the references

therein. However, this situation is not satisfactory since the choice of a t-distribution seems quite

arbitrary. Perhaps the real issue is that a simple and neat parametric model such as ARCH/GARCH

could not be expected to perfectly capture the behavior of a complicated real-world phenomenon

such as the evolution of financial returns that—almost by definition of market efficiency—ranks

at the top in terms of difficulty of modeling/prediction. The Model-free prediction principle

was first introduced in Politis (2003) to understand this complex type of data. The normalizing

and variance-stabilizing transformation (NoVaS, for short) is a straightforward application of

the Model-free principle in prediction of squared financial returns. The original development of

the NoVaS approach was made in Politis (2003, 2007) having as its ‘spring board’ the popular

ARCH model with normal innovations. Politis (2007) showed that NoVaS methods outperform

the benchmark GARCH(1,1) model in prediction of squared returns under the assumption of

stationarity.

In addition, the most crucial problem in GARCH models is that the GARCH models are

not robust with respect to violation from the stationarity assumption; see Mikosch and Starica

2



(2004); Polzehl and Spokoiny (2006). Then the theory of time-varying ARCH/GARCH process

was developed for non-stationary time series; see Dahlhaus et al. (2006). The work of Polzehl and

Spokoiny (2006) indicates that time-varying GARCH(1,1) models demonstrates a relatively good

predicting performance as far as the short term forecasting horizon is considered. To deal with

time varying data, we can consider and propose a time-varying version of NoVaS transformation.

Our interest in this chapter is to apply different time-varying NoVaS methods to predicting squared

financial returns in situations where (global) stationarity for returns fails such as the cases of local

stationarity and/or structural breaks and/or model uncertainty.

In this chapter, we focus on studying the predictive power of different NoVaS methods

to non-stationary data in point prediction of squared returns as well as estimation of realized

volatility. In addition, we use NoVaS methodology to construct prediction intervals of squared

returns for both stationary and non-stationary time series. A very comprehensive simulation and

real world data analysis are conducted to study about the relative forecasting performance of time-

varying NoVaS methods compared with that of the benchmark time-varying GARCH(1,1) model.

The evaluation of forecasting performance for both NoVaS transformation and the benchmark

GARCH(1,1) models is addressed via the L1-norm instead of the usual mean squared error(MSE),

since the case was made that financial returns might not have finite 4th moment; see Politis

(2007).

The literature on volatility modeling, predicting and the evaluation of volatility prediction

is huge and also varies in topics. Here, we just selectively list some recent literature related

to the volatility prediction problems: Mikosch and Starica (2004) for change in structure in

volatility time series and GARCH modeling;Peng and Yao (2003) for robust least absolute

deviations estimation of GARCH models; Poon and Granger (2003) for assessing the forecasting

performance of various volatility models; Hansen et al. (2003) on selecting volatility models;

Andersen et al. (2004, 2005) on analytic evaluation of volatility forecasts and the use of realized

volatility in evaluating volatility forecasts; Hansen and Lunde (2006a) for using a semi-parametric,
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transformation-based approach to forming predictive intervals; Ghysels et al. (2006) on the use

and predictive power of absolute returns; Francq et al. (2005), Lux and Morales-Arias (2010) and

Choi et al. (2010) on switching regime GARCH models, structural breaks and long memory in

volatility; Hillebrand (2005) on GARCH models with structural breaks; Hansen and Lunde (2005,

2006b) for comparing forecasts of volatility models against the standard GARCH(1,1) model

and for consistent ranking of volatility models and the use of an appropriate series as the ‘true’

volatility; Ghysels et al. (2006) for predicting volatility by mixing data at different frequencies

and Ghysels and Sohn (2009) for the type of power variation that predicts well volatility in the

context of mixed data frequencies. Andersen et al. (2007) for modeling realized volatility when

jump components are included; Chen et al. (2008) examine volatility forecasting in the context

of threshold models coupled with volatility measurement based on intraday range. The whole

line of work of Andersen, Bollerslev, Diebold and their various co-authors on realized volatility

and volatility forecasting is nicely summarized in their review article “Volatility and Correlation

Forecasting”, in the Handbook of Economic Forecasting, see Andersen et al. (2006). The book of

Francq and Zakoian (2011) provides a comprehensive and systematic approach to understanding

GARCH time series models and their applications whilst presenting the most advanced results

concerning the theory and practical aspects of GARCH. Bandi et al. (2008) discuss the selection of

optimal sampling frequency in realized volatility estimation and forecasting; Patton and Sheppard

(2009) present results on optimal combinations of realized volatility estimators in the context

of volatility forecasting while Patton and Sheppard (2015) discuss the signed jumps and the

persistence of volatility. Priestley (1965, 1988) and Fryzlewicz et al. (2006, 2008) and Dahlhaus

et al. (2006, 2007) all work in the context of local stationarity and a new class of ARCH processes

with slowly varying parameters. Of course this list is by no means complete.

The chapter is organized as follows: Section 2 presents the work on the point prediction of

squared financial returns; Section 3 addresses the comparison of the performance of GARCH(1,1)

and NoVaS transformation for estimation of realized volatility; Section 4 presents the Model-Free
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algorithms for interval prediction of squared returns and illustrate the numerical performance by

means of some simulated examples and applications to real world data; the concluding remarks is

provided in Section 5.

1.2 Point Prediction

In this section we compare the performance of NoVaS transformation and GARCH(1,1)

in one-step ahead point prediction of squared returns under the assumption of non-stationarity.

1.2.1 GARCH(1,1) and NoVaS Transformation for Stationary Data

The Benchmark: GARCH(1,1)

Consider {Yt , t ∈ Z} is a financial time series of returns. For now, we assume that {Yt} is

(strictly) stationary with mean zero, which implies that the trends and other nonstationarities have

been successfully removed.

A typical ARCH(p) model is described by an equation of the type:

Yt = Zt

√
α+

p

∑
i=1

aiY 2
t−i (1.2.1)

where the series {Zt} is assumed to be i.i.d.N(0,1) and p is a positive integer indicating the order

of the model.

Let Fn be a short-hand for the observed information set, i.e., Fn = {Yt ,1≤ t ≤ n}. Note

that under the above ARCH(p) model, the L2 optimal predictor of Y 2
n+1 based on Fn is given by

E(Y 2
n+1|Fn) = α+

p

∑
i=1

aiY 2
n+1−i. (1.2.2)

This conditional expectation E(Y 2
n+1|Fn) is commonly referred to as the volatility, although the
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same term is sometimes also used for its square root.

A standard GARCH(1,1) model is described by the equation:

Yt = htZt with h2
t =C+AY 2

t−1 +Bh2
t−1 (1.2.3)

where the series {Zt} are i.i.d. (0,1), and the parameters A,B,C are assumed nonnegative. The

quantity h2
t = E(Y 2

t |Ft−1) is the volatility as defined in Eq. (1.2.2). Back solving in the right-

hand-side of Eq. (1.2.3), it is easy to show that the GARCH(1,1) model is tantamount to the

ARCH model of Eq. (1.2.1) with p = ∞ and the following identifications:

α =
C

1−B
, and ai = ABi−1 for i = 1,2, . . . (1.2.4)

Under the objective of L1-optimal prediction, the optimal predictor is the conditional

median—not the conditional expectation. For an ARCH(p) process, the L1 optimal predictor of

Y 2
n+1 is given by

Median
(
Y 2

n+1|Fn
)
= (α+

p

∑
i=1

aiY 2
n+1−i)Median(Z2

n+1|Fn). (1.2.5)

Therefore, the aforementioned equivalence of GARCH(1,1) with an ARCH(∞) implies that

Eq. (1.2.5) would also give the L1 optimal GARCH(1,1) predictor of Y 2
n+1 by allowing p = ∞

with the ARCH coefficients α,a1,a2, . . . following the structure given by Eq. (1.2.4).

GARCH(1,1) model is by far the most popular, and typically forms the benchmark for

modeling financial returns. That is also the reason why we will compare the prediction ability of

NoVaS methodology with that of GARCH(1,1).
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NoVaS Methodology

Let us continue considering a zero mean and (strictly) stationary financial return time

series {Yt , t ∈ Z}. The NoVaS methodology is trying to map the dataset Y1, . . . ,Yn to a Gaussian

series.

The starting point is the ARCH model of Eq. (1.2.1), under which the residual

Yt√
α+∑

p
i=1 aiY 2

t−i

(1.2.6)

is thought of as perfectly normalized and variance-stabilized as it is assumed to be i.i.d.N(0,1),

which is actually not true here. This ratio can be interpreted as an attempt to ‘studentize’ the

return Yt by dividing with a time-localized measure of the standard deviation of Yt . However,

there seems to be no reason to exclude the value of Yt from an empirical, causal estimate of the

standard deviation of Yt ; recall that a causal estimate is one involving present and past data only,

i.e., the data {Ys,s≤ t}.

Hence, Politis (2003) defined a new ‘studentized’ quantity as follows:

Wt,α :=
Yt√

αs2
t−1 +a0Y 2

t +∑
p
i=1 aiY 2

t−i

for t = p+1, p+2, . . . ,n. (1.2.7)

In the above, s2
t−1 is an estimator of σ2

Y =Var(Y1) based on the data up to (but not including1)

time t; under the zero mean assumption for Y1, the natural estimator is s2
t−1 = (t−1)−1

∑
t−1
k=1Y 2

k .

The definition in Eq. (1.2.7) describes the proposed normalizing and variance-stabilizing

transformation under which the data series {Yt} is mapped to the new series {Wt,α}. The order

p(≥ 0) and the vector of nonnegative parameters (α,a0, . . . ,ap) are chosen by the practitioner

with the twin goals of normalization and variance stabilization.

1The reason for not including time t in the variance estimator is for purposes of notational clarity as well as the
easy identifiability of the effect of the coefficient a0 associated with Y 2

t in the denominator of Eq. (1.2.7).
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Also, the NoVaS transformation Eq. (1.2.7) can be re-arranged to yield:

Yt =Wt,α

√
αs2

t−1 +a0Y 2
t +

p

∑
i=1

aiY 2
t−i. (1.2.8)

Formally, the only real difference between the NoVaS of Eq. (1.2.8) and the ARCH of Eq. (1.2.1)

is the presence of the term Y 2
t paired with the coefficient a0. Replacing the term α in Eq. (1.2.1)

by the term αs2
t−1 in Eq. (1.2.8) is only natural since the former has—by necessity—units of

variance; in other words, the term α in Eq. (1.2.1) is not scale invariant, whereas the term α in

Eq. (1.2.8) is.

Given the assumed structure of the return series, the target of variance stabilization, which

amounts to constructing a local estimator of scale for studentization purposes, requires:

α≥ 0, ai ≥ 0 for all i≥ 0, and α+
p

∑
i=0

ai = 1. (1.2.9)

Eq. (1.2.9) has the interesting implication that the {Wt,α} series can be assumed to have an

(unconditional) variance that is (approximately) unity. Nevertheless, note that p and α,a0, . . . ,ap

must be carefully chosen to achieve a degree of conditional homoscedasticity as well; to do this,

one must necessarily take p small enough—as well as α small enough or even equal to zero—so

that a local (as opposed to global) estimator of scale is obtained. Politis (2003) provided two

structures for the ai coefficients satisfying Eq. (1.2.9). One is to let α = 0 and ai = 1/(p+1) for

all 0≤ i≤ p; this specification is called the simple NoVaS transformation, and involves only one

parameter, namely the order p, to be chosen by the practitioner. The other one is given by the

exponential decay NoVaS where α = 0 and ai = c′e−ci for all 0≤ i≤ p. The exponential scheme

involves choosing two parameters: p and c > 0 since c′ is determined by Eq. (1.2.9).

Now note that
1

W 2
t,α

=
αs2

t−1 +a0Y 2
t +∑

p
i=1 aiY 2

t−i

Y 2
t

≥ a0
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if all the parameters are nonnegative, therefore,

|Wt,α| ≤ 1/
√

a0 (1.2.10)

So one must be careful to ensure that the {Wt,α} variables have a large enough range such that the

boundedness is not seen as spoiling the normality. Thus, we also require

1
√

a0
≥C i.e., a0 ≤ 1/C2 (1.2.11)

for some appropriate C of the practitioner’s choice.Recalling that 99.7% of the mass of the N(0,1)

distribution is found in the range±3, the simple choice C = 3 can be suggested; this choice seems

to work reasonably well—at least for the usual samples sizes.

Then we proceeds to choose p and α,a0,a1, . . . ,ap (the parameters needed to identify)

with the optimization goal of making the {Wt,α} transformed series as close to normal as possible

(normalization). To qualify this goal, one can use minimize a (pseudo)distance measuring

departure of the transformed data from normality. Recall that it is a matter of common practice to

assume that the distribution of financial returns is symmetric (at least to a first approximation)

and therefore, the skewness of financial returns is often ignored. In contrast, the kurtosis is

typically very large, indicating a heavy tailed distribution. Hence, the kurtosis can serve as a

simple (pseudo)distance measuring the departure of a (non-skewed) dataset from normality. Let

KURTn(Y ) denote the empirical kurtosis of data {Yt , t = 1, . . . ,n}, i.e.,

KURTn(Y ) =
n−1

∑
n
t=1(Yt− Ȳ )4

(n−1 ∑
n
t=1(Yt− Ȳ )2)2

where Ȳ = n−1
∑

n
t=1Yt is the sample mean.

The following are the algorithms to select the optimal parameters for NoVaS; see Politis

(2003). Note that the only free parameter in Simple NoVaS is the order p; therefore, the Simple
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NoVaS transformation will be denoted by W S
t,p. In the Exponential NoVaS, to specify all the

ais, one just needs to specify the two parameters p and c > 0, in view of Eq. (1.2.9). However,

because of the exponential decay, the parameter p is now of secondary significance; thus, we

concisely denote the exponential NoVaS transformation by W E
t,c.

ALGORITHM 2.1. SIMPLE NOVAS

1. Let α = 0 and ai = 1/(p+1) for all 0≤ i≤ p.

2. Pick p such that |KURTn(W S
t,p)−3| is minimized.

2′. Pick p such that KURTn(W S
t,p)' 3.

Step 2 in the above is described as an optimization problem for mathematical concreteness.

Nevertheless, it could be better understood as a moment matching, see Step 2′, where of course

the value 3 for kurtosis corresponds to the Gaussian distribution.

ALGORITHM 2.2. EXPONENTIAL NOVAS

1. Let p take a very high starting value, e.g., p' n/4 or n/5. Then, let

α = 0 and ai = c′e−ci for all 0≤ i≤ p, where c′ = 1/∑
p
i=0 e−ci by

Eq. (1.2.9).

2. Pick c > 0 in such a way that |KURTn(W E
t,c)−3| is minimized.

Technically, the above search is for c ∈ (0,∞) which appears formidable; what makes this

minimization problem well-behaved is that we know that high values of c can not plausibly be

solutions. To see why, note that if c is large, then ai ≈ 0 for all i > 0 and W E
t,c = Yt which has

kurtosis much larger than 3. It is apparent that the search for the optimal c will be practically

conducted over a discrete grid of c-values spanning an interval of the type (0,s] for some s of

the order of one. A practical way to narrow in on the optimal c value is to run two grid searches,

one coarse followed by a fine one: (i) use a coarse grid search over the whole interval (0,s],

and denote c̃0 the minimizer over the coarse grid search; and (ii) run a fine grid search over a
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neighborhood of c̃0. Let c0 denote the resulting minimizer from the above algorithm. If needed,

the following range–adjustment step may be added.

3. If c0 as found above is such that Eq. (1.2.11) is not satisfied, then decrease c stepwise

(starting from c0) over the discrete grid until Eq. (1.2.11) is satisfied.

Finally, the value of p must be trimmed for efficiency of usage of the available sample; to do this

we can simply discard the ai coefficients that are close to zero, i.e., those that fall below a certain

threshold/tolerance level ε which is the practitioner’s choice. A threshold value of ε =0.01 is

reasonable in connection with the ai which—as should be stressed—are normalized to sum to

one.

4. Trim the value of p by a criterion of the type: if ai < ε, then let ai = 0. If i0 is the smallest

integer such that ai < ε for all i≥ i0, then let p = i0 and re-normalize the ais so that their

sum (for i = 0,1, . . . , i0) equals one.

Although many different multi-parameter NoVaS schemes can be devised, we now elab-

orate on the possibility of a nonzero value for the parameter α (say α1,α2, . . . ,αK , that span a

subset of the interval [0,1]) in Eq. (1.2.7) in connection with the Simple and Exponential NoVaS.

We thus define the Generalized Simple (GS) and Generalized Exponential (GE) NoVaS denoted

by W GS
t;p,α and W GE

t;c,α indicating their respective two free parameters; both are based on Eq. (1.2.7).
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ALGORITHM 2.3. GENERALIZED SIMPLE NOVAS

A. For k = 1, . . . ,K perform the following steps.

1. Let α = αk and ai = (1−αk)/(p+1) for all 0≤ i≤ p so that

eq. (1.2.9) is satisfied while all the coefficients a0,a1, . . . ,ap are

the same.

2. Denote by pk the minimizer of |KURTn(W GS
t,p )−3| over values of

p = 1,2, . . ..

3. If pk (and a0) as found above are such that eq. (1.2.11) is not

satisfied, then increase pk accordingly, i.e., re-define

pk = b1+C2(1−αk)c, and let ai = (1−αk)/(pk +1) for all

0≤ i≤ pk by Eq. (1.2.9); here, bxc denotes the integer part of x.

B. Finally, compare the transformations {W GS
t;pk,αk

, k = 1, . . . ,K} in terms

of their volatility prediction performance, and pick the model with

optimal performance.
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ALGORITHM 2.4. GENERALIZED EXPONENTIAL NOVAS

A. For k = 1, . . . ,K, perform the following steps.

1. Let p take a very high starting value, e.g., let p' n/4 or n/5.

Then, let α = αk and ai = c′e−ci for all 0≤ i≤ p, where c′ =

(1−αk)/∑
p
i=0 e−ci by Eq. (1.2.9).

2. Pick c in such a way that |KURTn(W GE
t;c,αk

)−3| is minimized, and

denote by ck the minimizing value.2

3. Trim the value of p to some value pk as before: if ai < ε, then set

ai = 0. Thus, if ai < ε, for all i≥ ik, then let pk = ik, and

re-normalize the ais so that their sum (for i = 0,1, . . . , pk) equals

1−αk by Eq. (1.2.9).

B. Finally, compare the transformations {W GE
t;ck,αk

, k = 1, . . . ,K} in terms

of their volatility prediction performance, and pick the model with

optimal performance.

Remark. For all the empirical work in this chapter, we set p = n/4 and ε = 0.01 when using the

Exponential NoVaS and GE NoVaS algorithms. For Generalized NoVaS, we choose K = 8 and

αk = 0,0.1,0.2, . . . ,0.7.

Suppose that the NoVaS parameters, i.e., the order p(≥ 0) and the parameters α,a0, . . . ,ap

have already been chosen. Re-arrange the NoVaS Eq. (1.2.7) and then yield:

Y 2
t =

W 2
t,α

1−a0W 2
t,α

(
αs2

t−1 +
p

∑
i=1

aiY 2
t−i

)
for t = p+1, . . . ,n (1.2.12)

2As before, if ck is such that Eq. (1.2.11) is not satisfied, then decrease it stepwise over its discrete grid until
Eq. (1.2.11) is satisfied.
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and

Yt =
Wt,α√

1−a0W 2
t,α

√
αs2

t−1 +
p

∑
i=1

aiY 2
t−i for t = p+1, . . . ,n. (1.2.13)

Let g(·) be some (measurable) function of interest; examples include g0(x) = x, g1(x) = |x|,

and g2(x) = x2, the latter being the function of interest for volatility prediction. Based on the

Model-free Prediction Principle, the one-step ahead prediction problem of NoVaS can be defined.

From Eq.(1.2.13) it follows that the predictive (given Fn) distribution of g(Yn+1) is identical to

the distribution of the random variable

g

(
An

W√
1−a0W 2

)
(1.2.14)

where An =
√

αs2
n +∑

p
i=1 aiY 2

n+1−i is treated as a constant given the past Fn, and the random

variable W has the same distribution as the conditional (on Fn) distribution of the random variable

Wn+1,a.

Therefore, the L1 optimal prediction of g(Yn+1) given Fn is given by the median of the

conditional (given Fn) distribution of g(Yn+1), i.e.,

̂g(Yn+1) := Median

g

An
Wn+1,a√

1−a0W 2
n+1,a

 |Fn

 (1.2.15)

Specializing to the case of our interest, i.e., volatility prediction and the function g2(x) = x2 yields

the NoVaS predictor:

Ŷ 2
n+1 = µ2A2

n (1.2.16)

where

µ2 = Median

(
W 2

n+1,a

1−a0W 2
n+1,a

|Fn

)
.
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1.2.2 Local Stationarity

When we consider a real-valued time series Y1, . . . ,Yn spanning a long time interval, e.g.,

annual rainfall measurements spanning over 100 years or 30 minutes financial returns spanning

several years, it may be unrealistic to assume that the stochastic structure of time series {Yt , t ∈Z}

has stayed invariant over such a long stretch of time; hence, we can not assume that {Yt , t ∈ Z} is

stationary. It is therefore plausible to assume a slowly-changing stochastic structure, i.e., a locally

stationary model; see Priestley (1965, 1988), Dahlhaus et al. (1997) and Dahlhaus (2012). The

type of processes that can be described with locally stationarity are those which locally at each

time point are close to a stationary process but whose characteristics (covariances, parameters,

etc.) are gradually changing in an unspecific way as time evolves.

Time-varying GARCH and Time-varying NoVaS

To capture such a non-stationary phenomenon, the theory of Time-varying ARCH (TV-

ARCH, for short) processes was developed and their asymptotic properties of weighted quasi-

likelihood estimators were studied; see Dahlhaus et al. (2006).

The analysis of a Time-varying ARCH/GARCH model can be based on the premise of

local stationarity. For example, in order to predict g(Yt+1) based on Ft via a Time–varying

GARCH(1,1)(TV-GARCH for short) model, we can simply fit GARCH(1,1) model of Eq. (1.2.3)

using the the ‘windowed’ data Yt−b+1, . . . ,Yt , i.e., the coefficients of GARCH(1,1) models are

varying with time. Here, the window size b should be large enough so that accurate estimation of

the GARCH parameters is possible based on the subseries Yt−b+1, . . . ,Yt but small enough so that

such a subseries can plausibly be considered stationary.

In a similar vein, we can predict g(Yt+1) by fitting one of the NoVaS algorithms (Simple

vs. Exponential, Generalized or not) just using the ‘windowed’ data Yt−b+1, . . . ,Yt . In so doing,

we are constructing a Time-varying NoVaS (TV-NoVaS) transformation. In numerical work,

Politis and Thomakos (2006, 2013) showed that NoVaS fitting can be done more efficiently than
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GARCH fitting by (numerical) MLE. Thus, it is expected that TV-NoVaS may be able to capture

a slowly changing stochastic structure in a more flexible manner; stated in different term, the

window size b required for accurate NoVaS fitting should be smaller than the one required for

accurate GARCH fitting.

Structural Breaks: Changing points

An alternative form of non-stationarity is due to the possible presence of structural breaks,

i.e., change points, occurring at some isolated time points. Kokoszka and Leipus (2000), and

Berkes et al. (2004) have studied the detection/estimation of change points in ARCH/GARCH

modeling. Mikosch and Starica (2004) and Stărică and Granger (2005) show the interesting effects

that an undetected change point may have on our interpretation and analysis of ARCH/GARCH

modeling. Polzehl and Spokoiny (2006) shows that time-varying models can give a better

predictive power for time series with change points. In this section, we can also consider the

time-varying NoVaS methods under short windowed data except in a neighborhood of the change

points. Hence, in the simulation that follows, we also include a structural break model in order

to see the effect of an undetected change point on the performance of TV-NoVaS predictors for

squared returns.

1.2.3 Simulations and Results

We investigate these above conjecture and compare the one-step ahead prediction perfor-

mance of NoVaS with that of the the standard benchmark GARCH(1,1) model in the following

simulation experiment.

Simulation Design

For the simulation, 500 datasets Y n = (Y1, . . . ,Yn)
′ were constructed using either a TV-

GARCH or a change point GARCH (CP-GARCH); these were defined using the standard GARCH
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model of Eq. (1.2.3) as building block with C = 10−5. The i.i.d. errors Zt are commonly assumed

to have a Student t5 distribution; instead, we use the simple assignment Zt ∼ i.i.d. N(0,1) in the

simulation in order to facilitate the convergence of the numerical (Gaussian) MLE in fitting the

TV-GARCH model.

CP-GARCH: For t ≤ n/2, let A = 0.10 and B = 0.73; for t > n/2, let A = 0.05 and

B = 0.93. These values are close to the ones used by Mikosch and Starica (2004).

TV-GARCH: The value of A decreases as a linear function of t, starting at A = 0.10 for

t = 1, and ending at A = 0.05 for t = n. At the same time, the value of B increases as a

linear function of t, starting at B = 0.73 for t = 1, and ending at B = 0.93 for t = n.

The difference between CP-GARCH model and TV-GARCH model, is an abrupt vs. smooth

transition spanning the same values. Some more information on the simulation follows.

• The prediction method employed was the conditional median obtained either from a TV-

GARCH model with normal errors fitted by windowed Gaussian MLE, or via TV-NoVaS

(Simple or Exponential); in either case, two window sizes were tried out, namely b = 125

or 250.

• The sample size was n = 1001 corresponding to about 4 years of daily data; so the choices

b = 125 and 250 correspond to 6 and 12 months respectively.

• Training period for all methods was 250, i.e., the experiment amounted to predicting Y 2
t+1

from the ‘windowed’ data Yt−b+1, . . . ,Yt for t = 250,251, . . . ,1000.

• Updating (re-estimation) of all methods would ideally be for each t = 250,251, . . . , 1000.

To save computing time, updating in the simulation was only performed for t being an

integer multiple of 50. In fairness, the performance of predictions was recorded and com-

pared only at the moment of updating the model, i.e., at time points 250,300,350, . . . ,1000.
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For each point, we give the mean absolute deviation (MAD) of the prediction error at the

update time point averaged over the 500 replications.

Results and Conclusions

Figure 1.1 shows the MAD of volatility prediction errors of TV-GARCH as compared to

that of TV-NoVaS (Simple or Exponential) with data from model CP-GARCH for the 16 time

points where the updating and prediction occurred, i.e., the time points 250,300,350, . . . ,1000.

The left panel depicts the case b = 125 while the right panel depicts the case b = 250. Figure 1.2

is similar but using data generated by a TV-GARCH model instead.

Some conclusions are as follows:

• Time points 250,300,350,400,450, and 500 in the left panel of Figure 1.1 corroborate the

aforementioned fact that NoVaS (Simple or Exponential) beats GARCH for prediction

of squared returns even if the data generating model is (stationary) GARCH as long

as the sample size available for model-fitting is small—equal to 125 in this case. The

corresponding points in the right panel of Figure 1.1 indicate that GARCH manages to do

as well as (or better than)3 NoVaS when the effective sample size is increased to 250.

• Figure 1.1 shows that the change point at t = 500 wreaks havoc in GARCH model fitting

and the associated predictions; this adds another dimension to the observations of Mikosch

and Starica (2004). By contrast, both NoVaS methods seem to adapt immediately to the

new regime that occurs after the unknown/undetected change point.

• Figure 1.2 shows that TV-NoVaS (Simple or Exponential) beats TV-GARCH for prediction

of squared returns even when the data generating model is TV-GARCH. Not only is the

MAD of prediction of TV-NoVaS just a small fraction of that of TV-GARCH, but the

3Note that here GARCH is fitted by Gaussian MLE with only three free parameters; in the more realistic case
of four parameter MLE using the t distribution—the fourth parameter being the degrees of freedom—GARCH
underperforms compared to NoVaS even with a sample size of 350; see Politis and Thomakos (2006, 2013).
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wild swings associated with the latter indicate the inherent instability of GARCH model-

fitting; this instability is prominent even in this simplistic case where the errors have a true

Gaussian distribution, and Gaussian MLE is used for estimating just the three GARCH

parameters.

• As seen in both Figure 1.1 and Figure 1.2, the performance of Simple NoVaS is practically

indistinguishable from that of Exponential NoVaS although upon closer look the latter

appears to be marginally better.
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Figure 1.1: MAD of prediction of squared returns obtained by fitting TV-GARCH
vs. TV-NoVaS; data from CP-GARCH model.

1.3 Estimation of Realized Volatility

In this section, we compare the performance of NoVaS methods and GARCH(1,1) in

the estimation of daily realized volatility with real world time series. Based on the empirical

work of Politis (2003, 2007), the NoVaS series {Wt,α} appears to be uncorrelated with several
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Figure 1.2: MAD of prediction of squared returns obtained by fitting TV-GARCH
vs. TV-NoVaS; data from TV-GARCH model.

daily returns. Since {Wt,α} is (approximately) Gaussian, then we can infer that the series {Wt,α}

is not only uncorrelated but also independent; therefore, it is straightforward to construct a

Model-free estimate of the conditional expectation E(Y 2
n+1|Fn). In this case, Eq. (1.2.12) implies

that E(Y 2
n+1|Fn) = A2

nE
(

W 2
t,α

1−a0W 2
t,α

)
; a natural estimate of realized volatility thereof is

A2
n

n− p

n

∑
t=p+1

(
W 2

t,α

1−a0W 2
t,α

)
(1.3.1)

which has validity, e.g. consistency, under the sole assumption that Yt has a finite second moment

conditionally on Fn (and therefore unconditionally as well). To examine the performance of this

estimate, we conduct the following empirical analysis for estimating the daily realized volatility

by using the formula (1.3.1) and GARCH(1,1) model.
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1.3.1 Data and Summary Statistics

We consider two real world time series. Both are intraday 30 minutes IBM stock returns

and associated with the daily realized volatility. The sample period of the first dataset is from

07-01-2010 to 07-31-2012 for a total of N = 526 days. The sample period of the second dataset

is from 01-02-2013 to 11-10-2016 for a total of N = 975 days. Weekends and holidays are

excluded for both series. In Figure 1.3, we present graphs for the daily realized volatility of the

two datasets. The associated daily realized volatility was constructed by summing all 30-minutes

squared returns of one day for IBM stock. Specifically, if we denote by rt,i, the ith daily return for

day t, then the daily realized volatility is defined as h2
t

def
= ∑

nt
i=1 r2

t,i, where nt is the total number of

30-minutes intervals during day t of open market.

1.3.2 NoVaS and GARCH(1,1) Optimization and Estimating Specifications

To estimate the realized volatility for our two series, we continue using the TV-NoVaS

transformation and TV-GARCH(1,1) models, since the fourth moments of the series may be

infinite. All forecasts we make are ‘honest’, i.e., we use only observations prior to the time period

to be forecasted. The parameters of NoVaS approach and GARCH(1,1) models are re-estimated

as the window rolls over the entire evaluation sample. The window sizes we choose are m =

126 (six months) and m = 252 (one year). To compare the performance of the NoVaS approach,

we estimate using not only standard GARCH(1,1) models with normal distribution but also

GARCH(1,1) models, assuming a t(v) distribution with degree of freedom estimated from the data.

Here we employ all NoVaS algorithms: Simple-NoVaS, Exp-NoVaS, GS NoVaS and GE NoVaS.

For Exp-NoVaS and GE NoVaS algorithms, we set pmax = n/4 and the trimming threshold of

0.01, same as those in Section 1.2.

In the process of analysis, we always evaluate our estimation using the ‘true’ realized

volatility measure given in the previous subsection and report the mean absolute deviation (MAD)
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and root mean-squared error (RMSE) of the estimation errors et
def
= h2

t − ĥt
2
, given by:

MAD(e) def
=

1
N−m

N

∑
t=m+1

|et− ē|, and RMSE(e) def
=

√√√√ 1
N−m

N

∑
t=m+1

(et− ē)2

where ĥt
2

denotes the estimation of the daily realized volatility for any of the methods or

models we use and ē def
= 1

N−m∑
N
t=m+1 et .

1.3.3 Results and Conclusions

Our estimation results are summarized in Table 1.1 and Table 1.2. Table 1.1 is the results

for the series from 07-01-2010 to 07-31-2012 and Table 1.2 is for the series from 01-02-2013 to

11-10-2016. In the second columns of each table are the MADs and RMSEs of TV-NoVaS and

TV-GARCH(1,1) with window size 126. The third columns in both tables record the MADs and

RMSEs with window size 252. Some general comments on the results are follows:

• For all methodologies, the MADs and RMSEs of the estimation errors of daily realized

volatility are decreasing when the window size is small, i.e., 126. This may indicate that

both data series are non-stationary as expected.

• The TV-GARCH(1,1) models with standard t innovations outperform the

TV-GARCH(1,1) models with Normal innovations for both series. This should not be

surprising since the distribution of financial returns has fatter tails than the normal.

• The performance of TV-Exp-NoVaS is always better than that of TV-Simple-NoVaS.

Similarly, TV-GE-NoVaS also performs better than TV-GS-NoVaS. These mean that the

method of exponential smoothing is more reasonable to obtain a local time series; see,

Hamilton (1994).

• As seen in both Table 1.1 and Table 1.2, TV-Exp-NoVaS and TV-Simple-NoVaS are
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producing bigger MADs and RMSEs of the estimation errors than Time-varying General-

ized NoVaS, even sometimes bigger MADs than TV-GARCH(1,1) models. Interestingly,

Time-varying Generalized NoVaS(both simple and exponential) transformation, especially

TV-GE-NoVaS, perform best always with smaller MADs and RMSEs of estimation errors

among all methods we use. Therefore, a non-zero α in Eq. (1.2.7) of NoVaS transformation

is crucial for good performance when our goal is to estimate realized volatility, even though

this is not true when predicting squared returns in Section 1.2.

Table 1.1: MADs and RMSEs of estimation errors for the daily realized volatility of IBM stock
from July 1, 2010 to July 31, 2012.

Series 2010-2012 Window size = 126 Window size = 252
Methods MAD RMSE MAD RMSE
GARCH(1,1) with normal error 1.418E-04 2.112E-04 1.732E-04 2.292E-04
GARCH(1,1) with t-error 1.397E-04 2.049E-04 1.706E-04 2.233E-04
Simple-NoVaS 1.450E-04 1.941E-04 1.793E-04 2.231E-04
Exp-NoVaS 1.356E-04 1.698E-04 1.589E-04 1.922E-04
GS NoVaS 1.199E-04 1.689E-04 1.439E-04 1.901E-04
GE NoVaS 1.115E-04 1.684E-04 1.343E-04 1.908E-04

Table 1.2: MADs and RMSEs of estimation errors for the daily realized volatility of IBM stock
from January 2, 2013 to November 10, 2016.

Series 2013-2016 Window size = 126 Window size = 252
Methods MAD RMSE MAD RMSE
GARCH(1,1) with normal error 1.362E-04 3.692E-04 1.446E-04 3.617E-04
GARCH(1,1) with t-error 1.343E-04 3.682E-04 1.390E-04 3.592E-04
Simple-NoVaS 1.655E-04 3.398E-04 1.664E-04 3.319E-04
Exp-NoVaS 1.546E-04 3.291E-04 1.531E-04 3.147E-04
GS NoVaS 1.175E-04 3.252E-04 1.191E-04 3.179E-04
GE NoVaS 1.114E-04 3.253E-04 1.138E-04 3.175E-04
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1.4 Bootstrap Prediction Intervals

Beyond the one-step ahead point prediction of Y 2
n+1, we may try to construct a prediction

interval that will contain Y 2
n+1 with (conditional) probability 1−α asymptotically and compare

its performance with that based on GARCH(1,1) models. As usual, the key idea of Model-

Free Prediction Principle is to transform a given complex dataset into one that is i.i.d, and

therefore easier to handle. For NoVaS transformation, we transform our dataset into i.i.d normal

distribution. For Model-Based Bootstrap, standard errors and confidence intervals are based

on generating one-step ahead pseudo data by some estimated conditional distribution, e.g., the

transition densities or the transition distribution functions; see Pan and Politis (2014, 2016).

However, Model-Free Bootstrap re-samples the i.i.d data and then transforms them back to obtain

the desired one-step ahead prediction.

1.4.1 Description of Interval Prediction Algorithms

Recall that our best (in an L1 sense) prediction of g(Yn+1) given Fn was given, i.e.,

̂g(Yn+1) = Median

g

An
Wn+1,α√

1−a0W 2
n+1,α

 |Fn



= Median

g

An
Wn+1,α√

1−a0W 2
n+1,α

 ;

where the second equality is due to the independence in the series Wt,α. The above can give

us a preliminary approximation to the predictive distribution of g(Yn+1) given Fn in the form

of the empirical distribution of the random variables {g

(
An

Wt,α√
1−a0W 2

t,α

)
for t = p+ 1, . . . ,n}.

However, as Politis (2015) remarked, this empirical distribution ignores the variability of estimated

parameters in the construction of the NoVaS transformation; to incorporate this variability, Model-
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free bootstrap is needed here as well. Note that the point predictor ̂g(Yn+1) is a function only4 of

Yn, . . . ,Yn−p+1, i.e., is a predictor of the type of a (nonlinear) AR model or Markov process of order

p. Hence, to develop the relevant re-sampling algorithms, we can borrow some ideas from work

of Pan and Politis (2014, 2016); in particular, we will adopt the ‘forward’ bootstrap methodology,

i.e., generate bootstrap series forward in time but also ensure that Y ∗n+1 is constructed correctly;

see also in Politis (2015).

The basic Model-free (MF) bootstrap algorithm for prediction intervals in the setting of

financial returns goes as follows.

ALGORITHM 4.1 MF PREDICTION INTERVALS FOR g(Yn+1)

1. Use one of the NoVaS algorithms (Simple vs.Exponential, Generalized

or not, etc.) to obtain the transformed data {Wt,α for t = p+1, . . . ,n}

that are assumed to be approximately i.i.d. Let p, α and ai denote the

fitted NoVaS parameters.

2. Calculate ̂g(Yn+1), the point predictor of g(Yn+1), as the median of the

set {g

(
An

Wt,α√
1−a0W 2

t,α

)
for t = p+1, . . . ,n}; recall that

An =
√

αs2
n +∑

p
i=1 aiY 2

n+1−i.

3. (a) Re-sample randomly (with replacement) the transformed

variables {Wt,α for t = p+1, . . . ,n} to create the pseudo-data

W ∗p+1, · · · ,W ∗n−1,W
∗
n and W ∗n+1.

4In the case of Generalized NoVaS (Simple or Exponential), ̂g(Yn+1) is also a function of s2
n which, however,

converges to EY 2
t for large n; hence, it can be treated as constant for all practical purposes.
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3. (b) Let (Y ∗1 , . . . ,Y
∗
p )
′ = (Y1+I, · · · ,Yp+I)

′ where I is generated as a

discrete random variable uniform on the values 0,1, . . . ,n− p.

(c) Generate the bootstrap pseudo-data Y ∗t for t = p+1, . . . ,n using

the following equations, i.e., let

Y ∗t =
W ∗t√

1−a0W ∗2t

√
αs∗2t−1 +

p

∑
i=1

aiY ∗2t−i for t = p+1, . . . ,n

(1.4.1)

where s∗2t−1 = (t−1)−1
∑

t−1
k=1Y ∗2k .

(d) Based on the bootstrap data Y ∗1 , . . . ,Y
∗
n , re-estimate the NoVaS

transformation yielding parameters p∗, α∗, a∗0,a
∗
1, . . . ,a

∗
p.

Let A∗n =
√

α∗s2
n +∑

p∗
i=1 a∗i Y 2

n+1−i, and calculate the bootstrap

predictor ̂g(Y ∗n+1) as the median of the set

{g

A∗n
Wt,α√

1−a∗0W 2
t,α

 for t = p+1, . . . ,n} (1.4.2)

using the convention5that when 1−a∗0W 2
t,α ≤ 0, we assign

1√
1−a∗0W 2

t,α

= ∞.
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3. (e) Calculate the bootstrap future value Y ∗n+1 as

Y ∗n+1 =
W ∗n+1√

1−a0W ∗2n+1

√
αs2

n +
p

∑
i=1

aiY 2
n−i+1. (1.4.3)

(f) Calculate the bootstrap root: g(Y ∗n+1)− ̂g(Y ∗n+1).

4. Repeat step 3 above B times; the B bootstrap root replicates are

collected in the form of an empirical distribution whose α-quantile is

denoted q(α) .

5. The (1−α)100% equal-tailed prediction interval for g(Yn+1) is given

by

[ ̂g(Yn+1)+q(α/2), ̂g(Yn+1)+q(1−α/2)].

5This is because the original NoVaS data satisfies |Wt,α| ≤ 1/
√

a0 but a∗0 might turn out bigger (or smaller) than
a0. Alternatively, one can base Eq. (1.4.2) on the NoVaS transformed series W ∗t,α that corresponds to the bootstrap
data Y ∗1 , . . . ,Y

∗
n , or on a Monte Carlo experiment using a N(0,1) distribution truncated to ±1/

√
a∗0.This is the case

of LMF in (a′). All these options are practically indistinguishable as far as taking the median is concerned, and
Eq. (1.4.2) is the most straightforward.
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Note that the last p values from the original data, i.e., Yn−p+1, . . . ,Yn, are used in both the

creation of the bootstrap predictor in Eq.(1.4.2) and bootstrap future value in Eq.(1.4.3); this is in

accordance with the ‘forward’ bootstrap methodology in work of Pan and Politis (2014) but also

with the general Model-free Bootstrap described in Algorithm 2.4.1 in Politis (2015).

Another version of Algorithm 4.1 can also be devised in the spirit of the Limit Model-

Free(LMF) Bootstrap of Politis (2015); it would amount to replacing Step 3 (a) by:

(a′) Generate W ∗p+1, · · · ,W ∗n−1,W
∗
n and W ∗n+1 as i.i.d. from a N(0,1) distribution truncated to

±1/
√

a0.

Remark. Algorithm 4.1 can also be applied to each windowed dataset for non-stationary time

series, thus obtaining the time varying NoVaS prediction intervals.

1.4.2 Local Stationarity

Under a model-free setup of a local stationary time series, Paparoditis and Politis (2002)

proposed the Local Block Bootstrap in order to generate pseudo-series Y ∗1 , . . . ,Y
∗
n whose proba-

bility structure mimics that of the observed data Y1, . . . ,Yn. The Local Block Bootstrap has been

found useful for the construction of confidence intervals; see Dowla et al. (2003), Dowla et al.

(2013). Politis (2015) put forth the algorithms of model-free and model-based prediction intervals

for locally stationary time series. Like the work in Section 2, when the data is a locally stationary

time series, we can conduct the local stationary models (TV-GARCH(1,1) or TV-NoVaS) on the

windowed subseries. Similarly, we can also try to construct a prediction interval of NoVaS using

the Algorithm 4.1 on each subseries to construct the prediction intervals for each data point we

concern.
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1.4.3 Finite-Sample Performance of Model-Free and Model-Based Predic-

tion Intervals

Three Illustrative Datasets

In the work of prediction intervals, we also focus on another three real world datasets

of daily returns taken from a foreign exchange rate, a stock price, and a stock index; a brief

description of these datasets is as follows.

• Example 1: Foreign exchange rate. Daily returns from the Yen vs. Dollar exchange rate

from January 1, 1988 to August 1, 2002; the data were downloaded from Datastream. The

sample size is n = 3600 (weekends and holidays are excluded).

• Example 2: Stock index. Daily returns of the S&P500 stock index from October 1, 1983

to August 30, 1991; the data are available as part of the GARCH module in Splus. The sample

size is n = 2000.

• Example 3: Stock price. Daily returns of the IBM stock price from February 1, 1984 to

December 31, 1991; the data are again available as part of the GARCH module in Splus. The

sample size is n = 2000.

More information of these three datasets can be found in Politis (2007, 2015)

Simulation

In the following simulation work, we will compare the performance in interval prediction

of squared returns by using Simple-NoVaS, Exp-NoVaS, Limit Model-Free with Simple-NoVaS

method (LMF Simple-NoVaS), Limit Model-Free Exp-NoVaS method (LMF Exp-NoVaS), Gener-

alized Simple-NoVaS method (GS-NoVaS), Generalized Exp-NoVaS method (GE-NoVaS), Limit

Model-Free with Generalized Simple-NoVaS method (LMF GS-NoVaS) and Limit Model-Free
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with Generalized Exp-NoVaS method (LMF GE-NoVaS) method with that by using GARCH(1,1)

models with normal errors. Each interval is constructed based on the windowed data series. So

all the methods and models here are still time-varying models. For prediction intervals by using

GARCH(1,1) models, we use the algorithms 9.2.1 of Model-Based prediction intervals for Yn+1

in the book of Politis (2015); see also Pan and Politis (2016).

As in Section 1.2 , we employ the same TV-GARCH(1,1) and CP-GARCH(1,1) models

to generate the simulated datasets. For consistency, two stationary processes are generated by the

following two standard GARCH(1,1) models:

• Model 1. Xt = σtεt , σ2
t = .00001+ .93σ2

t−1 + .05X2
t−1, {εt} ∼ i.i.d.N(0,1).

• Model 2. Xt = σtεt , σ2
t = .00001+ .73σ2

t−1 + .10X2
t−1, {εt} ∼ i.i.d.N(0,1).

Each dataset with size n = 1000. Also, three financial indexes datasets are conducted to compute

the prediction intervals. For computational reasons, we chose B = 500 for bootstrap re-sampling.

For simulated data, the window sizes for simulated data are b = 125 and b = 250, same as those in

Section 2 of point predictions. For these three real world data, we use window size b = 250 and

500.

For each dataset, n−b windowed datasets of size b are generated. For each windowed

dataset, one of the bootstrap methods(GARCH(1,1) and different NoVaS algorithms) was used

to create B bootstrap sample paths and B one-step ahead “future” values denoted by X(b+1, j) for

j = 1,2, . . . ,B; The bootstrap prediction interval(Li, Ui) was constructed for the ”future” value

X(b+1) of windowed dataset i, here i = b+1,b+2, ... ,n. The corresponding empirical average

coverage level(CVR) and the average length(LEN) of the constructed intervals and the standard

error (St.err) associated with each length of the constructed intervals are calculated as

CV R =
1

n−b

n−b

∑
i=1

CV R j
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LEN =
1

n−b

n−b

∑
i=1

LENi and St.err =
1

n−b

n−b

∑
i=1

(LENi−LEN)2

where

CV Ri =
1
B

B

∑
j=1

1[L j,U j]X(b+1,i) and LENi =Ui−Li.

Discussion of results

Our results are summarized in Tables 1.3 and 1.4for simulated stationary datasets, in

Tables 1.5 and 1.6for simulated datasets generated by CP-GARCH(1,1) and TV-GARCH(1,1)

models respectively and in Tables 1.7, 1.8 and 1.9 for three real world datasets. Each table has

two subtables with different window sizes. The first two lines of each subtable are the results

using the Simple NoVaS (Simple-NoVaS) and Exponential NoVaS (Exp-NoVaS) methods. Lines

3 and 4 of each subtable are the results using Limit Model-Free with Simple-NoVaS (LMF

Simple-NoVaS) and Limit Model-Free Exp-NoVaS (LMF Exp-NoVaS) methods. Lines 5 and

6 of each subtable are the results of Generalized Simple-NoVaS (GS-NoVaS) and Generalized

Exp-NoVaS (GE-NoVaS) methods. Lines 7 and 8 of each subtable are for Limit Model-Free with

Generalized Simple-NoVaS method (LMF GS-NoVaS) and Limit Model-Free with Generalized

Exp-NoVaS (LMF GE-NoVaS) method. The last line of each subtable gives the results by using

GARCH(1,1) models with normal errors.

For simulated stationary time series data by GARCH(1,1) models, Tables 1.3 and 1.4

show that the performance of different NoVaS methods is better than that of GARCH(1,1), that is,

NoVaS methods have average coverages very close to or equal to the nominal ones. Remarkably,

the Generalized Simple and/or Exponential NoVaS methods beats Simple/Exp-NoVaS as well

as LMF Simple/Exp-NoVaS. In addition, there are not significant differences between Limit

Model-Free NoVaS and Generalized NoVaS methods when the data is stationary. It is also shown

that the window size has little effect—the coverages are still close to nominal ones—for the

performance of NoVaS methodology, while the reaction of GARCH(1,1) to the change of sample
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size is relatively large. We can see that the average coverages are much closer to the nominal ones

as the window size is increasing from 125 to 250.

Tables 1.6 and 1.7 give the results for data generated from time-varying GARCH(1,1)

and CP-GARCH(1,1) models with normal errors respectively. It is shown that in each table, all

NoVaS methods have the average coverages much closer to the nominal ones than GARCH(1,1)

in both subtables for each table. When the window size is increased to 250, GARCH(1,1) models

perform better than that with a smaller window size, i.e., 125. Meanwhile, the performance of

NoVaS methods is not sensitive to changes in the sample size. This finding is in accordance with

the results for point prediction of squared returns in Section 2. However, this effect of window

size on GARCH(1,1) under data with nonstationarity is bigger than that for the case of stationarity

if you compare the effect with that in Tables 1.3 and 1.4. It is also worthwhile to note that

Limit Model-Free NoVaS and Generalized NoVaS methods can sometimes capture the nominal

coverage exactly with smaller average lengths and standard deviations for the predicted intervals.

Also, we can find that Limit Model-Free NoVaS methods perform better than Simple-NoVaS

and Exponential NoVaS, while the performance of the Limit Model-Free Generalized NoVaS

methods are not as good as the Generalized NoVaS under both simulated datasets. If we look

at the results for three real world financial series in Tables Tables 1.7, 1.8 and 1.9, the NoVaS

still outperforms the benchmark GARCH(1,1) models. Similarly with the case in Tables 1.5 and

1.6, GARCH(1,1) performs worse when the window size is increasing from 250 to 500, that

is, the average coverage is smaller and the average length and standard errors of the predicted

intervals are larger. It’s also seen that the performance of Limit Model-Free Generalized NoVaS

methods are indistinguishable from that of Generalized NoVaS although the latter appears to be

marginally better upon closer comparison. All in all, when the data is non-stationary, the results

from Tables Tables 1.6, 1.7, 1.8 and 1.9 are supporting the superior performance of NoVaS in

interval prediction against the benchmark GARCH(1,1).
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1.5 Concluding Remarks

In this chapter, we study the prediction ability of squared returns and realized volatility by

using NoVaS based on the non-stationary time series. For nonstationarity, time-varying NoVaS

and GARCH(1,1) models are selected to fit the windowed data for prediction. Also, we add

the generalized NoVaS methodology and compared its relative performance in prediction with

Simple/EXP-NoVaS and the benchmark GARCH(1,1) models.

In particular, we conducted an extensive simulation to study the one-step ahead point

prediction of squared returns under non-stationary data using different time-varying NoVaS

methods and time-varying GARCH(1,1) models. We compared their performance under different

DGPs, including change-point GARCH(1,1) models and time-varying GARCH(1,1) models. It

was that shown that the NoVaS methodology for point prediction of squared returns remains

successful—with smaller mean absolute deviations of prediction errors—in situations where

global stationarity fails such as the cases of structural breaks and local stationarity. We also work

on the comparison of the performance of time-varying NoVaS and time-varying GARCH(1,1)

models in estimation of realized volatility for real world data. The time-varying GE/GS NoVaS

give smaller mean absolute deviation and root mean squared errors in the estimating realized

volatility than time varying GARCH(1,1) models with normal or t distributions. In addition, we

constructed the Model-Free algorithm of prediction intervals by NoVaS transformation. In the em-

pirical work of interval prediction of squared returns under both real world datasets and simulated

non-stationary series, we find that NoVaS gives a higher average coverage than GARCH(1,1) and

the performance of NoVaS does not depend much on the window size. Remarkably, the Gener-

alized Simple/Exponential NoVaS methods are the best ones for interval prediction of squared

returns as well as estimation of volatility among all methods/models we use in this chapter. So a

nonzero α in NoVaS transformation is crucial for good performance, i.e., Generalized NoVaS is

a must. To sum up, the time-varying NoVaS methodology is robust against nonstationarity and
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invariably outperforms the GARCH benchmark for prediction of squared returns.
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Table 1.3: A stationary process generated by GARCH(1,1) with C = 10−5, B = 0.73, A = 0.10

Window size 125 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.948 6.17E-04 5.84E-04 0.901 3.89E-04 2.25E-04
Exp-NoVaS 0.963 3.96E-03 1.25E-03 0.912 3.52E-04 2.01E-04

Limit Simple-NoVaS 0.951 4.00E-04 2.34E-04 0.899 2.73E-04 1.54E-04
Limit Exp-NoVaS 0.954 4.89E-04 2.05E-04 0.893 3.12E-04 1.22E-04

GS NoVaS 0.947 2.82E-04 9.98E-05 0.896 2.27E-04 1.08E-04
GE NoVaS 0.950 3.57E-04 2.59E-04 0.899 2.55E-04 1.54E-04

LMF GS-NoVaS 0.946 2.52E-04 1.14E-04 0.893 2.01E-04 8.70E-05
LMF GE-NoVaS 0.944 3.06E-04 8.44E-05 0.893 2.43E-04 6.47E-05

GARCH(1,1) 0.926 2.74E-04 1.25E-04 0.879 2.08E-04 9.40E-05
Window size 250 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.949 5.17E-04 3.20E-04 0.895 3.79E-04 2.16E-04

Exp-NoVaS 0.953 4.73E-04 2.37E-04 0.896 2.92E-04 1.12E-04
Limit Simple-NoVaS 0.931 4.10E-04 2.31E-04 0.886 2.89E-04 1.60E-04

Limit Exp-NoVaS 0.943 4.59E-04 1.70E-04 0.894 3.05E-04 1.10E-04
GS NoVaS 0.945 2.86E-04 1.10E-04 0.896 2.10E-04 1.21E-04
GE NoVaS 0.948 5.92E-04 5.63E-04 0.900 2.81E-04 1.57E-04

LMF GS-NoVaS 0.943 2.73E-04 1.48E-04 0.892 2.09E-04 1.10E-04
LMF GE-NoVaS 0.948 2.99E-04 8.76E-05 0.893 3.11E-04 1.75E-04

GARCH(1,1) 0.931 2.52E-04 9.64E-05 0.883 2.53E-04 7.28E-05
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Table 1.4: A stationary process generated by GARCH(1,1) with C = 10−5, B = 0.93, A = 0.05

Window size 125 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.950 4.05E-03 4.71E-03 0.901 2.42E-03 1.38E-03
Exp-NoVaS 0.960 7.41E-03 3.86E-02 0.907 2.60E-03 1.60E-03

Limit Simple-NoVaS 0.951 3.06E-03 1.88E-03 0.893 2.04E-03 1.18E-03
Limit Exp-NoVaS 0.949 3.88E-03 2.02E-03 0.886 2.49E-03 1.30E-03

GS-NoVaS 0.952 1.87E-03 6.74E-04 0.899 2.28E-03 1.78E-03
GE-NoVaS 0.947 2.67E-04 1.02E-04 0.898 2.78E-04 1.68E-04

LIMIT GS-NOVAS 0.947 3.13E-03 1.76E-03 0.893 2.48E-03 1.27E-03
LIMIT GE-NOVAS 0.949 3.30E-03 1.60E-03 0.894 2.81E-03 1.57E-03

GARCH(1,1) 0.914 2.37E-03 1.03E-03 0.866 2.09E-03 8.27E-03
Window size 250 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.958 4.06E-03 2.25E-03 0.906 2.81E-03 1.54E-03

Exp-NoVaS 0.960 3.14E-03 2.09E-03 0.903 2.06E-03 1.19E-03
Limit Simple-NoVaS 0.949 5.62E-03 3.81E-03 0.899 3.94E-03 2.66E-03

Limit Exp-NoVaS 0.938 3.64E-03 1.81E-03 0.888 2.42E-03 1.22E-03
GS-NoVaS 0.951 2.14E-03 9.14E-04 0.900 2.48E-03 3.71E-04
GE-NoVaS 0.949 2.71E-04 1.17E-04 0.900 2.19E-04 1.19E-04

LIMIT GS-NOVAS 0.946 2.67E-03 1.44E-03 0.894 2.09E-03 7.86E-04
LIMIT GE-NOVAS 0.949 3.33E-03 1.31E-03 0.899 2.71E-03 1.41E-03

GARCH(1,1) 0.919 2.16E-03 1.09E-03 0.873 1.87E-03 5.81E-03
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Figure 1.3: Daily realized volatility for IBM stock; the top one is daily realized volatility for
data from 07-01-2010 to 07-31-2012 and the bottom is for the series from 01-02-2013 to

11-10-2016.
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Table 1.5: Data generated by TV-GARCH models

Window size 125 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.954 1.24E-02 1.87E-03 0.900 2.05E-03 1.86E-03
Exp-NoVaS 0.965 2.63E-02 5.14E-03 0.918 8.87E-02 6.41E-03

LMF Simple-NoVaS 0.951 1.07E-03 7.81E-04 0.906 7.43E-04 5.29E-04
LMF Exp-NoVaS 0.945 1.09E-03 7.49E-04 0.890 7.12E-04 4.74E-04

GS-NoVaS 0.951 8.84E-04 5.78E-04 0.901 6.27E-04 3.99E-04
GE-NoVaS 0.950 9.25E-04 8.72E-04 0.892 6.66E-04 6.26E-04

LMF GS-NoVaS 0.944 8.10E-04 6.39E-04 0.897 6.83E-04 5.92E-04
LMF GE-NoVaS 0.947 9.25E-04 6.34E-04 0.887 5.15E-04 3.99E-04

GARCH(1,1) 0.885 5.03E-04 4.14E-04 0.842 4.07E-04 5.29E-04
Window size 250 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.939 2.61E-03 3.43E-03 0.884 1.22E-03 8.47E-03

Exp-NoVaS 0.968 9.69E-04 6.66E-04 0.911 6.85E-04 4.42E-04
LMF Simple-NoVaS 0.944 9.27E-04 7.90E-04 0.893 6.54E-04 4.96E-04

LMF Exp-NoVaS 0.924 1.12E-03 7.41E-04 0.881 7.51E-04 4.97E-04
GS-NoVaS 0.947 9.82E-04 6.39E-04 0.891 5.52E-04 2.97E-04
GE-NoVaS 0.948 9.25E-04 6.70E-04 0.888 5.25E-04 2.91E-04

LMF GS-NoVaS 0.940 8.71E-04 6.71E-04 0.891 1.02E-03 1.00E-03
LMF GE-NoVaS 0.940 8.11E-04 5.68E-04 0.895 6.36E-04 5.84E-04

GARCH(1,1) 0.909 4.19E-04 4.03E-04 0.854 3.28E-04 5.22E-04
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Table 1.6: Data generated by CP-GARCH models

Window size 125 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.960 3.96E-03 4.21E-02 0.908 2.21E-03 2.36E-02
Exp-NoVaS 0.963 1.07E-02 1.92E-02 0.918 1.61E-03 1.80E-03

LMF Simple-NoVaS 0.958 1.73E-03 1.79E-03 0.897 1.18E-03 1.21E-03
LMF Exp-NoVaS 0.946 2.40E-03 2.58E-03 0.894 1.58E-03 1.70E-03

GS-NoVaS 0.950 1.10E-03 8.86E-04 0.901 8.10E-04 6.33E-04
GE-NoVaS 0.950 2.39E-03 2.35E-03 0.897 1.79E-03 1.79E-03

LMF GS-NoVaS 0.938 1.78E-03 1.72E-03 0.896 1.37E-03 1.36E-03
LMF GE-NoVaS 0.949 1.70E-03 2.03E-03 0.889 9.42E-04 9.35E-04

GARCH(1,1) 0.901 3.42E-03 1.52E-03 0.833 2.60E-03 5.74E-03
Window size 250 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.949 3.04E-03 5.25E-03 0.907 2.10E-03 3.19E-03

Exp-NoVaS 0.957 2.84E-03 3.01E-03 0.900 1.82E-03 1.78E-03
LMF Simple-NoVaS 0.952 1.80E-03 1.42E-03 0.892 1.25E-03 9.79E-04

LMF Exp-NoVaS 0.941 2.46E-03 1.85E-03 0.893 1.66E-03 1.23E-03
GS-NoVaS 0.949 3.86E-03 3.09E-03 0.906 4.84E-03 4.15E-03
GE-NoVaS 0.944 1.89E-03 1.24E-03 0.890 1.75E-03 1.36E-03

LMF GS-NoVaS 0.956 4.08E-03 4.86E-03 0.911 2.84E-03 3.03E-03
LMF GE-NoVaS 0.943 1.96E-03 1.73E-03 0.880 1.28E-03 1.00E-03

GARCH(1,1) 0.916 1.86E-03 1.47E-03 0.871 1.34E-03 7.87E-03

38



Table 1.7: Foreign exchange rate data

Window size 250 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.97 6.64E-04 6.25E-04 0.922 3.86E-04 3.32E-04
Exp-NoVaS 0.968 6.86E-04 5.63E-04 0.908 3.35E-04 2.33E-04

LMF Simple-NoVaS 0.958 4.71E-04 3.97E-04 0.898 3.02E-04 2.39E-04
LMF Exp-NoVaS 0.964 5.23E-04 3.47E-04 0.924 3.15E-04 2.14E-04

GS-NoVaS 0.950 4.45E-04 3.72E-04 0.906 3.09E-04 2.02E-04
GE-NoVaS 0.950 4.51E-04 2.78E-04 0.896 2.71E-04 1.72E-04

LMF GS-NoVaS 0.946 4.14E-04 2.85E-04 0.9 2.81E-04 1.54E-04
LMF GE-NoVaS 0.950 4.20E-04 1.82E-04 0.886 2.67E-04 9.95E-05

GARCH(1,1) 0.928 3.60E-04 1.73E-04 0.87 2.25E-04 1.37E-04
Window size 500 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.945 6.17E-04 8.48E-04 0.895 3.79E-04 5.07E-04

Exp-NoVaS 0.953 5.00E-04 5.27E-04 0.888 3.09E-04 3.16E-04
LMF Simple-NoVaS 0.918 4.86E-04 3.03E-04 0.862 6.09E-04 3.69E-04

LMF Exp-NoVaS 0.954 5.13E-04 5.18E-04 0.914 3.14E-04 3.10E-04
GS-NoVaS 0.949 3.05E-04 1.55E-04 0.906 2.08E-04 8.80E-05
GE-NoVaS 0.949 3.56E-04 1.90E-04 0.902 2.05E-04 9.05E-05

LMF GS-NoVaS 0.946 4.10E-04 1.98E-04 0.890 2.66E-04 1.21E-04
LMF GE-NoVaS 0.950 3.89E-04 1.20E-04 0.912 2.56E-04 6.66E-05

GARCH(1,1) 0.928 1.60E-04 1.73E-04 0.870 2.25E-04 1.37E-04
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Table 1.8: S&P500 Stock index data

Window size 250 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.946 6.04E-04 8.10E-04 0.896 3.78E-04 4.11E-04
Exp-NoVaS 0.940 5.51E-04 4.37E-04 0.880 3.42E-04 2.35E-04

LMF Simple-NoVaS 0.934 5.02E-04 5.69E-04 0.880 3.24E-04 3.20E-04
LMF Exp-NoVaS 0.956 5.32E-04 4.19E-04 0.894 3.31E-04 2.56E-04

GS-NoVaS 0.948 4.12E-04 3.66E-04 0.896 2.99E-04 2.54E-04
GE-NoVaS 0.950 4.20E-04 2.76E-04 0.898 2.95E-04 1.70E-04

LMF GS-NoVaS 0.946 4.38E-04 3.47E-04 0.892 2.86E-04 2.14E-04
LMF GE-NoVaS 0.948 4.25E-04 2.93E-04 0.900 2.87E-04 1.99E-04

GARCH(1,1) 0.938 3.25E-04 2.27E-04 0.862 1.92E-04 1.67E-04
Window size 500 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.961 1.59E-03 5.35E-03 0.918 1.06E-03 3.84E-03

Exp-NoVaS 0.948 1.16E-03 8.49E-04 0.878 7.77E-04 5.68E-04
LMF Simple-NoVaS 0.929 1.49E-03 5.13E-03 0.872 9.68E-04 3.44E-03

LMF Exp-NoVaS 0.952 1.61E-03 4.67E-03 0.897 9.92E-04 2.81E-03
GS-NoVaS 0.949 5.26E-04 2.71E-04 0.894 3.43E-04 1.91E-04
GE-NoVaS 0.949 3.56E-04 1.90E-04 0.892 3.36E-04 1.51E-04

LMF GS-NoVaS 0.944 6.78E-04 4.87E-04 0.894 4.45E-04 3.18E-04
LMF GE-NoVaS 0.936 5.86E-04 3.01E-04 0.884 4.58E-04 2.75E-04

GARCH(1,1) 0.927 4.58E-04 3.04E-03 0.863 3.60E-04 1.82E-03
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Table 1.9: Stock price series (IBM) data

Window size 250 nominal coverage 95% nominal coverage 90%
Methods CVR LEN St.err CVR LEN St.err

Simple-NoVaS 0.964 1.42E-03 7.51E-04 0.918 7.67E-04 4.71E-04
Exp-NoVaS 0.954 1.31E-03 1.28E-03 0.894 7.75E-04 4.21E-04

LMF Simple-NoVaS 0.958 1.02E-03 5.73E-04 0.918 7.83E-04 4.42E-04
LMF Exp-NoVaS 0.956 1.08E-03 6.64E-04 0.914 7.48E-04 3.81E-04

GS-NoVaS 0.954 9.16E-04 4.45E-04 0.894 7.09E-04 4.37E-04
GE-NoVaS 0.946 8.50E-04 3.48E-04 0.896 6.99E-04 4.28E-04

LMF GS-NoVaS 0.950 9.17E-04 4.81E-04 0.890 6.88E-04 3.89E-04
LMF GE-NoVaS 0.952 1.01E-03 5.85E-04 0.898 6.67E-04 3.43E-04

GARCH(1,1) 0.940 8.99E-04 4.01E-04 0.878 5.60E-04 1.75E-04
Window size 500 nominal coverage 95% nominal coverage 90%

Methods CVR LEN St.err CVR LEN St.err
Simple-NoVaS 0.957 1.26E-03 7.64E-03 0.910 8.47E-04 7.74E-04

Exp-NoVaS 0.949 1.16E-03 8.24E-03 0.879 7.74E-04 5.51E-04
LMF Simple-NoVaS 0.955 1.25E-03 1.16E-03 0.906 8.39E-04 7.67E-04

LMF Exp-NoVaS 0.957 1.33E-03 9.84E-04 0.879 8.67E-04 5.51E-04
GS-NoVaS 0.948 1.14E-03 1.91E-04 0.902 1.13E-04 2.61E-04
GE-NoVaS 0.949 2.13E-03 3.75E-04 0.898 1.71E-04 3.54E-04

LMF GS-NoVaS 0.948 1.68E-03 4.55E-04 0.904 1.33E-04 2.97E-04
LMF GE-NoVaS 0.950 1.93E-03 3.07E-03 0.896 1.30E-04 2.34E-03

GARCH(1,1) 0.934 5.22E-04 8.06E-04 0.878 1.56E-04 5.56E-04
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Chapter 2

Optimal Multistep-ahead Prediction of

Nonlinear Time Series Models and

Model-free Inference

2.1 Introduction

Multistep-ahead prediction in a time series is to predict a sequence of future values using

only the values observed in the past. It includes predicting the time series for crop yield, stock

prices, traffic volume, and electrical power consumption. In this section, we focus on multistep-

ahead prediction of squared financial returns, which is preformed in volatility as a conditional

mean of the squared returns. A typical approach to solve this problem, known as multi-stage

prediction, is to construct a single model from the past observed time series data and then apply

the model step by step to predict its future values. It also uses the predicted value of the current

time step to determine its value in the next time step. A lot of empirical evidences have been

given that multi-stage prediction is susceptible to the error accumulation problem, i.e., errors

committed in the past will be propagated into future predictions.
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This chapter considers an alternative approach to multistep-ahead prediction of the squared

returns for the nonlinear time series models, such as ARCH/GARCH models. Our method

depends only on their past observations for each prediction step and try to eliminate the errors

accumulation issue. Here we focus on the two most popular nonlinear time series models for

financial returns series — ARCH/GARCH models— and also the normalizing and variance-

stabilizing transformation (NoVaS, for short) method.

The chapter here is organized as follows: Section 2 presents the work on the optimal

multistep-ahead point predictions for ARCH and GARCH processes and NoVaS transformation;

Section 3 addresses the optimal multistep-ahead prediction methods for prediction intervals;

Section 4 illustrate the numerical performance by means of some simulated examples; the

concluding remarks is provided in Section 5.

2.2 Optimal Multistep-ahead Point Prediction

First consider a zero mean and (strictly) stationary financial returns time series {Xt ,1≤

t ≤ n}. Our goal is to predict the future squared returns X2
n+h for any h≥ 2.

Let Fn be a short-hand for the observed information set, i.e., Fn = {Xt ,1≤ t ≤ n}. In the

L2 sense, the optimal predictor of X2
n+h based on Fn is the conditional mean and given by

X̂2
n+h = E(X2

n+h|Fn). (2.2.1)

Similarly, the optimal L1 predictor is the conditional median as

X̂2
n+h = Median(X2

n+h|Fn). (2.2.2)

In the following parts of this section, we study the multistep-ahead prediction in the nonlinear

financial models ARCH/GARCH(1,1) and NoVaS, which is an application of model-free approach
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in financial returns data.

2.2.1 For ARCH(p) and GARCH(1,1) models

Suppose the data follow an ARCH(p) process which is defined as

Xt = σtεt , and σ
2
t = α+a1X2

t−1 + ...+apX2
t−p (2.2.3)

where α≥ 0, a j ≥ 0 for all j = 1, . . . , p, and {εt} ∼ i.i.d.N(0,1).

First, let’s look at the simplest case h = 2. Based on the model (2.2.3), we can express

Xn+1 and Xn+2 in the following way:

Xn+1 = εn+1

√
σ2

n+1, and σ
2
n+1 = α+a1X2

n + ...+apX2
n−p+1,

Xn+2 = εn+2

√
σ2

n+2, and σ
2
n+2 = α+a1X2

n+1 + ...+apX2
n−p+2.

Obviously, Xn+1 can be easily written as a function of the past observations Xn, ... ,Xn+1−p and

the unknown future error εn+1. Furthermore, we can also rewrite Xn+2 to be a function of

Xn, ... ,Xn+1−p and the unknown future errors εn+1, and εn+2. The notations are as followings:

Xn+1 =εn+1

√
α+a1Xn +a2X2

n−1 + ...+apX2
n−p+1

= f1(X1, ...,Xn;εn+1)

(2.2.4)

Xn+2 =εn+2

√
α+a1X2

n+1 +a2X2
n + ...+apX2

n−p+2

=εn+2

√
α+a1ε2

n+1(α+a1Xn +a2X2
n−1 + ...+apX2

n−p+1)+a2X2
n + ...+apX2

n−p+2

= f2(X1, ...,Xn;εn+1,εn+2)

(2.2.5)
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Recursively, we can express Xn+h for any h ≥ 1 as a function of past observations

{X1, ...,Xn} and the unknown future innovations {εn+1, . . . ,εn+h} like

Xn+h = fh(X1, ...,Xn;εn+1, . . . ,εn+h). (2.2.6)

Since {X1, ...,Xn} are given and known, we can write (2.2.6) simply as

Xn+h = fh(εn+1, . . . ,εn+h), for any h≥ 1. (2.2.7)

So the squared financial returns can be rewritten as f 2
h for any future values. Based on the assump-

tion that εt is i.i.d N(0,1), the conditional distribution function Ff 2
h

of the future squared returns

f 2
h (·) can be derived. Hence, the optimal predictor (conditional median for L1 or conditional

mean for L2) of x2
n+h is easy to be calculated by the Ff 2

h
.

Take h = 1 and h = 2 as an example. By (2.2.4), (2.2.5), the L2 optimal predictors of

X2
n+1 and X2

n+2 are

X̂2
n+1 =E{ε2

n+1(α+a1Xn +a2X2
n−1 + ...+apX2

n−p+1)|Fn}

=α+a1X2
n +a2X2

n−1 + ...+apX2
n−p+1,

(2.2.8)

X̂2
n+2 =E[ε2

n+2(α+a1σ
2
n+1ε

2
n+1 +a2X2

n + ... +apX2
n−p+2)|X1, ... ,Xn]

=α+a1σ
2
n+1 +a2X2

n + ... +apX2
n−p+2

(2.2.9)

since E(ε2
n+1|Fn) = 1 and E(ε2

n+2|Fn) = 1 by the assumption. First, we can note that X̂2
n+1 =

f 2
1 (ε

2
n+1 = 1) and X̂2

n+2 = f 2
2 (ε

2
n+1 = 1,ε2

n+2 = 1). Actually, we can easily verify that for any

h≥ 1,
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X̂2
n+h = f 2

h (ε
2
n+1 = 1, . . . ,ε2

n+h = 1), for any h≥ 1 and in the L2 sense (2.2.10)

Also, because all εt’s are independent with each other as well as the past values of

time points less than n, the predictions in (2.2.10) are equivalent to the method of multi-stage

prediction, which apply the predicted values of the current time step to determine its value in the

next time step. However, for the L1 case, because the median function is not a linear operator,

this conclusion is not true. We have derived an approximate analytic form of the conditional

distribution function of X2
n+2 as following:

Ff 2
2
(x|{Xn, ... ,X1}) =

γ(1
2 ,

x
2A)

B
√

π
, x > 0

where

A = α+a2X2
n +a3X2

n−1 + ...+apX2
n−p+2,

B = a1σ
2
n+1 = a1(α+a1X2

n + ...+apX2
n−p+1),

γ(s,x) =
∫ x

0
ts−1e−tdt, s > 0

Solve Ff 2
h
(x|{Xn, ... ,X1}) = 1

2 , we get the

X̂2
n+2 ≈

π

8
AB2 +π

4B4.

For the GARCH(1,1) process with i.i.d errors, we can use the similar way to predict the

futures. Based on the exact formula of a GARCH(1,1) model, we can also write the future value

Xn+h(h≥ 1) as a function fh of the past observations and the unknown i.i.d errors εn+1, . . . ,εn+h.
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2.2.2 For NoVaS

Given a sequence of observations {X1, ...,Xn}, we will fit the data by a special application

of model-free methodology—NoVaS, which was first introduced by Politis (2003, 2007) for

stationary data in prediction of squared financial returns. Let us continue considering a zero mean

and (strictly) stationary financial return time series {Xt , t ≤ n}. The NoVaS methodology is trying

to map the dataset X1, . . . ,Xn to a i.i.d Gaussian series {Wt , t ≤ n}, where

Wt :=
Xt√

αs2
t−1 +a0X2

t +∑
p
i=1 aiX2

t−i

for t = p+1, p+2, . . . ,n. (2.2.11)

More details of the NoVaS transformation can be found in Chapter 1. Suppose that the NoVaS

parameters, i.e., the order p(≥ 0) and the parameters α,a0, . . . ,ap have already been chosen by

Simple NoVaS or Exponential NoVaS or Generalized NoVaS or not; see more details of different

methods to choose the parameters in NoVaS in Politis (2007). Re-arrange the NoVaS Eq. (2.2.11)

and then yield:

Xt =
Wt√

1−a0W 2
t

√√√√(αs2
t−1 +

p

∑
i=1

aiX2
t−i

)
for t = p+1, . . . ,n (2.2.12)

Given {X1, . . . ,Xn} and using NoVaS transformation on them, similarly we can write Xn+h

for h≥ 1 as some function of {X1, . . . ,Xn} and {Wt , t = 1, ...,h}.

Xn+h = fh(X1, . . . ,Xn;Wn+1, . . . ,Wn+h) (2.2.13)

Since {X1, . . . ,Xn} are given, we can simplify (2.2.13) as

Xn+h = fh(Wn+1, . . . ,Wn+h) (2.2.14)
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Let Fn be a short-hand for the observed information set, i.e., Fn = {Xt ,1≤ t ≤ n}. In the

L2 sense, the optimal prediction of X2
n+h based on Fn is given by

X̂2
n+h = E(X2

n+h|Fn) = E{ f 2
h (Wn+1, . . . ,Wn+h)|Fn)} (2.2.15)

Since Wt are i.i.d, we can get the similar results with those of the ARCH/GARCH models.

X̂2
n+h = f 2

h (W
2
n+1 = 1, . . . ,W 2

n+h = 1)) (2.2.16)

Actually for any h≥ 1, we can use the similar idea with that in ARCH/GARCH cases to conduct

multistep-ahead prediction in NoVaS by approximating the conditional mean or median from

their conditional distribution functions.

2.2.3 Generalization

We can generalize the above prediction method to an interesting class of prediction

functions g(·), namely the power family where g(x) = xk for some fixed k, and the power-absolute

value family where g(x) = |x|k. In the above case, we work on the prediction of X2
n+h, that is,

g(x) = x2. Similarly, we can derive the best L2 or L1 predictor of g(Xn+h) given Fn.

For h = 2 case above, we can easily get an analytic formula of the conditional distribution

of X2
n+h. However, when h is large or the data generating process is complex, even with the same

independence and identical distribution assumptions of errors, it is still not easy or sometimes

impossible to derive the analytic formula of the conditional distribution of g(Xn+h). To solve this

problem, we can resort some numerical methods to approximate the conditional distribution and

then compute the conditional mean and/or median.

Since the errors are independent and with the distribution function Fε (F is normal

distribution in the above setting), we can easily estimate the conditional median by generating
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many εn+i i.i.d from Fε or the empirical distribution function F̂ε. The detailed algorithms are

given as follows.

Algorithms to compute the conditional mean/median of ARCH/GARCH(1,1)

Suppose all parameters in the model are known, and {εt} ∼ i.i.d. with distribution Fε.

Under the independence of {εt} for all t ≥ 1, we can generate many ε∗n+1, . . . ,ε
∗
n+h ∼ i.i.d. from

Fε by Monte Carlo and compute the values of a sequence of g(X∗n+h).

ALGORITHM 2.2.1. h-STEP AHEAD PREDICTION WITH

PARAMETERS KNOWN

Step 1. Compute Xn+h based on (2.2.1) if it is an ARCH(p) process or (2.2.3)

if it is a GARCH(1,1) process as a function of {X1, ... ,Xn} and

{εn+1, ... ,εn+h}.

Step 2. Using Monte Carlo B times, each time generate {ε∗n+1, ... ,ε
∗
n+h} from

F and plug in the function obtained in step.1 to compute the series of

{X (1)
n+h, .... ,X

(B)
n+h}. Then compute the series of {g(X (1)

n+h), .... ,g(X
(B)
n+h)}.

Step 3. Calculate the predictor ̂g(Xn+h) of g(Xn+h) by taking the median (if L1

measure) or mean (if L2 measure) of the series {g(X (1)
n+h), . . . ,g(X

(B)
n+h)}.

If the parameters and Fε in the model are unknown, firstly we need to select the lag order

p if ARCH(p) and then estimate the parameters. Fε can be approximated by F̂ε.
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ALGORITHM 2.2.2. h-STEP AHEAD PREDICTION WITH

PARAMETERS UNKNOWN

Step 1. Fit the data with an ARCH(p) or GARCH(1,1) model and get the

estimators {â0, â1, ... , âp} if fitting ARCH(p) or {α̂, â1, b̂1} if fitting

GARCH(1,1) and also record the residuals {ε̂1, ... , ε̂n} with the

distribution function F̂ε.

Step 2. Using the estimators of coefficients in Step 1, compute Xn+h as a

function of {X1, ... ,Xn} and {εn+1, ... ,εn+h}.

Step 3. Using Monte Carlo B times, each time generate {ε∗n+1, ... ,ε
∗
n+h} from

F̂ε and then compute the series of {X (1)
n+h, .... ,X

(B)
n+h}. Then compute the

series of {g(X (1)
n+h), .... ,g(X

(B)
n+h)}.

Step 4. Calculate the predictor ̂g(Xn+h) of g(Xn+h) by taking median (if L1

measure) or mean (if L2 measure) of the series {g(X (1)
n+h), . . . ,g(X

(B)
n+h)}.

Remark. Bose and Mukherjee (2009) proposed a weighted linear estimator(WLE) to estimate

the ARCH parameters. This method does not involve nonlinear optimization and gives a closed

form expression, so it is computationally easier to obtain the estimator compared to QMLE. We

use the WLE to get the estimators {â0, â1, ... , âp} of {a0,a1, ... ,ap} in Algorithm 2.2.2.

Remark. If the innovations {εt} are i.i.d N(0,σ2), we can directly generate ε∗n+1, ... ,ε
∗
n+h each

time from N(0, σ̂2) in step 3 of Algorithm 2.2.1. σ̂2 is given by

σ̂
2 =

1
n

n

∑
t=1

(ε̂t− ε̄)2 and ε̄ =
1
n

n

∑
t=1

ε̂t .

In order to estimate the conditional mean or conditional median in NoVaS transformation,

we should first use one of the NoVaS methods (Simple vs. Exponential, Generalized or not,
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etc.) to get the coefficients α,a0,a1, ... ,ap. Based on the independence and standard normal

distribution of Wt , we can use Monte Carlo to generate different W ∗n+k for k = 1, . . . ,h. and then

approximate the distribution of fh(Wn+1, . . . ,Wn+h). The following algorithm is similar with

Algorithm 2.2.2.

ALGORITHM 2.2.3. h-STEP AHEAD PREDICTION FOR NOVAS

Step 1. Use one of the NoVaS methods (Simple vs. Exponential, Generalized

or not, etc.) to obtain the transformed data {Wt for t = p+1, . . . ,n}

and the coefficients α, p and a0,a1, ... ,ap.

Step 2. Compute the analytic form of Xn+h as a function of {X1, ... ,Xn} and

{Wn+1, ... ,Wn+h} and {a0,a1, ... ,ap} based on the NoVaS

transformation method we use in Step 1.

Step 3. Use Monte Carlo B times, each time generate {W ∗n+1, ... ,W
∗
n+h} from

N(0,1) distribution truncated to ± 1√
a0

. Then plug in the generated

series {W ∗n+1, ... ,W
∗
n+h} into the form obtained in the above Step 2 to

compute X ( j)
n+h, where j = 1, . . . , B. Then to compute g(X ( j)

n+h), where j =

1, . . . , B.

Step 4. Calculate the predictor ̂g(Xn+h) of g(Xn+h) by taking the median (if L1

measure) or mean (if L1 measure) of the series {g(X (1)
n+h), . . . ,g(X

(B)
n+h)}.

Remark. From (2.2.11), we note that

1
W 2

t
=

αs2
t−1 +a0X2

t +∑
p
i=1 aiX2

t−i

X2
t

≥ a0
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if all the parameters are nonnegative, therefore,

|Wt | ≤ 1/
√

a0 (2.2.17)

So one must be careful to ensure that the {Wt} variables have a large enough range such that the

boundedness is not seen as spoiling the normality. Thus, we also require

1
√

a0
≥C i.e., a0 ≤ 1/C2 (2.2.18)

for some appropriate C of the practitioner’s choice.Recalling that 99.7% of the mass of the N(0,1)

distribution is found in the range±3, the simple choice C = 3 can be suggested; this choice seems

to work reasonably well—at least for the usual samples sizes. Therefore, in step 3 of Algorithm

2.2.3, we use a truncated norm distribution.

2.3 Prediction Intervals

For multi-step ahead interval predictions, we use the above methods as well as bootstrap to

construct α-level confidence intervals of g(Xn+h). Given the financial returns series {X1, . . . ,Xn},

now we construct L1 and L2 h-step ahead prediction intervals of g(Xn+h). The basic Model-free

(MF, for short) bootstrap algorithm for one-step ahead prediction intervals in the setting of

financial returns can be found in Chapter 1.
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ALGORITHM 2.3.1 BOOTSTRAP PREDICTION INTERVALS FOR

g(Xn+h) USING GARCH(1,1)

1. Use Algorithm 2.2.1 or Algorithm 2.2.2 to compute predictors ̂g(Xn+h),

the point predictor of g(Xn+h) and the residuals {ε̂t , t = 1, . . . ,n}.

3. (a) Re-sample (with replacement) the residuals {εt for t = 1, . . . ,n}

to create the pseudo-data ε∗p+1, · · · ,ε∗n−1,ε
∗
n and ε∗n+1, · · · ,W ∗n+h.

Then Generate the bootstrap pseudo-data X∗t for t = p+1, . . . ,n

by iteration based on the fitted models in Step 1.

(b) Calculate the bootstrap future value X∗n+h by iteration

(c) Based on the bootstrap data X∗1 , . . . ,X
∗
n , re-estimate the

parameters. With the data Xn−p+1, . . . ,Xn and the re-estimated

parameters, use Algorithm 2.2.1 to calculate the bootstrap

predictor ̂g(X∗n+h).

(d) Calculate the bootstrap root: g(X∗n+h)− ̂g(X∗n+h).

4. Repeat step 3 above B times; the B bootstrap root replicates are

collected in the form of an empirical distribution whose α-quantile is

denoted q(α) .

5. The (1−α)100% equal-tailed prediction interval for g(Xn+h) is given

by

[ ̂g(Xn+h)+q(α/2), ̂g(Xn+h)+q(1−α/2)].
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ALGORITHM 2.3.2. MF BOOTSTRAP PREDICTION INTERVALS

FOR g(Xn+h)

1. Use one of the NoVaS algorithms (Simple vs.Exponential, Generalized

or not, etc.) to obtain the transformed data {Wt for t = p+1, . . . ,n}

that are assumed to be approximately i.i.d. Let p, α and ai denote the

fitted NoVaS parameters.

2. Use Algorithm 2.2.3 to calculate ̂g(Xn+h), the point predictor of

g(Xn+h).

3. (a) Re-sample randomly (with replacement) the transformed

variables {Wt for t = p+1, . . . ,n} to create the pseudo-data

W ∗p+1, · · · ,W ∗n−1,W
∗
n and W ∗n+1, · · · ,W ∗n+h.

(b) Let (X∗1 , . . . ,X
∗
p)
′ = (X1+I, · · · ,Xp+I)

′ where I is generated as a

discrete random variable uniform on the values 0,1, . . . ,n− p.

(c) Generate the bootstrap pseudo-data X∗t for t = p+1, . . . ,n using

the following equations, i.e., let

X∗t =
W ∗t√

1−a0W ∗2t

√
αs∗2t−1 +

p

∑
i=1

aiX∗2t−i for t = p+1, . . . ,n

(2.3.1)

where s∗2t−1 = (t−1)−1
∑

t−1
k=1 X∗2k .
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3. (d) Calculate the bootstrap future value X∗n+h by iteration as

X∗n+1 =
W ∗n+1√

1−a0W ∗2n+1

√
αs2

n +
p

∑
i=1

aiX2
n−i+1

where s2
n = n−1

∑
n
i=1 X2

i .

if h < p, for j = 2, . . . ,h

X∗n+ j =
W ∗n+ j√

1−a0W ∗2n+ j

√√√√αs2
n+1− j +

j−1

∑
k=1

akX∗2n−k+ j +
p

∑
i= j

aiX2
n−i+ j

(2.3.2)

if h > p, for j = 2, . . . ,h

X∗n+ j =
W ∗n+ j√

1−a0W ∗2n+ j

√
αs2

n+1− j +
p

∑
i=1

aiX∗2n−i+ j (2.3.3)

where s2
n+1− j = (n+ j−1)−1(∑n

i=1 X2
i +∑

j−1
k=1 X∗2n+k).

(e) Based on the bootstrap data X∗1 , . . . ,X
∗
n , re-estimate the NoVaS

transformation yielding parameters p∗, α∗, a∗0,a
∗
1, . . . ,a

∗
p. With

the data Xn−p+1, . . . ,Xn and the parameters p∗, α∗, a∗0,a
∗
1, . . . ,a

∗
p,

use Algorithm 2.2.3 to calculate the bootstrap predictor ̂g(X∗n+h)

(f) Calculate the bootstrap root: g(X∗n+h)− ̂g(X∗n+h).

4. Repeat step 3 above B times; the B bootstrap root replicates are

collected in the form of an empirical distribution whose α-quantile is

denoted q(α).

5. The (1−α)100% equal-tailed prediction interval for g(Xn+h) is given

by

[ ̂g(Xn+h)+q(α/2), ̂g(Xn+h)+q(1−α/2)].
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2.4 Simulation and Finite Sample performance

In this section, we conduct some simulation to examine the finite sample performance of

our algorithms.

2.4.1 Settings

In the simulation, 200 data-sets XN = (X1, ... ,XN)
′ are generated separately by the follow-

ing 7 different GARCH(1,1) models.

Model 1. Standard GARCH with Gaussian errors and finite fourth moment:

Xt = σtεt , σ2
t = .00001+ .73σ2

t−1 + .10X2
t−1, {εt} ∼ i.i.d.N(0,1).

Model 2. Standard GARCH with Gaussian errors and infinite fourth moment:

Xt = σtεt , σ2
t = .00001+0.8895σ2

t−1 + .10X2
t−1, {εt} ∼ i.i.d.N(0,1).

Model 3. Standard GARCH with student-t errors:

Xt = σtεt , σ2
t = .00001+ .73σ2

t−1 + .10X2
t−1, {εt} ∼ i.i.d. t distributed with degree of

freedom 5.

Model 4. GARCH with slowing varying parameters(TV-GARCH):

The value of β decreases as a linear function of t, starting at β1 = 0.10 for t = 1, and

ending at β = 0.05 for t = n. At the same time, the value of α increases as a linear function

of t, starting at α = 0.73 for t = 1, and ending at α = 0.93 for t = n. ω = 0.00001 and

{εt} ∼ i.i.d.N(0,1).

Model 5. Two-state Markov Switching GARCH(1,1) (MS-GARCH):

Xt = σtεt ,σ
2
t =

2

∑
s=1

1{P(St = s)}[ωs +αtσ
2
t−1 +βsX2

t−1
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In the first regime, we set α1 = 0.9, β1 = 0.07,ω1 = 2.4e−5. In the second regime, we

set α2 = 0.7, β2 = 0.22,ω2 = 1.2e− 4. The transition probabilities for the first regime

are p11 = 0.9 and p12 = 0.1 while for the second regime we use p21 = 0.3 and p22 = 0.7.

{εt} ∼ i.i.d.N(0,1).

Model 6. Smooth Transition GARCH(ST-GARCH):

Xt = [a−b(t/T )]σtεt , σ
2
t = ω+ασ

2
t−1 +βX2

t−1

where {εt} ∼ i.i.d.N(0,1). ω = 1.2e− 5,α = 0.9,β = 0.07,a = α+β = 0.97, and b =

β/α≈ 0.078.

Model 7. Stochastic Volatility Model(SV-GARCH):

Xt |ht ∼ N(0,exp(ht)),

ht |ht−1 ∼ N(µ+φ(ht−1−µ),η2), h0 ∼ N(µ,η2/(1−φ
2)),

where µ =−10, φ = 0.95, η = 0.2.

Each dataset is of size n = 100. We try to do up to 5 step ahead point predictions and in-

terval predictions for each dataset. In the evaluating process, repeat Monte Carlo 5000 times. Five

models or transformations are used to fit the data in both point predictions and interval predictions

as follows: fitting a GARCH(1,1) model, Simple-NoVaS, Exponential NoVaS(Exp-NoVaS, for

short), General Simple Novas(GS-NoVaS, for short) and General Exponential NoVaS(GE-NoVaS,

for short).

In point predictions, the mean absolute deviations(MADs) and mean squared errors(MSEs)

for 5 steps ahead point predictions in both the L1 and L2 senses(the absolute value or the

square of the prediction error at the updated time point averaged over the 200 replications)
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are recorded. Also, the bootstrap prediction interval(Li, Ui) with a nominal coverage %95 was

constructed for the future values Xn+h with h = 1, . . . ,5. The bootstrap replication B = 300.

The corresponding empirical average coverage level(CVR) and the average length(LEN) of the

constructed intervals and the standard error (St.err) associated with each length of the constructed

intervals are calculated as

CV R =
1
N

N

∑
i=1

1[Li,Ui]X(n+h,i)

LEN =
1
N

N

∑
i=1

LENi and St.err =
1
N

N

∑
i=1

(LENi−LEN)2

where LENi =Ui−Li..

2.4.2 Results and Discussions

The simulation results for point predictions are shown in Table 2.1 - 2.28. The following

conclusions can be obtained from the results:

• When comparing the MADs between the L1 and L2 predictions by fitting the same models,

we can find that MADs of L1 predictions are always smaller than that of L2 predictions.

Also, we can find that MSEs of L1 predictions are always bigger than that of L2 predictions,

when comparing the MSEs between the L1 and L2 predictions with same models’ settings.

These are both theoretically and empirically reasonable since in the L1 sense, we try to

minimize the mean absolute deviations. While for L2, the loss function to be minimized is

the mean squared errors.

• Furthermore, for each model fitting results, there are not obvious errors accumulation

problems in the multistep-ahead prediction for both L1 and L2 measures. In this project, we

just did up to five steps ahead predictions. Maybe we can conduct much more than five

steps to examine if the errors accumulation issue becomes worse.
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• NoVaS methods consistently perform better than GARCH(1,1) for all data generating

processes. When the prediction step is higher, the difference of their performance are

getting smaller.

For prediction intervals, the simulated results are summarized in Table 2.29-2.35. We can

find the conclusions are similar with that of the point predictions. However, NoVaS methods give

more accurate coverage than GARCH(1,1) in the L1 sense prediction for all these data generating

processes. In the L2 sense, when the data are generated from a standard GARCH(1,1) with

normal errors, GARCH(1,1) also gives good coverage as NoVaS. When we use other models

to generate data, for example, GARCH(1,1) with t distributed errors and MS-GARCH(1,1) and

ST-GARCH(1,1) and others, GARCH(1,1) performs very poorly while NoVaS methods are still

as good. These results show the drawbacks of GARCH(1,1) again in the Chapter 1. NoVaS

methods are more robust than GARCH(1,1) when the data is nonstationary or with structure

breaks.

Table 2.1: MADs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .8895,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 8.23E-05 7.35E-05 6.93E-05 8.86E-05 1.49E-04

Simple-NoVaS 6.99E-05 7.88E-05 8.29E-05 1.06E-04 1.63E-04
Exp-NoVaS 7.21E-05 8.28E-05 8.72E-05 1.14E-04 1.70E-04
GS-NoVaS 6.30E-05 7.31E-05 8.07E-05 8.71E-05 9.94E-05
GE-NoVaS 7.02E-05 8.44E-05 8.76E-05 1.16E-04 1.71E-04
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Table 2.2: MADs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .8895,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 1.48E-04 2.07E-04 2.67E-04 3.20E-04 4.60E-04

Simple-NoVaS 5.22E-05 6.44E-05 6.61E-05 8.82E-05 1.49E-04
Exp-NoVaS 5.13E-05 6.41E-05 6.58E-05 8.84E-05 1.50E-04
GS-NoVaS 4.71E-05 5.97E-05 6.06E-05 8.48E-05 1.46E-04
GE-NoVaS 4.84E-05 6.26E-05 6.38E-05 8.73E-05 1.48E-04

Table 2.3: MSEs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .8895,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 2.48E-08 4.42E-08 4.36E-08 1.94E-07 1.12E-06

Simple-NoVaS 1.23E-08 4.24E-08 4.17E-08 1.94E-07 1.12E-06
Exp-NoVaS 1.18E-08 4.21E-08 4.14E-08 1.94E-07 1.12E-06
GS-NoVaS 1.08E-08 4.09E-08 3.94E-08 1.92E-07 1.13E-06
GE-NoVaS 1.10E-08 4.14E-08 4.06E-08 1.92E-07 1.12E-06

Table 2.4: MSEs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .8895,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 1.03E-07 2.11E-07 3.92E-07 6.26E-07 1.86E-06

Simple-NoVaS 1.36E-08 4.15E-08 4.10E-08 1.93E-07 1.11E-06
Exp-NoVaS 1.31E-08 4.13E-08 4.07E-08 1.93E-07 1.12E-06
GS-NoVaS 1.03E-08 3.88E-08 3.73E-08 1.91E-07 1.13E-06
GE-NoVaS 1.13E-08 3.98E-08 3.93E-08 1.88E-07 1.11E-06

Table 2.5: MADs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 4.84E-05 4.69E-05 5.18E-05 5.45E-05 5.99E-05

Simple-NoVaS 4.94E-05 4.73E-05 5.26E-05 5.59E-05 6.00E-05
Exp-NoVaS 4.87E-05 4.69E-05 5.24E-05 5.55E-05 6.00E-05
GS-NoVaS 4.83E-05 4.67E-05 5.17E-05 5.44E-05 5.94E-05
GE-NoVaS 4.84E-05 4.69E-05 5.25E-05 5.43E-05 6.00E-05
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Table 2.6: MADs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 5.68E-05 5.45E-05 5.54E-05 6.25E-05 6.26E-05

Simple-NoVaS 6.20E-05 6.05E-05 6.06E-05 6.96E-05 6.67E-05
Exp-NoVaS 6.20E-05 6.09E-05 6.15E-05 7.05E-05 6.87E-05
GS-NoVaS 5.98E-05 5.81E-05 5.84E-05 6.55E-05 6.37E-05
GE-NoVaS 5.50E-05 5.30E-05 5.75E-05 6.22E-05 6.23E-05

Table 2.7: MSEs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 7.94E-09 8.48E-09 7.80E-09 8.67E-09 1.03E-08

Simple-NoVaS 8.00E-09 8.35E-09 7.85E-09 8.88E-09 1.03E-08
Exp-NoVaS 7.95E-09 8.33E-09 7.83E-09 8.84E-09 1.03E-08
GS-NoVaS 7.78E-09 8.35E-09 7.63E-09 8.59E-09 1.02E-08
GE-NoVaS 8.02E-09 8.64E-09 7.99E-09 8.92E-09 1.02E-08

Table 2.8: MSEs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d.N(0,1).

Prediction step 1 2 3 4 5
Fitting a GARCH 7.28E-09 7.47E-09 6.50E-09 7.64E-09 8.65E-09

Simple-NoVaS 7.79E-09 7.50E-09 6.84E-09 8.67E-09 8.85E-09
Exp-NoVaS 7.48E-09 7.34E-09 6.64E-09 8.39E-09 8.70E-09
GS-NoVaS 7.12E-09 7.40E-09 6.41E-09 7.90E-09 8.43E-09
GE-NoVaS 6.99E-09 7.44E-09 6.43E-09 7.68E-09 8.53E-09

Table 2.9: MADs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d. t distributed with degree of freedom 5.

Prediction step 1 2 3 4 5
Fitting a GARCH 1.46E-04 1.26E-04 1.29E-04 1.84E-04 1.77E-04

Simple-NoVaS 1.44E-04 1.24E-04 1.27E-04 1.82E-04 1.76E-04
Exp-NoVaS 1.43E-04 1.22E-04 1.26E-04 1.80E-04 1.75E-04
GS-NoVaS 1.43E-04 1.23E-04 1.27E-04 1.80E-04 1.76E-04
GE-NoVaS 1.43E-04 1.23E-04 1.29E-04 1.81E-04 1.77E-04
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Table 2.10: MADs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d. t distributed with degree of freedom 5.

Prediction step 1 2 3 4 5
Fitting a GARCH 1.72E-04 1.53E-04 1.63E-04 2.17E-04 2.16E-04

Simple-NoVaS 1.58E-04 1.35E-04 1.44E-04 1.97E-04 1.92E-04
Exp-NoVaS 1.57E-04 1.35E-04 1.46E-04 1.98E-04 1.93E-04
GS-NoVaS 1.56E-04 1.35E-04 1.45E-04 1.99E-04 1.92E-04
GE-NoVaS 1.59E-04 1.34E-04 1.48E-04 2.01E-04 1.94E-04

Table 2.11: MSEs of L1 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d. t distributed with degree of freedom 5.

Prediction step 1 2 3 4 5
Fitting a GARCH 1.06E-07 7.11E-08 8.97E-08 2.95E-07 3.81E-07

Simple-NoVaS 1.03E-07 6.86E-08 9.00E-08 2.93E-07 3.83E-07
Exp-NoVaS 1.03E-07 6.83E-08 9.00E-08 2.93E-07 3.82E-07
GS-NoVaS 1.03E-07 6.90E-08 9.05E-08 2.94E-07 3.84E-07
GE-NoVaS 1.05E-07 6.88E-08 9.23E-08 2.96E-07 3.85E-07

Table 2.12: MSEs of L2 predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and {εt} ∼ i.i.d. t distributed with degree of freedom 5.

Prediction step 1 2 3 4 5
Fitting a GARCH 1.05E-07 6.94E-08 8.91E-08 2.84E-07 3.79E-07

Simple-NoVaS 9.24E-08 6.03E-08 8.32E-08 2.77E-07 3.66E-07
Exp-NoVaS 9.16E-08 5.96E-08 8.28E-08 2.76E-07 3.64E-07
GS-NoVaS 9.17E-08 6.07E-08 8.35E-08 2.77E-07 3.67E-07
GE-NoVaS 9.48E-08 6.12E-08 8.53E-08 2.80E-07 3.67E-07
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Table 2.13: MADs of L1 predictions for Data generated from GARCH(1,1) with slowing
varying parameters(TV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.94E-04 2.17E-04 2.01E-04 1.76E-04 2.09E-04

Simple-NoVaS 1.91E-04 2.12E-04 2.03E-04 1.72E-04 2.07E-04
Exp-NoVaS 1.91E-04 2.12E-04 2.02E-04 1.72E-04 2.06E-04
GS-NoVaS 1.91E-04 2.13E-04 2.02E-04 1.73E-04 2.06E-04
GE-NoVaS 1.97E-04 2.17E-04 2.02E-04 1.79E-04 2.13E-04

Table 2.14: MADs of L2 predictions for Data generated from GARCH(1,1) with slowing
varying parameters(TV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.90E-04 2.13E-04 2.03E-04 1.73E-04 2.02E-04

Simple-NoVaS 1.94E-04 2.11E-04 2.07E-04 1.74E-04 2.10E-04
Exp-NoVaS 1.94E-04 2.11E-04 2.05E-04 1.74E-04 2.09E-04
GS-NoVaS 1.91E-04 2.10E-04 1.99E-04 1.71E-04 2.03E-04
GE-NoVaS 1.89E-04 2.09E-04 1.99E-04 1.72E-04 2.07E-04

Table 2.15: MSEs of L1 predictions for Data generated from GARCH(1,1) with slowing
varying parameters(TV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.21E-07 1.70E-07 1.28E-07 1.06E-07 1.58E-07

Simple-NoVaS 1.15E-07 1.61E-07 1.23E-07 9.86E-08 1.53E-07
Exp-NoVaS 1.16E-07 1.61E-07 1.23E-07 9.95E-08 1.52E-07
GS-NoVaS 1.16E-07 1.62E-07 1.24E-07 9.99E-08 1.53E-07
GE-NoVaS 1.25E-07 1.70E-07 1.31E-07 1.08E-07 1.61E-07

Table 2.16: MSEs of L2 predictions for Data generated from GARCH(1,1) with slowing
varying parameters(TV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.07E-07 1.55E-07 1.12E-07 9.44E-08 1.41E-07

Simple-NoVaS 9.60E-08 1.41E-07 1.06E-07 8.36E-08 1.32E-07
Exp-NoVaS 9.60E-08 1.40E-07 1.05E-07 8.39E-08 1.30E-07
GS-NoVaS 9.70E-08 1.41E-07 1.07E-07 8.51E-08 1.32E-07
GE-NoVaS 1.04E-07 1.47E-07 1.12E-07 9.02E-08 1.38E-07
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Table 2.17: MADs of L1 predictions for Data generated from Two-state Markov Switching
GARCH(1,1) (MS-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 6.76E-04 7.67E-04 8.44E-04 7.80E-04 7.14E-04

Simple-NoVaS 7.00E-04 7.74E-04 8.85E-04 7.90E-04 7.26E-04
Exp-NoVaS 7.02E-04 7.75E-04 8.87E-04 7.92E-04 7.26E-04
GS-NoVaS 6.97E-04 7.70E-04 8.80E-04 7.91E-04 7.23E-04
GE-NoVaS 7.06E-04 7.75E-04 8.85E-04 7.98E-04 7.27E-04

Table 2.18: MADs of L2 predictions for Data generated from Two-state Markov Switching
GARCH(1,1) (MS-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 7.80E-04 9.01E-04 9.21E-04 9.17E-04 8.80E-04

Simple-NoVaS 6.77E-04 7.50E-04 8.59E-04 7.73E-04 7.10E-04
Exp-NoVaS 6.78E-04 7.50E-04 8.61E-04 7.75E-04 7.09E-04
GS-NoVaS 6.76E-04 7.50E-04 8.59E-04 7.76E-04 7.08E-04
GE-NoVaS 6.81E-04 7.50E-04 8.62E-04 7.79E-04 7.09E-04

Table 2.19: MSEs of L1 predictions for Data generated from Two-state Markov Switching
GARCH(1,1) (MS-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.27E-06 2.30E-06 2.35E-06 2.78E-06 1.49E-06

Simple-NoVaS 1.45E-06 2.46E-06 2.73E-06 3.09E-06 1.76E-06
Exp-NoVaS 1.45E-06 2.46E-06 2.73E-06 3.10E-06 1.76E-06
GS-NoVaS 1.43E-06 2.45E-06 2.71E-06 3.10E-06 1.74E-06
GE-NoVaS 1.46E-06 2.47E-06 2.74E-06 3.12E-06 1.76E-06
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Table 2.20: MSEs of L2 predictions for Data generated from Two-state Markov Switching
GARCH(1,1) (MS-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.29E-06 2.28E-06 2.05E-06 2.55E-06 1.51E-06

Simple-NoVaS 1.34E-06 2.33E-06 2.58E-06 2.97E-06 1.64E-06
Exp-NoVaS 1.34E-06 2.33E-06 2.59E-06 2.98E-06 1.64E-06
GS-NoVaS 1.33E-06 2.32E-06 2.57E-06 2.97E-06 1.62E-06
GE-NoVaS 1.35E-06 2.33E-06 2.59E-06 2.99E-06 1.64E-06

Table 2.21: MADs of L1 predictions for Data generated from Smooth Transition
GARCH(1,1)(ST-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.83E-04 1.78E-04 2.01E-04 2.02E-04 2.22E-04

Simple-NoVaS 1.83E-04 1.79E-04 2.03E-04 2.02E-04 2.24E-04
Exp-NoVaS 1.82E-04 1.78E-04 2.03E-04 2.02E-04 2.24E-04
GS-NoVaS 1.81E-04 1.78E-04 2.02E-04 1.98E-04 2.21E-04
GE-NoVaS 1.82E-04 1.79E-04 2.05E-04 1.99E-04 2.24E-04

Table 2.22: MADs of L2 predictions for Data generated from Smooth Transition
GARCH(1,1)(ST-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 2.23E-04 2.14E-04 2.18E-04 2.39E-04 2.42E-04

Simple-NoVaS 1.91E-04 1.88E-04 2.02E-04 2.09E-04 2.19E-04
Exp-NoVaS 1.89E-04 1.86E-04 2.03E-04 2.09E-04 2.19E-04
GS-NoVaS 1.90E-04 1.89E-04 2.03E-04 2.09E-04 2.17E-04
GE-NoVaS 1.86E-04 1.83E-04 2.06E-04 2.03E-04 2.20E-04

Table 2.23: MSEs of L1 predictions for Data generated from Smooth Transition
GARCH(1,1)(ST-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.12E-07 1.23E-07 1.14E-07 1.13E-07 1.43E-07

Simple-NoVaS 1.16E-07 1.24E-07 1.19E-07 1.21E-07 1.48E-07
Exp-NoVaS 1.16E-07 1.24E-07 1.20E-07 1.21E-07 1.49E-07
GS-NoVaS 1.12E-07 1.22E-07 1.16E-07 1.16E-07 1.45E-07
GE-NoVaS 1.18E-07 1.27E-07 1.22E-07 1.21E-07 1.50E-07
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Table 2.24: MSEs of L2 predictions for Data generated from Smooth Transition
GARCH(1,1)(ST-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.05E-07 1.13E-07 9.61E-08 1.04E-07 1.25E-07

Simple-NoVaS 1.01E-07 1.09E-07 9.96E-08 1.04E-07 1.23E-07
Exp-NoVaS 9.93E-08 1.08E-07 1.00E-07 1.03E-07 1.23E-07
GS-NoVaS 9.84E-08 1.08E-07 9.85E-08 1.00E-07 1.21E-07
GE-NoVaS 1.00E-07 1.11E-07 1.02E-07 1.02E-07 1.24E-07

Table 2.25: MADs of L1 predictions for Data generated from Stochastic Volatility
Model(SV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 5.35E-05 5.77E-05 4.72E-05 4.28E-05 3.86E-05

Simple-NoVaS 5.34E-05 5.69E-05 4.79E-05 4.45E-05 3.78E-05
Exp-NoVaS 5.35E-05 5.66E-05 4.74E-05 4.35E-05 3.75E-05
GS-NoVaS 5.23E-05 5.68E-05 4.74E-05 4.23E-05 3.79E-05
GE-NoVaS 5.23E-05 5.71E-05 4.79E-05 4.31E-05 3.85E-05

Table 2.26: MADs of L2 predictions for Data generated from Stochastic Volatility
Model(SV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 5.77E-05 6.23E-05 5.56E-05 5.29E-05 5.12E-05

Simple-NoVaS 6.02E-05 6.17E-05 5.85E-05 5.99E-05 5.41E-05
Exp-NoVaS 6.10E-05 6.19E-05 5.99E-05 6.04E-05 5.68E-05
GS-NoVaS 5.74E-05 6.29E-05 6.10E-05 5.85E-05 5.69E-05
GE-NoVaS 5.66E-05 5.96E-05 5.45E-05 5.28E-05 4.77E-05

Table 2.27: MSEs of L1 predictions for Data generated from Stochastic Volatility
Model(SV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 1.04E-08 1.69E-08 1.08E-08 7.03E-09 5.06E-09

Simple-NoVaS 1.02E-08 1.65E-08 1.05E-08 7.06E-09 4.82E-09
Exp-NoVaS 1.04E-08 1.65E-08 1.06E-08 6.99E-09 4.78E-09
GS-NoVaS 1.00E-08 1.66E-08 1.04E-08 6.92E-09 4.80E-09
GE-NoVaS 1.03E-08 1.70E-08 1.08E-08 6.94E-09 5.04E-09
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Table 2.28: MSEs of L2 predictions for Data generated from Stochastic Volatility
Model(SV-GARCH)

Prediction step 1 2 3 4 5
Fitting a GARCH 8.99E-09 1.51E-08 1.02E-08 6.76E-09 5.29E-09

Simple-NoVaS 8.70E-09 1.42E-08 9.99E-09 7.62E-09 5.49E-09
Exp-NoVaS 8.82E-09 1.39E-08 1.00E-08 7.41E-09 5.51E-09
GS-NoVaS 8.10E-09 1.42E-08 1.02E-08 6.92E-09 5.32E-09
GE-NoVaS 8.37E-09 1.46E-08 1.00E-08 6.62E-09 5.27E-09

2.5 Conclusions

In this chapter, we derive a new way of multistep-ahead predictions for ARCH/GARCH

and NoVaS methods only based on the basic assumptions of models or transformations. This

method has some good properties based on our theoretical methodology and simulated results.

To sum up,

• This method works well for nonlinear time series processes.

• No obvious error accumulation issue.

• Free of model and only require the errors are independent.

• Easy to conduct and computationally friendly.

• Combining with the results in Chapter 1, NoVaS performs better than GARCH models in

both one-step ahead prediction and multistep-ahead prediction.
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Table 2.29: Interval predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .8895,θ = .10 and ε∼ i.i.d N(0,1).

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.714 1.28E-02 1.77E-02 1 0.744 1.01E-02 1.55E-02
2 0.746 1.28E-02 1.79E-02 2 0.734 1.13E-02 1.83E-02
3 0.746 1.37E-02 1.87E-02 3 0.768 1.19E-02 1.95E-02
4 0.766 1.18E-02 1.59E-02 4 0.734 1.20E-02 1.99E-02
5 0.786 1.28E-02 1.75E-02 5 0.744 1.28E-02 2.04E-02

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.958 2.00E-02 1.35E-02 1 0.936 1.99E-02 1.39E-02
2 0.952 2.07E-02 1.44E-02 2 0.936 2.19E-02 1.52E-02
3 0.952 1.98E-02 1.27E-02 3 0.944 1.94E-02 1.27E-02
4 0.946 2.17E-02 1.43E-02 4 0.944 2.08E-02 1.28E-02
5 0.950 2.19E-02 1.32E-02 5 0.936 2.19E-02 1.51E-02

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.946 1.98E-02 1.35E-02 1 0.934 1.84E-02 1.32E-02
2 0.942 1.78E-02 1.41E-02 2 0.946 1.91E-02 1.49E-02
3 0.946 1.92E-02 1.35E-02 3 0.936 2.04E-02 1.47E-02
4 0.946 2.07E-02 1.34E-02 4 0.964 1.93E-02 1.40E-02
5 0.956 2.21E-02 1.43E-02 5 0.954 2.07E-02 1.45E-02

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.948 2.05E-02 1.39E-02 1 0.95 1.61E-02 1.21E-02
2 0.942 1.78E-02 1.41E-02 2 0.94 2.07E-02 1.47E-02
3 0.952 1.93E-02 1.43E-02 3 0.936 1.62E-02 1.25E-02
4 0.948 2.14E-02 1.30E-02 4 0.936 1.70E-02 1.42E-02
5 0.954 2.26E-02 1.40E-02 5 0.94 1.78E-02 1.32E-02

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.948 1.73E-02 1.14E-02 1 0.958 1.98E-02 1.13E-02
2 0.948 1.66E-02 1.05E-02 2 0.942 1.68E-02 1.16E-02
3 0.952 1.98E-02 1.27E-02 3 0.944 1.94E-02 1.27E-02
4 0.946 2.17E-02 1.43E-02 4 0.944 2.08E-02 1.28E-02
5 0.950 2.19E-02 1.32E-02 5 0.942 2.32E-02 1.13E-02
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Table 2.30: Interval predictions for Data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and ε∼ i.i.d N(0,1).

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 4.39E-03 2.11E-03 1 0.92 3.76E-03 3.18E-03
2 0.940 4.53E-03 2.23E-03 2 0.936 5.49E-03 5.21E-03
3 0.950 4.47E-03 2.74E-03 3 0.938 5.99E-03 5.52E-03
4 0.952 4.02E-03 1.89E-03 4 0.922 7.16E-03 6.31E-03
5 0.934 3.77E-03 2.74E-03 5 0.92 4.57E-03 4.21E-03

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 4.46E-03 2.69E-03 1 0.954 4.74E-03 2.29E-03
2 0.972 4.40E-03 2.55E-03 2 0.95 4.62E-03 2.19E-03
3 0.938 4.17E-03 2.59E-03 3 0.95 4.64E-03 2.12E-03
4 0.958 4.62E-03 2.59E-03 4 0.948 4.58E-03 2.12E-03
5 0.950 4.58E-03 2.49E-03 5 0.942 4.45E-03 1.88E-03

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.960 4.54E-03 2.50E-03 1 0.946 4.28E-03 2.45E-03
2 0.958 4.27E-03 2.97E-03 2 0.95 4.26E-03 2.33E-03
3 0.968 4.63E-03 2.87E-03 3 0.952 4.21E-03 2.62E-03
4 0.960 4.73E-03 2.85E-03 4 0.954 4.25E-03 2.55E-03
5 0.948 4.15E-03 2.93E-03 5 0.948 4.19E-03 2.32E-03

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.949 4.37E-03 2.53E-03 1 0.946 4.26E-03 2.37E-03
2 0.948 4.63E-02 2.78E-03 2 0.95 4.26E-03 2.33E-03
3 0.938 4.17E-03 2.59E-03 3 0.95 4.22E-03 2.42E-03
4 0.945 3.76E-03 2.71E-03 4 0.948 4.20E-03 1.91E-03
5 0.950 4.58E-03 2.49E-03 5 0.948 4.19E-03 2.32E-03

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.946 4.92E-03 2.57E-03 1 0.96 5.37E-03 2.00E-03
2 0.946 4.68E-03 2.38E-03 2 0.948 5.13E-03 3.34E-03
3 0.958 4.39E-03 2.35E-03 3 0.952 4.03E-03 2.05E-03
4 0.954 4.30E-03 2.03E-03 4 0.95 4.80E-03 2.03E-03
5 0.948 4.15E-03 2.93E-03 5 0.944 4.42E-03 2.78E-03
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Table 2.31: Results of interval predictions for data generated from GARCH(1,1) with
ω = .00001,α = .73,θ = .10 and ε∼ i.i.d t5.

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.924 4.17E-03 3.18E-03 1 0.936 2.35E-03 8.60E-03
2 0.931 3.75E-03 2.57E-03 2 0.928 2.15E-03 7.50E-03
3 0.922 4.47E-03 2.24E-03 3 0.92 2.37E-03 8.52E-03
4 0.925 4.02E-03 2.63E-03 4 0.938 2.92E-03 6.95E-03
5 0.922 4.56E-03 2.79E-03 5 0.92 2.79E-03 8.20E-03

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.945 4.46E-03 2.66E-03 1 0.95 3.38E-03 2.95E-03
2 0.942 4.25E-03 2.72E-03 2 0.958 3.80E-03 2.72E-03
3 0.943 4.54E-03 2.77E-03 3 0.946 3.75E-03 2.40E-03
4 0.949 4.94E-03 2.72E-03 4 0.952 3.76E-03 2.43E-03
5 0.954 4.72E-03 3.08E-03 5 0.946 3.40E-03 2.84E-03

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.950 4.82E-03 2.35E-03 1 0.953 4.01E-03 3.07E-03
2 0.963 4.86E-03 3.26E-03 2 0.942 3.58E-03 2.73E-03
3 0.966 4.85E-03 2.82E-03 3 0.952 3.28E-03 2.48E-03
4 0.954 5.04E-03 3.05E-03 4 0.952 3.51E-03 2.54E-03
5 0.944 4.36E-03 2.51E-03 5 0.944 4.20E-03 3.03E-03

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.950 4.82E-03 2.35E-03 1 0.948 3.64E-03 4.49E-03
2 0.954 4.47E-03 2.93E-03 2 0.956 3.22E-03 5.92E-03
3 0.952 4.69E-03 3.03E-03 3 0.946 3.31E-03 4.08E-03
4 0.950 4.57E-03 2.99E-03 4 0.948 3.23E-03 4.52E-03
5 0.954 4.50E-03 3.06E-03 5 0.95 3.62E-03 4.54E-03

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.950 4.90E-03 2.57E-03 1 0.954 3.65E-03 2.78E-03
2 0.946 4.36E-03 2.93E-03 2 0.954 3.86E-03 2.84E-03
3 0.948 4.48E-03 2.82E-03 3 0.946 3.64E-03 2.81E-03
4 0.952 4.58E-03 2.78E-03 4 0.95 3.53E-03 2.89E-03
5 0.952 4.53E-03 2.94E-03 5 0.966 6.38E-03 3.92E-03
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Table 2.32: Results of interval predictions for data generated from TV-GARCH(1,1)

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.850 1.57E-03 1.07E-02 1 0.726 1.12E-03 4.97E-03
2 0.848 1.20E-03 1.60E-03 2 0.716 1.32E-03 5.88E-03
3 0.858 1.84E-03 2.77E-03 3 0.718 8.87E-03 3.90E-03
4 0.844 2.32E-03 2.02E-03 4 0.716 9.78E-03 4.39E-03
5 0.856 2.29E-03 1.68E-03 5 0.72 1.24E-03 5.77E-03

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.948 2.40E-03 2.20E-03 1 0.952 2.76E-03 2.45E-03
2 0.950 2.23E-03 2.17E-03 2 0.952 2.74E-03 2.50E-03
3 0.952 2.93E-03 2.15E-03 3 0.95 2.69E-03 2.62E-03
4 0.954 3.02E-03 2.18E-03 4 0.942 2.78E-03 2.65E-03
5 0.950 2.86E-03 2.12E-03 5 0.948 2.82E-03 2.61E-03

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.950 2.32E-03 2.37E-03 1 0.942 2.20E-03 2.30E-03
2 0.956 2.20E-03 2.36E-03 2 0.956 2.82E-03 2.45E-03
3 0.960 2.88E-03 2.15E-03 3 0.948 2.60E-03 2.50E-03
4 0.952 2.50E-03 2.27E-03 4 0.946 2.79E-03 2.36E-03
5 0.954 2.80E-03 2.01E-03 5 0.946 2.47E-03 2.62E-03

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.950 2.32E-03 2.37E-03 1 0.942 2.20E-03 2.30E-03
2 0.950 2.52E-03 2.57E-03 2 0.948 2.57E-03 2.33E-03
3 0.952 2.59E-03 2.53E-03 3 0.952 2.52E-03 2.18E-03
4 0.950 2.37E-03 2.05E-03 4 0.946 2.97E-03 2.22E-03
5 0.950 2.62E-03 2.12E-03 5 0.95 2.64E-03 2.21E-03

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.948 2.40E-03 2.20E-03 1 0.948 2.77E-03 2.66E-03
2 0.950 2.23E-03 2.17E-03 2 0.952 2.71E-03 2.83E-03
3 0.942 2.47E-03 2.25E-03 3 0.95 2.53E-03 2.50E-03
4 0.948 2.44E-03 2.17E-03 4 0.95 2.75E-03 2.49E-03
5 0.949 2.29E-03 2.12E-03 5 0.954 2.64E-03 2.47E-03
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Table 2.33: Results of interval predictions for data generated from MS-GARCH(1,1)

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.868 3.32E-02 1.78E-02 1 0.856 3.27E-02 1.25E-02
2 0.872 3.42E-02 1.50E-02 2 0.89 3.04E-02 1.10E-02
3 0.868 3.58E-02 1.62E-02 3 0.882 3.10E-02 1.07E-02
4 0.858 3.67E-02 1.86E-02 4 0.886 3.09E-02 1.12E-02
5 0.87 3.60E-02 2.10E-02 5 0.908 7.66E-03 1.28E-02

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.946 4.14E-02 2.18E-02 1 0.952 3.97E-02 2.67E-02
2 0.948 4.02E-02 2.26E-02 2 0.944 4.22E-02 2.80E-02
3 0.96 4.78E-02 2.19E-02 3 0.958 3.99E-02 2.74E-02
4 0.958 4.16E-02 2.06E-02 4 0.938 3.86E-02 2.80E-02
5 0.956 4.27E-02 2.07E-02 5 0.944 4.20E-02 2.97E-02

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 4.21E-02 2.87E-02 1 0.958 3.05E-02 2.03E-02
2 0.948 3.98E-02 2.81E-02 2 0.936 3.08E-02 2.26E-02
3 0.94 4.47E-02 2.91E-02 3 0.936 3.45E-02 2.13E-02
4 0.948 4.26E-02 2.80E-02 4 0.94 3.42E-02 2.28E-02
5 0.946 4.32E-02 2.93E-02 5 0.938 3.52E-02 2.16E-02

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 4.21E-02 2.87E-02 1 0.948 3.21E-02 2.16E-02
2 0.948 3.98E-02 2.81E-02 2 0.946 3.26E-02 2.18E-02
3 0.942 4.75E-02 2.84E-02 3 0.948 3.46E-02 2.28E-02
4 0.948 4.26E-02 2.80E-02 4 0.952 3.17E-02 2.21E-02
5 0.946 4.32E-02 2.93E-02 5 0.946 3.22E-02 2.02E-02

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 4.30E-02 2.08E-02 1 0.948 3.40E-02 2.19E-02
2 0.952 3.93E-02 2.09E-02 2 0.942 3.24E-02 2.09E-02
3 0.948 4.36E-02 2.03E-02 3 0.946 3.63E-02 2.15E-02
4 0.948 4.20E-02 2.05E-02 4 0.95 3.08E-02 2.39E-02
5 0.95 4.29E-02 2.07E-02 5 0.944 3.55E-02 2.90E-02

72



Table 2.34: Results of interval predictions for data generated from ST-GARCH(1,1)

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.89 2.80E-03 2.14E-03 1 0.894 2.53E-03 3.80E-03
2 0.888 2.19E-03 2.79E-03 2 0.902 2.88E-03 4.28E-03
3 0.904 2.15E-03 2.87E-03 3 0.884 2.48E-03 3.20E-03
4 0.908 2.07E-03 2.04E-03 4 0.9012 2.73E-03 4.21E-03
5 0.896 2.00E-03 2.09E-03 5 0.89 2.02E-03 4.92E-03

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.956 3.35E-03 2.57E-03 1 0.958 3.70E-03 2.69E-03
2 0.96 3.40E-03 2.58E-03 2 0.944 3.60E-03 2.54E-03
3 0.946 3.60E-03 2.73E-03 3 0.966 3.64E-03 2.65E-03
4 0.942 3.42E-03 2.51E-03 4 0.956 3.52E-03 2.46E-03
5 0.944 3.56E-03 2.70E-03 5 0.962 3.66E-03 2.53E-03

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.952 3.44E-03 2.32E-03 1 0.944 3.44E-03 2.75E-03
2 0.956 3.49E-03 2.24E-03 2 0.938 3.65E-03 2.75E-03
3 0.958 3.46E-03 2.04E-03 3 0.934 3.67E-03 2.81E-03
4 0.954 3.40E-03 2.10E-03 4 0.946 3.60E-03 2.72E-03
5 0.946 3.73E-03 2.19E-03 5 0.938 3.51E-03 2.51E-03

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.952 3.49E-03 2.18E-03 1 0.946 3.73E-03 2.16E-03
2 0.956 3.30E-03 2.29E-03 2 0.956 3.86E-03 2.31E-03
3 0.948 3.51E-03 2.29E-03 3 0.954 3.84E-03 2.27E-03
4 0.948 3.54E-03 2.36E-03 4 0.95 3.82E-03 2.15E-03
5 0.944 3.56E-03 2.70E-03 5 0.946 3.76E-03 2.22E-03

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.946 3.37E-03 2.10E-03 1 0.954 3.64E-03 2.60E-03
2 0.944 3.51E-03 2.76E-03 2 0.952 3.60E-03 2.55E-03
3 0.946 3.60E-03 2.73E-03 3 0.956 3.61E-03 2.55E-03
4 0.948 3.44E-03 2.49E-03 4 0.95 3.76E-03 2.68E-03
5 0.948 3.69E-03 2.61E-03 5 0.944 3.46E-03 2.31E-03
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Table 2.35: Results of interval predictions for data generated from SV-GARCH(1,1)

L2 L1
GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.878 2.24E-02 2.99E-02 1 0.884 1.22E-02 1.93E-02
2 0.862 2.11E-02 2.51E-02 2 0.882 1.28E-02 2.10E-02
3 0.896 2.49E-02 2.78E-02 3 0.872 1.17E-02 1.60E-02
4 0.87 2.14E-02 2.18E-02 4 0.878 1.26E-02 1.46E-02
5 0.892 2.32E-02 2.33E-02 5 0.876 1.33E-02 1.63E-02

EXP-NoVaS EXP-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 2.71E-02 2.59E-02 1 0.944 1.84E-02 2.33E-02
2 0.952 2.80E-02 2.67E-02 2 0.93 2.01E-02 2.46E-02
3 0.956 2.79E-02 2.66E-02 3 0.954 1.96E-02 2.45E-02
4 0.95 2.84E-02 2.65E-02 4 0.942 2.19E-02 2.62E-02
5 0.968 3.07E-02 2.84E-02 5 0.93 1.88E-02 2.43E-02

Simple-NoVaS Simple-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.952 2.68E-02 2.79E-02 1 0.942 2.08E-02 2.40E-02
2 0.95 2.77E-02 2.92E-02 2 0.932 2.46E-02 2.53E-02
3 0.946 2.78E-02 2.74E-02 3 0.95 2.63E-02 2.84E-02
4 0.958 3.05E-02 2.90E-02 4 0.926 2.25E-02 2.65E-02
5 0.954 2.66E-02 2.73E-02 5 0.934 2.07E-02 2.41E-02

GS-NoVaS GS-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.952 2.68E-02 2.79E-02 1 0.95 2.17E-02 2.42E-02
2 0.95 2.77E-02 2.92E-02 2 0.96 2.05E-02 2.40E-02
3 0.952 2.84E-02 2.96E-02 3 0.95 2.18E-02 2.44E-02
4 0.944 2.28E-02 2.34E-02 4 0.95 2.22E-02 2.48E-02
5 0.946 2.34E-02 2.18E-02 5 0.942 2.28E-02 2.55E-02

GE-NoVaS GE-NoVaS
STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR

1 0.954 2.71E-02 2.59E-02 1 0.952 2.02E-02 2.35E-02
2 0.948 2.52E-02 2.29E-02 2 0.948 2.18E-02 2.47E-02
3 0.956 2.79E-02 2.66E-02 3 0.948 1.95E-02 2.29E-02
4 0.95 2.84E-02 2.65E-02 4 0.942 2.29E-02 2.58E-02
5 0.946 2.74E-02 2.46E-02 5 0.946 2.10E-02 2.34E-02
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Chapter 3

Simplified Models for Autoregression

under Stationary and Non-stationary

Errors

Simplified models have many appealing properties and sometimes give better parameter

estimates and model predictions, in sense of mean-squared-error, than extended models, especially

when the limited data are available. In this chapter, we summarize extensive quantitative and

qualitative results in the literature concerned with using simplified models on autoregression

processes(AR, for short) with stationary and non-stationary errors. Also, we develop a practical

strategy to help modellers decide whether a simplified model should be used in AR processes

based on the data observed.

3.1 Introduction

In general, we assume that a process can be truly described by

yi = f (xi,θ)+ εi, i = 1,2, ...,n (3.1.1)
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where xi is a p dimensional vector of explanatory variables for the ith observation, θ is an m

dimensional vector of model parameters, and εi is the random part of the model.

Typically, the practitioners fit the following model (3.1.2) either because they are lack of

knowledge of the true model (3.1.1) or because they think this simpler model may give better

results.

yi = g(zi,β)+ ei, i = 1,2, ...,n (3.1.2)

where zi is a vector of explanatory variables, β is vector of model parameters and g(zi,β) is the

function that the modeller believes (or hopes) relates (zi,β) to yi. The term ei encompasses the

stochastic component and any deterministic part that is not captured by the model. The function

form of g(zi,β) may be specified from a fundamental understanding of the process or a desire to

find a purely empirical representation; see Wu et al. (2007). In either case, the parameters are

often estimated as the solution to the least-squares problem

β̂ = argmin
β

n

∑
i=1

(yi−g(zi,β))
2 (3.1.3)

If the case is the parameters non-linear in the model, a non-linear optimization algorithm

is considered to determine β̂. When the parameters are linearly entering the model, ordinary least

squares(OLS) is commonly used (Montgomery and Runger (2007)).

There are actually many instances when one deliberately chooses a structural form that

does not match the true process. Interesting questions are here:

1. Can simplified models give better parameter estimates model predictions than the correctly

structured extended model in the auto-regression process?

2. Is there any strategy that can be used to determine whether simplified models are better?

In the work of Wu et al. (2007), the linear regression case was considered. It is shown

that the simplified model gives better parameter estimates and model predictions on average than
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the true or full model if the critical conditions are satisfied. In this chapter, we extend the use of

simplified model to autoregression case and try to answer these two questions above.

This chapter is organized as follows: in section 2, the homoscedastic AR processes are

considered; The use of simplified model for AR processes with heteroskedasticity is studied

in section 3; In section 4, we give the strategy for assessing uncertainty about which situation

simplified model works better and some simulation are done for evaluating the performance;

Conclusions and remarks are given in section 5.

3.2 Simplified Models— AR(p) with i.i.d Errors

Assume that the true process is described by AR(p)

yt = θ1yt−1 + ...+θpyt−p + εt (3.2.1)

where θp 6= 0 and the lag order p is finite and known. Suppose we observe a sample containing

T + p observations, denoted by {y−p+1,y−p+2, ...,yT} and p� T . Θ = (θ1,θ2, ...,θp)
′

is the

parameter vector of interest. We will refer this correctly structured model as the full model(FM,

for short). Assumption 1 is made as follows:

(i) All roots of the polynomial 1−θ1z−θ2z2− ...−θpzp = 0 lie outside the unit circle.

(ii) {εt} is i.i.d with mean 0 and variance σ2.

The practitioner believes that θ1, ...,θp1 are close to 0, for example θi = o(1) for any i =

1, . . . , p1, for some positive constant 0 < p1 < p, and assuming p = p1 + p2.Then the practitioner

decides to use a model of the form

yt = θp2yt−p2 + ...+θpyt−p +ηt (3.2.2)
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where ηt = θ1yt−1+ ...+θp1 +εt is the stochastic component combined with any model mismatch.

We will refer (3.2.2) as the “simplified” model(SM, for short).

Under Assumption 1(i), the autoregressive coefficients are assumed to satisfy the usual sta-

bility conditions which would ensure that yt is stationary or asymptotically covariance-stationary,

depending on initial conditions. Also under Assumption 1(i) and Theorem 3.1.3 in Brockwell

and Davis (1986), yt has Wold representation

yt =
∞

∑
i=−∞

αiεt−i, (3.2.3)

where the coefficients {αi} satisfy the recursion

αi−θ1αi−1−·· ·−θpαi−p = 0 for i > 0,

α0 = 1,αi = 0 for i < 0,

and
∞

∑
i=0
|αi|< ∞. (3.2.4)

With the causality assumption, , the Wold representation (3.2.3) is written as

yt =
∞

∑
i=0

αiεt−i, (3.2.5)

which is an MA(∞) process defined by (3.2.5). By Theorem 3.2.1 in Brockwell and Davis (1986),

the autocovariance function has the extremely simple form

γk = cov(yt ,yt+k) = σ
2

∞

∑
i=0

αiαi+k, k = 0,1, ...,∞. (3.2.6)
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Also, γk is finite, which is implied by equation (3.2.4) as

|
∞

∑
i=0

αiαi+k| ≤
(

∞

∑
i=0
|αi|2

)
.

Now define Γp to be the p× p covariance matrix with (i, j)th element γ|i− j|, k = |i− j|=

0,1, ..., p−1.

3.2.1 Properties of parameter estimates

Write (3.2.1) in regression form as

Y = X1Θ1 +X2Θ2 + ε = XΘ+ ε (3.2.7)

where Y = (y1,y2, ...,yT )
′
, ε = (ε1,ε2, ...,εT )

′
, and Θ1 = (θ1, ...,θp1)

′
and Θ2 = (θp2, ...,θp)

′
and

Θ = (θ1, ...,θp)
′
. Also, X = (X1,X2), where X1 is the T × p1 matrix and X2 is the T × p2 matrix,

X =



y0 y−1 · · · y1−p

y1 y0 · · · y2−p

...
...

...
...

yT−1 yT−2 · · · yT−p


=



X
′
0

X
′
1
...

X
′
T−1


where Xt = (yt , ...,yt−p+1)

′
and t = 0, ...,T −1.

X1 =



y0 y−1 · · · y1−p1

y1 y0 · · · y2−p1

...
...

...
...

yT−1 yT−2 · · · yT−p1


=



X
′
1,0

X
′
1,1
...

X
′
1,T−1


where X1,t = (yt , ...,yt−p1+1)

′
and t = 0, ...,T −1.
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X2 =



y−p1 · · · y1−p

y1−p1 · · · y2−p

...
...

...

y(T−p1−1) · · · yT−p


=



X
′
2,0

X
′
2,1
...

X
′
2,T−1


where X2,t = (yt−p1 , ...,yt−p+1)

′
and t = 0, ...,T −1.

The ordinary least squares(OLS) estimate Θ̂F based on the full model (3.2.7) are

Θ̂F =(X
′
X)−1X

′
Y

=(X
′
X)−1X

′
(XΘ+ ε)

=Θ+

( T

∑
t=1

Xt−1X
′
t−1

)−1( T

∑
t=1

Xt−1εt

) (3.2.8)

where the subscript F indicates the use of the full model (3.2.7).

The asymptotic behavior of Θ̂F is given by Brockwell and Davis (1986).

Theorem 3.2.1. (Brockwell and Davis (1986))

Under Assumption 1, with Θ̂E defined as in (3.2.8), Θ̂F is asymptotically normal distributed (AN),

i.e., AN(Θ, σ2

T Γ−1
p ), where Γp is the p× p covariance matrix with (Γp)i, j = γ|i− j| and γ|i− j| is the

autocovariance with order |i− j|.

Similarly, we can also write (3.2.2) in regression form as

Y = X2Θ2 +η, (3.2.9)
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where η = X1Θ1 + ε. The OLS estimate Θ̂2,S in the simplified model (3.2.9) are

Θ̂2,S =(X
′
2X2)

−1X
′
2Y

=(X
′
2X2)

−1X
′
2(XΘ+ ε)

=(X
′
2X2)

−1X
′
2(X1Θ1 +X2Θ2 + ε)

=Θ2 +(X
′
2X2)

−1X
′
2X1Θ1 +(X

′
2X2)

−1X
′
2ε

=Θ2 +

( T

∑
t=1

X2,t−1X
′
2,t−1

)−1( T

∑
t=1

X2,t−1X
′
1,t−1Θ1

)
+

( T

∑
t=1

X2,t−1X
′
2,t−1

)−1( T

∑
t=1

X2,t−1εt

)
(3.2.10)

where the subscript S indicates the use of the simplified model (3.2.9).

The following lemma contains some preliminary results, which lead to the limit theory

for Θ̂2,S.

Lemma 3.2.1. Under Assumption 1 as T → ∞,

(i) 1
T X

′
2X2

P→ Γp2;

(ii) 1
T X

′
2X1

P→ R;

(iii) 1
T X

′
2εε

′
X2

P→ σ2Γp2

where P→ means convergence in probability. Γp2 is the p2× p2 covariance matrix with (Γp2)i, j =

γ|i− j| and γ|i− j| is the autocovariance with order |i− j|. R is defined as the p2× p1 matrix of

R =



γp1 · · · γ1

γ(p1+1) · · · γ2

...
...

...

γp−1 · · · γp2
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The proof of Lemma 1 is given in the Appendix. The following results follows directly

from Lemma 3.2.1.

Theorem 3.2.2. Under Assumption 1, with Θ̂2,S defined as in (3.2.10), Θ̂2,S is

AN(Θ2 +Γ−1
p2

RΘ1,
σ2

T Γ−1
p2
), where Γp2 and R are defined in Lemma 3.2.1.

3.2.2 MSE-based comparison of model predictions

Here we consider to predict yT+1 given {yT , ...,yT−p+1} using the FM and SM estimation

and then compare their conditional mean squared errors of prediction.

Under Theorem 2.1 and 2.2, we can write

Θ̂F = Θ+op(
1√
T
)

Θ̂2,S = Θ2 +Γ
−1
p2

RΘ1 +op(
1√
T
)

Here two types of model predictions are considered

1. SM prediction: ŷs = Y
′
p2Θ̂2,S

2. EM prediction: ŷe = Y
′
pΘ̂E

Here ŷs and ŷ f are predictors of yT+1 by the simplified model and the true model separately.

Let Yp = (yT , ...,yT−p+1)
′
, Yp1 = (yT , ...,yT−p1+1)

′
and Yp2 = (yT−p1, ...,yT−p+1)

′
. Now we can

compute the conditional mean squared errors(MSE) of predictions of yT+1.

MSE(ŷ f |yT , ...,yT−p+1) = E{(Y
′
pΘ̂F −Y

′
pΘ− εT+1)

2|yT , ...,yT−p+1}

= σ
2 +

σ2

T
Y
′
pΓ
−1
p Yp +o(1)

≈ σ
2 +

σ2

T
Y
′
pΓ
−1
p Yp
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MSE(ŷs|yT , ...,yT−p+1) = E{(Y
′
p2

Θ̂2,S−Y
′
pΘ− εT+1)

2|yT , ...,yT−p+1}

= E{(Y
′
p2

Θ̂2,S−Y
′
p1

Θ1−Y
′
p2

Θ2− εT+1)
2|yT , ...,yT−p+1}

= σ
2 +

σ2

T
Y
′
p2

Γ
−1
P2

Yp2 +(Yp1−R
′
Γ
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−R

′
Γ
−1
p2

Yp2)+o(1)

≈ σ
2 +

σ2

T
Y
′
p2

Γ
−1
P2

Yp2 +(Yp1−R
′
Γ
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−R

′
Γ
−1
p2

Yp2)

The difference between the conditional mean squared errors of ŷ f and ŷs is

MSE(ŷ f |yT , ...,yT−p+1)−MSE(ŷs|yT , ...,yT−p+1)

=
σ2

T
(Y
′
pΓ
−1
p Yp−Y

′
p2

Γ
−1
p2

Yp2)− (Yp1−R
′
Γ
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−R

′
Γ
−1
p2

Yp2)

This difference is positive if

σ2

T
(Y
′
pΓ
−1
p Yp−Y

′
p2

Γ
−1
p2

Yp2)− (Yp1−R
′
Γ
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−R

′
Γ
−1
p2

Yp2)≥ 0 (3.2.11)

Lemma 3.2.2. Given any vectors x,y ∈ℜn, x
′
yy
′
x≤ x

′
xy
′
y.

The proof of Lemma 3.2.2 is in the Appendix.

Define the 2-norm ‖Θ1‖=
√

Θ
′
1Θ1 =

√
∑

p1
i=1 θ2

i . Under Lemma 3.2.2, a sufficient condi-

tion for (3.2.11) is

‖Θ1‖2 <
σ2

T (Y
′
pΓ−1

p Yp−Y
′
p2

Γ−1
p2

Yp2)

(Yp1−R′Γ−1
p2 Yp2)

′
(Yp1−R′Γ−1

p2 Yp2)
(3.2.12)

where the 2-norm ‖Θ1‖ =
√

∑
p1
i=1 θ2

i . This inequality holds when the SM gives better

prediction than FM in the sense of smaller mean-squared-errors.
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Define the critical value Cp with the form

Cp =

√√√√ σ2

T (Y ′pΓ
−1
p Yp−Y ′p2

Γ
−1
p2 Yp2)

(Yp1−R′Γ−1
p2 Yp2)

′
(Yp1−R′Γ−1

p2 Yp2)
.

So the inequality (3.2.12) is equivalent of the following inequality

‖Θ1‖<Cp (3.2.13)

If the 2-norm of Θ1 is less than Cp, the simplified model should be used for predictions in the

sense of smaller mean squared errors.

In the real cases, the parameters are unknown, so we must use estimates of parameters

to determine if we should use simplified models. Taking the estimate bias into account, we can

consider a similar condition with (3.2.13) by replacing the true parameters with estimates and as

well as some error correction. Let ε̂t = yt− ŷt , where ŷt is the fitted value by the full model. To

estimate σ2, we use σ̂2 = 1
T ∑

T
t=1(ε̂t− ε̄)2, where ε̄ is define as ε̄ = 1

T ∑
T
t=1 ε̂t . In order to compute

Γ̂p, Γ̂p2, R̂, we use the consistent estimates of γ|i− j| as

γ̂|i− j| =
1
T

T

∑
t=1

(yt− ȳ)(y(t−|i− j|)− ȳ), and ȳ =
1
T

T

∑
t=1

yt .

So the following condition totally based on the observed data can be used to make selections

between the full models and the simplified ones.

∥∥Θ̂1
∥∥< τĈp (3.2.14)

Where 0 < τ≤ 1 and

Ĉp =

√√√√ σ̂2

T (Y ′pΓ̂
−1
p Yp−Y ′p2

Γ̂
−1
p2 Yp2)

(Y ′p1
−Y ′p2

Γ̂
−1
p2 R̂)(Y ′p1

−Y ′p2
Γ̂
−1
p2 R̂)′

(3.2.15)
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For the constant τ, we will talk about more in section 4.

3.2.3 Example 1. p1 = 1

When p1 = 1, that means we believe θ1 is close to zero. The simplified model can be

written as

yt = θ2yt−2 + ...+θpyt−p +ηt

where ηt = θ1yt−1 + εt is the stochastic component associated with the model mismatch.

Writing (3.2.1) in the regression form as

yt = X
′
t−1θ+ εt , t = 1, ...,T,

where Xt−1 = (yt−1,yt−2, ...,yt−p)
′
, the OLS estimates are

θ̂F = θ+

( T

∑
t=1

Xt−1X
′
t−1

)−1( T

∑
t=1

Xt−1εt

)
(3.2.16)

where the subscript F indicates the use of the truly structured extended model.

Also we write the above simplified model in the regression form as

yt = X̃
′
t−1θ̃+ηt , t = 1, ...,T,

where X̃t−1 = (yt−2, ...,yt−p)
′
and θ̃ = (θ2, ...,θp)

′
, and the OLS estimates are

θ̂S = θ̃+θ1

( T

∑
t=1

X̃t−1X̃
′
t−1

)−1( T

∑
t=1

X̃t−1yt−1

)
+

( T

∑
t=1

X̃t−1X̃
′
t−1

)−1( T

∑
t=1

X̃t−1εt

)
. (3.2.17)
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Under Theorem 2.1 and 2.2, we can write

θ̂F = θ+op(
1√
T
)

θ̂S = θ̃+θ1Γ
−1
p−1Rp−1 +op(

1√
T
)

where Rp−1 is defined as the vector of (γ1, ...,γp−1)
′
.

Now we can compute the mean squared errors of predictions of yT+1 as

MSE(ŷe|yT , ...,yT−p+1)≈ σ
2 +

σ2

T
Y
′
pΓ
−1
p Yp

MSE(ŷs|yT , ...,yT−p+1)≈ σ
2 +

σ2

T
Y
′
p−1Γ

−1
p−1Yp−1 +θ

2
1(yT −Y

′
p−1Γ

−1
p−1Rp−1)

2

The MSE difference for ŷ f and ŷs is

MSE(ŷ f |yT , ...,yT−p+1)−MSE(ŷs|yT , ...,yT−p+1) =

σ2

T
(Y
′
pΓ
−1
p Yp−Y

′
p−1Γ

−1
p−1Yp−1)−θ

2
1(yT −Y

′
p−1Γ

−1
p−1Rp−1)

2

This difference is positive if

|θ1|<Cp (3.2.18)

where

Cp =

√√√√σ2(Y ′p−1Γ
−1
p−1Yp−1−Y ′p−1Γ

−1
p−1Yp−1)

T (yT −Y ′p−1Γ
−1
p−1Rp−1)2

.

If the inequality (3.2.18) holds, the SM will be better than EM in the sense of smaller mean-

squared-errors. Note that, since Θ1 here is of dimension 1, we don’t have to use Lemma 2.2 to get
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(3.2.18). Therefore, the inequality (3.2.18) is a necessary and sufficient condition for selections

between the full model and the simplified model when p1 = 1.

3.3 Simplified Models-AR(p) under Heteroskedasticity

The work here is still based AR(p) models as defined in (3.2.1), but the innovations are

heteroscedastic and distributed according to

εt = g(
t
T
)ut , (3.3.1)

where g(·) is an unknown non-negative scale function and ut is stationary with mean 0.

Model heteroskedasticity is characterized in σt = g( t
T ) as being systematically dependent on

the relative position of the observation in terms of the scale function g(·). Since g(·) is taken

to be unknown, the formulation is non-parametric. This includes cases where the conditional

error variance evolves over time, slowly transitions, or abruptly or periodically changes across

the sample.

Assumption 2.(Phillips and Xu (2006))

(i) All the roots of the polynomial 1−θ1z−θ2z2−·· ·−θpzp = 0 lie outside the unit circle.

(ii) g(·) is non-stochastic, measurable and uniformly bounded on the interval (−∞,1]), with a

finite number of points of discontinuity, g(·)> 0 and satisfies a Lipschitz condition except

at points of discontinuity.

(iii) {ut} is a strong mixing (α-mixing) martingale difference process with E(ut |Ft−1) = 0,

E(u2
t |Ft−1) = 1, a.s., for all t, with the natural filtration Ft = σ(us,s≤ t). There exist δ > 1

and C > 0, such that suptEu4δ
t <C < ∞.

Under Assumption 2(ii), we require the definition of g(r) for r < 0 since initial conditions
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are in the infinite past and the MA(∞) representation of yt . Also, g(·) is integrable on the interval

[0, 1] up to any finite order,
∫

gm(r)dr =
∫

gm.

3.3.1 Properties of parameter estimates

The limit properties of the OLS estimates of Θ in the full model have been studied by

Phillips and Xu (2006). We will use the same simplified model as (3.2.2) and study the asymptotic

behavior of the OLS estimates for simplified model later.

Recall the Wold representation (3.2.3) of yt , we now define Ωp to be the p× p matrix

with (i, j)− th element ω|i− j|, where

ωk =
∞

∑
i=0

αiαi+k,

for k = 0,1, . . . , p−1.

Theorem 3.3.1. (Phillips and Xu 2006)

Under Assumption 2, with Θ̂E defined as in (3.2.8), Θ̂F is AN(Θ,Σ),

where Σ =
∫

g4

T (
∫

g2)2 Ω−1
p .

Lemma 3.3.1 contains some preliminary results, which lead to the limit theory for Θ2,S

under the simplified model.

Lemma 3.3.1. Under the Assumption 3 as T → ∞,

(a) 1
T ∑

T
t=1 X2,t−1

P→ 0;

(b) 1
T X

′
2X2

P→ (
∫

g2)Ωp2;

(c) 1
T X

′
2εε

′
X2

P→ (
∫

g4)Ωp2;

(d) 1
T X

′
2X1

P→ (
∫

g2)Ω1;
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(e) 1
T X

′
2ε

d→ N(0,(
∫

g4)Ωp2);

where P→ means convergence in probability. Ω1 is defined as the p2× p1 matrix of

Ω1 =



ωp1 · · · ω1

ω(p1+1) · · · ω2

...
...

...

ωp−1 · · · ωp2


Ωp2 is the p2× p2 matrix with (i, j)− th element ω|i− j|, where

ωk =
∞

∑
i=0

αiαi+k,

for k = 0,1, . . . , p2−1.

The proof of Lemma 3.3.1 is given in the Appendix. The following theorem follows

directly from Lemma 3.3.1.

Theorem 3.3.2. Under Assumption 2 and 3, with Θ̂2,S defined as in (3.2.10),

Θ̂2,S is AN(Θ2 +Ω−1
p2

Ω1Θ1, Σ̃), where Σ̃ =
∫

g4

T (
∫

g2)2 Ω−1
p2

.

3.3.2 MSE-based comparison of model predictions

By the similar way, the conditional MSE difference for ŷ f and ŷs is

MSE(ŷ f |yT , ...,yT−p+1)−MSE(ŷs|yT , ...,yT−p+1)

=

∫
g4

T (
∫

g2)2 (Y
′
pΩ
−1
p Yp−Y

′
p2

Ω
−1
p2

Yp2)− (Yp1−Ω
′
1Ω
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−Ω

′
1Ω
−1
p2

Yp2)

Here ŷs and ŷ f are predictions of yT+1 by the simplified model and the full model. And

Yp = (yT , ...,yT−p+1)
′
and Yp1 = (yT , ...,yT−p1+1)

′
and Yp2 = (yT−p1, ...,yT−p+1)

′
.
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This difference is positive if

∫
g4

T (
∫

g2)2 (Y
′
pΩ
−1
p Yp−Y

′
p2

Ω
−1
p2

Yp2)− (Yp1−Ω
′
1Ω
−1
p2

Yp2)
′
Θ1Θ

′
1(Yp1−Ω

′
1Ω
−1
p2

Yp2)≥ 0 (3.3.2)

By Lemma 2.2, a sufficient condition for (3.3.2) is that

‖Θ1‖2 <

∫
g4

T (
∫

g2)2 (Y
′
pΩ−1

p Yp−Y
′
p2

Ω−1
p2

Yp2)

(Yp1−Ω
′
1Ω
−1
p2 Yp2)

′
(Yp1−Ω

′
1Ω
−1
p2 Yp2)

(3.3.3)

If this inequality holds, the SM will give better predictions than FM in the sense of smaller

mean squared errors.

Define the critical value Cp with the form

Cp =

√√√√ ∫
g4

T (
∫

g2)2 (Y
′
pΩ
−1
p Yp−Y ′p2

Ω
−1
p2 Yp2)

(Yp1−Ω
′
1Ω
−1
p2 Yp2)

′
(Yp1−Ω

′
1Ω
−1
p2 Yp2)

.

‖Θ1‖<Cp (3.3.4)

If ‖Θ1‖ is less than Cp, the simplified model should be used for predictions in the sense of smaller

mean-squared errors. In the real case, we must use estimations of parameters to determine if we

should use simplified models. Just like what we did in section 2 for the stationary case, we also

consider a similar condition here of (3.3.4) by replacing the true parameters with estimates and as

well as some error correction. See (3.3.5).

∥∥Θ̂1
∥∥< τĈp (3.3.5)
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Where 0 < τ≤ 1 and

Ĉp =

√
Y ′pΣ̂pYp−Y ′p2

Σ̂p2Yp2

T (Yp1− Ω̂
′
1Ω̂
−1
p2 Yp2)

′
(Yp1− Ω̂

′
1Ω̂
−1
p2 Yp2)

(3.3.6)

where

Σ̂p =

( T

∑
t=1

Xt−1X
′
t−1

)−1( T

∑
t=1

ε̂
2
t Xt−1X

′
t−1

)( T

∑
t=1

Xt−1X
′
t−1

)−1

,

Σ̂p2 =

( T

∑
t=1

X2,t−1X
′
2,t−1

)−1( T

∑
t=1

ε̂
2
t X2,t−1X

′
2,t−1

)( T

∑
t=1

X2,t−1X
′
2,t−1

)−1

,

Ω̂
′
1Ω̂
−1
p2

=

( T

∑
t=1

X1,t−1X
′
2,t−1

)( T

∑
t=1

X2,t−1X
′
2,t−1

)−1

,

where ε̂t = yt− ŷt, f and ŷt, f is the fitted value at time t by the full model. Based on Lemma 3.1

and Lemma 2 in Phillips and Xu (2006), it is easy to prove that Γ̂p, Γ̂p2 and Ω̂
′
1Ω̂−1

p2
are consistent

estimates of Γp, Γp2 and Ω
′
1Ω−1

p2
.

3.4 Strategy for Assessing Uncertainty about Which Model is

Better

Here we will give some empirical simulation examples to illustrate the the selection

of models between the full models and simplified models in different situations. There is no

theoretical strategy now to select τ. we try to assign some reasonable values to τ and check their

performance in the empirical simulation.
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3.4.1 Illustrative examples

Example 1:

yt = θ1yt−1 +θ2yt−2 + εt

where εt ∼ i.i.d.N(0,σ2). θ2 = 0.5. θ1 will take the values of {0.4,0.1,0.01,0.001}.

Generate 1000 datasets using the above AR(2) and each dataset is with sample size n. n

can take values of {50,100,500,750,1000}. σ2 can be values of {0.1,1,10,50}.

Example 2:

yt = θ1yt−1 +θ2yt−2 +g(
t
T
)ut ,

g(r)2 = σ
2
0 +(σ2

1−σ
2
0)r

m, r ∈ [0,1]

where ut ∼ i.i.d.N(0,1). Here the variance of the errors changes continuously from σ2
0 to σ2

1.

Define δ = σ2
1/σ2

0. In the simulation, we set m = 2 and δ ∈ {0.2,5}, so that positive (δ > 1)

and negative (δ < 1) trending variances are allowed. Without loss of generality, we set

σ2
0 = 1 in all cases. The true value of θ1 is taken from the set {0.4,0.1,0.05,0.01,0.001}

and θ2 = 0.5. Generate 1000 datasets using the above AR(2) and each dataset is with

sample size n ∈ {50,100,200,500}.

Here four fixed values {0.5,0.8,0.9,1} will be assigned to τ separately. Another case where τ is

a function of the sample size n will also be considered in the simulation, i.e., τ = 1− 1√
n .

3.4.2 Results and discussions

The effect of different sample sizes to the performance of SMs are recorded in Table

3.1-3.4 and 3.9-18. We can find that when the sample size is small( less than 100), SMs give

smaller mean squared prediction errors. In addition, if θ1 is getting smaller and the data with

same size and sample standard deviations, SMs work better than FMs. In Table 3.5-3.8, SMs
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outperform FMs when σ2 is big under the condition that θ1 is small enough. Also, the smaller θ1

is, the better the performance of SMs is. For the selection of the value of τ, τ = 1− 1√
n works

in practice. So we can just assign some values to τ as a function of the sample size n. To sum

up, there are three factors to decide when SMs work: small sample size, some relatively small

coefficient(s) and big variances.

Table 3.1: Performance of different sample size with θ1 = 0.4, σ2 = 1, θ2 = 0.5

n 20 50 100 500 750 1000
E(|θ̂1|) 0.3793 0.3914 0.3935 0.3977 0.3979 0.3985

Cp 0.1937 0.1225 0.0866 0.0387 0.0316 0.0274
Ĉp 0.2153 0.1263 0.0876 0.0388 0.0317 0.0274

MSE E 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014
MSE S 1.2767 1.2502 1.2257 1.2299 1.1978 1.1948

MSE(τ = 1) 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014
MSE(τ = 0.9) 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014
MSE(τ = 0.8) 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014
MSE(τ = 0.5) 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014

MSE(τ = 1− 1√
n ) 1.1392 1.0532 1.0253 1.0018 1.0009 1.0014

Table 3.2: Performance of different sample size with θ1 = 0.1, σ2 = 1, θ2 = 0.5

n 20 50 100 500 750 1000
E(|θ̂1|) 0.0882 0.0961 0.0957 0.0975 0.0976 0.0985

Cp 0.1937 0.1225 0.0866 0.0387 0.0316 0.0274
Ĉp 0.2148 0.1280 0.0887 0.0389 0.0317 0.0274

MSE E 1.1249 1.0507 1.0261 1.0019 1.0013 1.0016
MSE S 1.0720 1.0413 1.0297 1.0146 1.0134 1.0122

MSE(τ = 1) 1.0720 1.0413 1.0261 1.0019 1.0013 1.0016
MSE(τ = 0.9) 1.0720 1.0413 1.0261 1.0019 1.0013 1.0016
MSE(τ = 0.8) 1.0720 1.0413 1.0261 1.0019 1.0013 1.0016
MSE(τ = 0.5) 1.0720 1.0507 1.0261 1.0019 1.0013 1.0016

MSE(τ = 1− 1√
n ) 1.0720 1.0413 1.0261 1.0019 1.0013 1.0016
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Table 3.3: Performance of different sample size with θ1 = 0.01, σ2 = 1, θ2 = 0.5

n 20 50 100 500 750 1000
E(|θ̂1|) 0.00096 0.0082 0.0066 0.0075 0.0076 0.0086

Cp 0.1937 0.1225 0.0866 0.0387 0.0316 0.0274
Ĉp 0.2139 0.1280 0.0887 0.0389 0.0317 0.0275

MSE E 1.1263 1.0507 1.0258 1.0019 1.0013 1.0016
MSE S 1.0631 1.0281 1.0167 1.0003 1.0004 1.0005

MSE(τ = 1) 1.0631 1.0281 1.0167 1.0003 1.0004 1.0005
MSE(τ = 0.9) 1.0631 1.0281 1.0167 1.0003 1.0004 1.0005
MSE(τ = 0.8) 1.0631 1.0281 1.0167 1.0003 1.0004 1.0005
MSE(τ = 0.5) 1.0631 1.0281 1.0167 1.0003 1.0004 1.0016

MSE(τ = 1− 1√
n ) 1.0631 1.0281 1.0167 1.0003 1.0004 1.0005

Table 3.4: Performance of different sample size with θ1 = 0.001, σ2 = 1, θ2 = 0.5

n 20 50 100 500 750 1000
E(|θ̂1|) 0.0078 0.0008 0.0024 0.0015 0.0014 0.0004

Cp 0.1936 0.1225 0.0866 0.0387 0.0316 0.0274
Ĉp 0.2138 0.1279 0.0887 0.0389 0.0317 0.0275

MSE E 1.1265 1.0507 1.0257 1.0021 1.0013 1.0016
MSE S 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004

MSE(τ = 1) 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004
MSE(τ = 0.9) 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004
MSE(τ = 0.8) 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004
MSE(τ = 0.5) 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004

MSE(τ = 1− 1√
n ) 1.0634 1.0280 1.0166 1.0001 1.0002 1.0004

3.5 Conclusions

In this Chapter, we focus on the situations where the simplified models can be used for

autoregressive processes. Simplified models have many appealing properties and sometimes give

better parameter estimates and model predictions, in sense of mean-squared-error, than the full

models, especially when the data are not informative or with a big variation or some parameters

are relatively small.
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Table 3.5: Performance of different σ2 with θ1 = 0.4, N = 100, θ2 = 0.5

σ2 0.1 1 5 10 50
E(|θ̂1|) 0.3935 0.3935 0.3935 0.3935 0.3935

Cp 0.0866 0.0866 0.0866 0.0866 0.0866
Ĉp 0.0876 0.0876 0.0876 0.0876 0.0876

MSE E 0.1025 1.0252 5.1262 10.2525 51.2624
MSE S 0.1226 1.2257 6.1286 12.2572 61.2862

MSE(τ = 1) 0.1025 1.0252 5.1262 10.2525 51.2624
MSE(τ = 0.9) 0.1025 1.0252 5.1262 10.2525 51.2624
MSE(τ = 0.8) 0.1025 1.0252 5.1262 10.2525 51.2624
MSE(τ = 0.5) 0.1025 1.0252 5.1262 10.2525 51.2624

MSE(τ = 1− 1√
n ) 0.1025 1.0252 5.1262 10.2525 51.2624

Table 3.6: Performance of different σ2 with θ1 = 0.1, N = 100, θ2 = 0.5

σ2 0.1 1 5 10 50
E(|θ̂1|) 0.0957 0.0957 0.0957 0.0957 0.0957

Cp 0.0866 0.0866 0.0866 0.0866 0.0866
Ĉp 0.0887 0.0887 0.0887 0.0887 0.0887

MSE E 0.1026 1.0261 5.1306 10.2612 51.3061
MSE S 0.1030 1.0297 5.1484 10.2968 51.4841

MSE(τ = 1) 0.1026 1.0261 5.1306 10.2612 51.3061
MSE(τ = 0.9) 0.1026 1.0261 5.1306 10.2612 51.3061
MSE(τ = 0.8) 0.1026 1.0261 5.1306 10.2612 51.3061
MSE(τ = 0.5) 0.1026 1.0261 5.1306 10.2612 51.3061

MSE(τ = 1− 1√
n ) 0.1026 1.0261 5.1306 10.2612 51.3061
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Table 3.7: Performance of different σ2 with θ1 = 0.01, N = 100, θ2 = 0.5

E(|θ̂1|) 0.0065 0.0065 0.0065 0.0065 0.0065
Cp 0.0866 0.0866 0.0866 0.0866 0.0866
Ĉp 0.0887 0.0887 0.0887 0.0887 0.0887
σ2 0.1 1 5 10 50

MSE E 0.1026 1.0258 5.1288 10.2575 51.2877
MSE S 0.1017 1.0167 5.0834 10.1669 50.8343

MSE(τ = 1) 0.1017 1.0167 5.0834 10.1669 50.8343
MSE(τ = 0.9) 0.1017 1.0167 5.0834 10.1669 50.8343
MSE(τ = 0.8) 0.1017 1.0167 5.0834 10.1669 50.8343
MSE(τ = 0.5) 0.1017 1.0167 5.0834 10.1669 50.8343

MSE(τ = 1− 1√
n ) 0.1017 1.0167 5.0834 10.1669 50.8343

Table 3.8: Performance of different σ2 with θ1 = 0.001, N = 100, θ2 = 0.5

σ2 0.1 1 5 10 50
E(|θ̂1|) 0.0024 0.0024 0.0024 0.0024 0.0024

Cp 0.0866 0.0866 0.0866 0.0866 0.0866
Ĉp 0.0887 0.0887 0.0887 0.0887 0.0887

MSE E 0.1026 1.0257 5.1286 10.2572 51.2859
MSE S 0.1017 1.0166 5.0828 10.1656 50.8279

MSE(τ = 1) 0.1017 1.0166 5.0828 10.1656 50.8279
MSE(τ = 0.9) 0.1017 1.0166 5.0828 10.1656 50.8279
MSE(τ = 0.8) 0.1017 1.0166 5.0828 10.1656 50.8279
MSE(τ = 0.5) 0.1017 1.0166 5.0828 10.1656 50.8279

MSE(τ = 1− 1√
n ) 0.1017 1.0166 5.0828 10.1656 50.8279

Table 3.9: Performance of different N with θ1 = 0.4, θ2 = 0.5, δ = 0.2, m = 2

n 50 100 200 500
E(|θ̂1|) 0.3918 0.3938 0.3951 0.3973

Cp 0.1020 0.0857 0.0609 0.0384
Ĉp 0.0883 0.0684 0.0476 0.0322

MSE E 0.7436 0.7389 0.7362 0.7329
MSE S 0.7865 0.7825 0.7783 0.7796

MSE(τ = 1) 0.7436 0.7389 0.7362 0.7329
MSE(τ = 0.9) 0.7436 0.7389 0.7362 0.7329
MSE(τ = 0.8) 0.7436 0.7389 0.7362 0.7329
MSE(τ = 0.5) 0.7436 0.7389 0.7362 0.7329

MSE(τ = 1− 1√
n ) 0.7436 0.7389 0.7362 0.7329
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Table 3.10: Performance of different n with θ1 = 0.1, θ2 = 0.5, δ = 0.2, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0957 0.0959 0.0955 0.0969

Cp 0.1020 0.0856 0.0609 0.0386
Ĉp 0.1145 0.0861 0.0625 0.0401

MSE E 0.7421 0.7386 0.7360 0.7329
MSE S 0.7399 0.7392 0.7374 0.7354

MSE(τ = 1) 0.7399 0.7386 0.7360 0.7329
MSE(τ = 0.9) 0.7399 0.7386 0.7360 0.7329
MSE(τ = 0.8) 0.7421 0.7386 0.7360 0.7329
MSE(τ = 0.5) 0.7421 0.7386 0.7360 0.7329

MSE(τ = 1− 1√
n ) 0.7399 0.7386 0.7360 0.7329

Table 3.11: Performance of different N with θ1 = 0.05, θ2 = 0.5, δ = 0.2, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0467 0.0464 0.0456 0.0469

Cp 0.1021 0.0857 0.0609 0.0388
Ĉp 0.1170 0.0870 0.0626 0.0403

MSE E 0.7421 0.7386 0.7360 0.7329
MSE S 0.7378 0.7371 0.7354 0.7332

MSE(τ = 1) 0.7378 0.7371 0.7354 0.7329
MSE(τ = 0.9) 0.7378 0.7371 0.7354 0.7329
MSE(τ = 0.8) 0.7378 0.7371 0.7354 0.7329
MSE(τ = 0.5) 0.7378 0.7386 0.7360 0.7329

MSE(τ = 1− 1√
n ) 0.7378 0.7371 0.7354 0.7329

Table 3.12: Performance of different N with θ1 = 0.01, θ2 = 0.5, δ = 0.2, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0074 0.0068 0.0058 0.0070

Cp 0.1022 0.0856 0.0611 0.0386
Ĉp 0.1173 0.0867 0.0627 0.0401

MSE E 0.7421 0.7385 0.7360 0.7329
MSE S 0.7372 0.7364 0.7347 0.7325

MSE(τ = 1) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.9) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.8) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.5) 0.7372 0.7364 0.7347 0.7325

MSE(τ = 1− 1√
n ) 0.7372 0.7364 0.7347 0.7325
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Table 3.13: Performance of different N with θ1 = 0.001, θ2 = 0.5, δ = 0.2, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0014 0.0021 0.0032 0.0020

Cp 0.1020 0.0857 0.0609 0.0387
Ĉp 0.1168 0.0869 0.0625 0.0402

MSE E 0.7421 0.7385 0.7359 0.7329
MSE S 0.7372 0.7364 0.7347 0.7325

MSE(τ = 1) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.9) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.8) 0.7372 0.7364 0.7347 0.7325
MSE(τ = 0.5) 0.7372 0.7364 0.7347 0.7325

MSE(τ = 1− 1√
n ) 0.7372 0.7364 0.7347 0.7325

Table 3.14: Performance of different N with θ1 = 0.4, θ2 = 0.5, δ = 5, m = 2

n 50 100 200 500
E(|θ̂1|) 0.3918 0.3935 0.3958 0.3981

Cp 0.1045 0.0839 0.0599 0.0337
Ĉp 0.0986 0.0751 0.0511 0.0346

MSE E 2.5800 2.4454 2.3899 2.3554
MSE S 3.5249 3.4061 3.3890 3.4612

MSE(τ = 1) 2.5800 2.4454 2.3899 2.3554
MSE(τ = 0.9) 2.5800 2.4454 2.3899 2.3554
MSE(τ = 0.8) 2.5800 2.4454 2.3899 2.3554
MSE(τ = 0.5) 2.5800 2.4454 2.3899 2.3554

MSE(τ = 1− 1√
n ) 2.5800 2.4454 2.3899 2.3554

Table 3.15: Performance of different N with θ1 = 0.1, θ2 = 0.5, δ = 5, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0964 0.0955 0.0957 0.0980

Cp 0.1071 0.0845 0.0601 0.0339
Ĉp 0.1157 0.0860 0.0636 0.0411

MSE E 2.5675 2.4508 2.3912 2.3571
MSE S 2.5178 2.4608 2.4294 2.4135

MSE(τ = 1) 2.5178 2.4508 2.3912 2.3571
MSE(τ = 0.9) 2.5178 2.4508 2.3912 2.3571
MSE(τ = 0.8) 2.5675 2.4508 2.3912 2.3571
MSE(τ = 0.5) 2.5675 2.4508 2.3912 2.3571

MSE(τ = 1− 1√
n ) 2.5178 2.4508 2.3912 2.3571
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Table 3.16: Performance of different N with θ1 = 0.05, θ2 = 0.5, δ = 5, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0474 0.0459 0.0458 0.0481

Cp 0.1089 0.0845 0.0603 0.0337
hline Ĉp 0.1167 0.0860 0.0637 0.0414
MSE E 2.5669 2.4496 2.3916 2.3571
MSE S 2.4692 2.4138 2.3818 2.3616

MSE(τ = 1) 2.4692 2.4138 2.3818 2.3571
MSE(τ = 0.9) 2.4692 2.4138 2.3818 2.3571
MSE(τ = 0.8) 2.4692 2.4138 2.3818 2.3571
MSE(τ = 0.5) 2.4692 2.4496 2.3916 2.3571

MSE(τ = 1− 1√
n ) 2.4692 2.4138 2.3818 2.3571

Table 3.17: Performance of different N with θ1 = 0.01, θ2 = 0.5, δ = 5, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0082 0.0063 0.0059 0.0081

Cp 0.1091 0.0841 0.0601 0.0338
Ĉp 0.1168 0.0858 0.0631 0.0414

MSE E 2.5665 2.4486 2.3918 2.3572
MSE S 2.4544 2.3992 2.3662 2.3443

MSE(τ = 1) 2.4544 2.3992 2.3662 2.3443
MSE(τ = 0.9) 2.4544 2.3992 2.3662 2.3443
MSE(τ = 0.8) 2.4544 2.3992 2.3662 2.3443
MSE(τ = 0.5) 2.4544 2.3992 2.3662 2.3443

MSE(τ = 1− 1√
n ) 2.4544 2.3992 2.3662 2.3443

Table 3.18: Performance of different N with θ1 = 0.001, θ2 = 0.5, δ = 5, m = 2

n 50 100 200 500
E(|θ̂1|) 0.0006 0.0026 0.0030 0.0009

Cp 0.1095 0.0847 0.0597 0.0337
Ĉp 0.1170 0.0858 0.0629 0.0412

MSE E 2.5664 2.4484 2.3919 2.3572
MSE S 2.4540 2.3987 2.3655 2.3434

MSE(τ = 1) 2.4540 2.3987 2.3655 2.3434
MSE(τ = 0.9) 2.4540 2.3987 2.3655 2.3434
MSE(τ = 0.8) 2.4540 2.3987 2.3655 2.3434
MSE(τ = 0.5) 2.4540 2.3987 2.3655 2.3434

MSE(τ = 1− 1√
n ) 2.4540 2.3987 2.3655 2.3434
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Appendix A

Proofs

A.1 Proof of Lemma 3.2.2 in Chapter 3

Define any vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn), i.e., x,y ∈ℜn. We will give the

proof of Lemma 2.2 by induction.

It suffices to show that (x1y1 + · · ·+ xnyn)
2 ≤ (x2

1 + · · ·+ x2
n)(y

2
1 + · · ·+ y2

n), since x
′
y =

y
′
x = x1y1 + · · ·+ xnyn , x

′
x = x2

1 + · · ·+ x2
n and y

′
y = y2

1 + · · ·+ y2
n.

Base step: if n = 1, (x1y1)
2 = x2

1y2
1, therefore the base case holds.

Inductive step: assume that (x1y1 + · · ·+ xnyn)
2 ≤ (x2

1 + · · ·+ x2
n)(y

2
1 + · · ·+ y2

n) holds, consider

the LHS:

(x1y1 + · · ·+ xnyn + xn+1yn+1)
2

= (x1y1 + · · ·+ xnyn)
2 +(xn+1yn+1)

2 +2(xn+1yn+1)(x1y1 + · · ·+ xnyn)

≤ (x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2

n)+(xn+1yn+1)
2 +2(xn+1yn+1)(x1y1 + · · ·+ xnyn)

(A.1.1)
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Then consider the RHS:

(x2
1 + · · ·+ x2

n + x2
n+1)(y

2
1 + · · ·+ y2

n + y2
n+1)

= (x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2

n)+(xn+1yn+1)
2 +(x2

1 + · · ·+ x2
n)y

2
n+1 +(y2

1 + · · ·+ y2
n)x

2
n+1

≥ (x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2

n)+(xn+1yn+1)
2

+2(xn+1yn+1)(x1y1 + · · ·+ xnyn) by Inequality of Arithmetic

(A.1.2)

Under (A.1) and (A.2), the inductive case holds. Now by induction we see that Lemma 2.2 is true.

A.2 Proof of Lemma 3.3.1 in Chapter 3

Proof of part (a).

It suffices to show that 1
T ∑

T
t=1 εt

P→ 0 and 1
T ∑

T
t=1 yt−hεt

P→ 0 for p1 +1≤ h≤ p.

Note that: E(εt |Ft−p1) = 0 and E(yt−hεt |Ft−p1) = yt−hE(εt |Ft−p1) = 0.

Based on the Assumption 2 and Lemma A(i) in Phillips and Xu (2006), we have E(ε2
t ) < ∞

and E(y2
t−hε2

t ) ≤
√

SuptE(y4
t−h)SuptE(ε4

t )) < ∞. By the law of large numbers for martingale

differences, (a) follows directly.

Proof of part (b).

See the proof of Lemma 1 in Phillips and Xu (2006).

Proof of part (c).

It suffices to show the following three convergence results:

(i) 1
T ∑

T
t=1 ε2

t
P→

∫
g2
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(ii) 1
T ∑

T
t=1 ε2

t yt−h
P→ 0, for p1 +1≤ h≥ p

(iii) 1
T ∑

T
t=1 ε2

t yt−hyt−h−k
P→ 0, for 1≤ h≤ p and 0≤ k ≤ p−h.

Proof (i):

{ε2
t −g2( t

T ),Ft} is α−mixing by Theorem 14.1 in Davidson (1994) and E(ε2
t −g2( t

T ))
2 < ∞ by

Assumption 2. By the law of large numbers for L1− mixingales,

1
T

T

∑
t=1

ε
2
t =

1
T

T

∑
t=1

E(ε2
t )+op(1) =

1
T

T

∑
t=1

g2(
t
T
)+op(1)

P→
∫

g2.

Proof (ii):

Note that {ε2
t } is mixing and therefore L2− NED on {yt−h} is L2− NED as shown in the proof of

Lemma in Phillips and Xu (2006). So by Theorem 17.9 in Davidson (1994), {ε2
t yt−h} is L1−NED.

Moreover, we have

E|ε2
t yt−h|δ ≤ E(ε4δ

t )E(yt−h)
2δ < ∞

by Assumption 2 and Lemma A(i) in Phillips and Xu (2006). So by law of large numbers for

L1−mixingales, we have (ii) proved.

Proof (iii):

In the view of (i) and (ii), note that {ε2
t yt−hyt−h−k−g2( t

T yt−hyt−h−k),Ft} is martingale difference

sequence as E(ε2
t yt−hyt−h−k−g2( t

T yt−hyt−h−k)|Ft−p1) = yt−hyt−h−kE(ε2
t −g2( t

T )|Ft−p1) = 0

‖ε2
t yt−hyt−h−k−g2(

t
T

yt−hyt−h−k‖δ

Minkowski
≤ ·· ·< ∞

where the inequalities follow by Minkowski, Cauchy-Schewarz(CS), and Lemma A(i) in Phillips

and Xu (2006) respectively. By the law of large numbers, we then have

1
T

T

∑
t=1

ε
2
t yt−hyt−h−k−

1
T

T

∑
t=1

g2(
t
T

yt−hyt−h−k
P→ 0
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Also,
1
T

T

∑
t=1

g2(
t
T

yt−hyt−h−k =
1
T

T

∑
t=1

g2(
t
T

E(yt−hyt−h−k)+op(1)

=
1
T

T

∑
t=1

∫ t+1
T

t
T

g2(
[rT ]
T

)E(y([rT ]−h)y([rT ]−h−k))dr+op(1)

=
∫ 1

T

T+1
T

g2(
[rT ]
T

)E(y([rT ]−h)y([rT ]−h−k))dr+op(1)

P→ (
∫

g4)γk

So,
1
T

T

∑
t=1

ε
2
t yt−hyt−h−k =

1
T

T

∑
t=1

g2(
t
T

yt−hyt−h−k +op(1)

P→ (
∫

g4)γk

and part (c) follows from (i), (ii) and (iii).

Proof of part (d).

Under the prove of (a), 1
T ∑

T
t=1 yt−h

P→ 0 and 1
T ∑

T
t=1 y(t−h)y(t−h−k)

P→ (
∫

g2)γk, for p1+1≤ h≤ p.

So (d) follows.

Proof of part (e).

By the Cramér-Wold device and CTL for martingale differences in the Corollary 5.25 in White

(2014), the result in part (e) is direct.

A.3 Proof of Lemma 3.2.1 in Chapter 3

Lemma 3.2.1 is just a special case that g(·) is a positive constant function in Lemma 3.3.1.

So the proof can be done with the similar method with Lemma 3.2.1.
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