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Abstract

Neural stem cells (NSCs) offer a potential solution to treating brain tumors. This is because NSCs 

can circumvent the blood-brain barrier and migrate to areas of damage in the central nervous 

system, including tumors, stroke, and wound injuries. However, for successful clinical application 

of NSC treatment, a sufficient number of viable cells must reach the diseased or damaged area(s) 

in the brain, and evidence suggests that it may be affected by the paths the NSCs take through 

the brain, as well as the locations of tumors. To study the NSC migration in brain, we develop 

a mathematical model of therapeutic NSC migration towards brain tumor, that provides a low 

cost platform to investigate NSC treatment efficacy. Our model is an extension of the model 

developed in Rockne et al. (PLoS ONE 13, e0199967, 2018) that considers NSC migration in 

non-tumor bearing naive mouse brain. Here we modify the model in Rockne et al. in three ways: 

(i) we consider three-dimensional mouse brain geometry, (ii) we add chemotaxis to model the 

tumor-tropic nature of NSCs into tumor sites, and (iii) we model stochasticity of migration speed 

and chemosensitivity. The proposed model is used to study migration patterns of NSCs to sites 

of tumors for different injection strategies, in particular, intranasal and intracerebral delivery. We 

observe that intracerebral injection results in more NSCs arriving at the tumor site(s), but the 

relative fraction of NSCs depends on the location of injection relative to the target site(s). On the 

other hand, intranasal injection results in fewer NSCs at the tumor site, but yields a more even 

distribution of NSCs within and around the target tumor site(s).
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1. Introduction

Effective stem cell-based therapies for treatment of brain tumors and repair of damaged 

brain tissues require efficient delivery of stem cells to the tumor or injury site. One approach 

exploits the inherent tropism of human neural stem cells (NSCs) to sites of central nervous 

system (CNS) damage and inflammation for delivery of therapeutics as well as eventual cell 

replacement and/or stimulation of regeneration [1–3]. NSCs have also been engineered to 

deliver a variety of anti-cancer agents, and have shown therapeutic efficacy in preclinical 

models of several types of primary and metastatic brain tumors. These promising results 

have led to a first-in-human clinical trial of NSC-mediated therapy for glioma patients 

(clinical trial ID #NCT01172964). In addition, the California Institute for Regenerative 

Medicine (CIRM) is currently supporting preclinical investigations and clinical trials for 

development of NSCs for repair of damaged neural tissue associated with stroke, multiple 

sclerosis and other neurodegenerative diseases. Despite early successes and the promise of 

these emerging approaches, a major obstacle to further enhancing the efficacy of NSC-based 

therapy is ensuring that sufficient numbers of viable cells reach the diseased or damaged 

areas in the CNS. To accomplish this, we and others have explored intravenous (IV), 

intracranial (IC), and intranasal (IN) administration for delivery of NSCs to the CNS [4, 5]. 

Although these routes potentially have wide application to CNS tumor therapy, successful 

translation to the clinic has been hindered by an inability to visualize, quantitatively analyze, 

and predict migration of exogenous stem cells. To fill this methodological gap, we propose 

to develop and validate a computational model of NSC migration in the brain based on tissue 

anisotropy that will allow us to predict NSC migration paths and eventual biodistribution at 

brain tumor sites.

We, and others, have found that mice bearing orthotopic brain tumors and treated with IC 

or IN administered therapeutic NSCs show reduced tumor growth and improved long-term 

survival [4, 6–8]. In addition, the administered therapeutic NSCs specifically localize to 

brain tumor sites but are not found in non-tumor areas of the brain. However, as with 

previous studies of IV and IC administered therapeutic stem cells, clinical translation 

of NSC-based therapy has been hampered by our inability to quantify or predict NSC 

migration to sites of tumor/injury. This is needed because the paths that NSCs take to the 

tumors, as well as the location of tumors within the brain, may affect the final number of 

viable cells that reach the tumor/injury site. We expect that defining how NSCs migrate 

and how migration paths affect NSC numbers and viability at the tumor/injury site will 

ultimately allow for disease- or injury site-specific modification of NSC dose and route 

of administration. We have recently published a manuscript describing biodistribution and 

tumor coverage of brain tumors by therapeutic NSCs in orthotopic xenograft models of 

glioma after IC and IV routes NSC administration using 3-dimensional reconstructions 

[6]. Because the vast majority of studies on IC- or IN-administered therapeutic NSCs 
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to date have been done in rodents, to facilitate the translation from rodents to humans, 

we propose to first apply and test quantitative anisotropy-based computational methods in 

already existing preclinical brain tissue sections from brain tumor-bearing mice that received 

IC- or IN-administered NSCs, and then to validate these methods in preclinical animal 

studies.

Based on our preliminary data described below, we hypothesize that NSCs migrate along 

white matter tracts in the brain, and that the resulting routes of migration are predictable 

and depend on the spatial relationships of sites of NSC administration, tumor targets, and 

intervening white matter tracts. Technologies currently exist to map white matter tracts and 

fluid gradients in the living brain (including human brain), such as diffusion tensor imaging 

(DTI) [9]. Diffusion tensor tractography is a computational method of connecting regions 

in the brain that is based on the anisotropy, or directed orientation of the tissue. Myelinated 

axons in the white matter of the brain are very spatially oriented, or highly anisotropic, 

whereas the grey matter that composes the brain cortex is dense and lacks distinct spatial 

orientation. DTI and tractography are established in humans and are routinely collected 

clinical images in neuro-radiology and can be used to model migration of cells in the 

brain [10, 11]. Moreover, various cytokines and chemokines are involved in NSC migration 

which makes the prediction more challenging. In particular, urokinase plasminogen activator 

(uPA) and urokinase plasminogen activator receptor (uPAR) are shown to be involved in the 

migration of NSCs to malignant tumors, as well as various cytokines including interleukin-6 

(IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 [12–14]. Thus, the 

proposed studies using mechanistic modeling will provide an important preclinical model 

system and, because the methods can be established in humans, it will be feasible to 

translate results from pre-clinical studies to clinical trials in humans.

In silico models have long been established as a cost-effective and efficient computational 

alternative to in vivo and in vitro experiments. Various modeling approaches have been 

developed to understand the complex mechanisms of tumor growth and treatment responses 

[15, 16]. These include discrete approaches such as cellular automata and agent-based 

modeling [17–19]. Continuum approaches are a good alternative for tissue scale simulations, 

using ordinary differential equations [20–23], partial differential equations [24–26], and 

integro-differential equations [27–29]. Multi-scale models that combine representations of 

the tumor microenvironment at subcellular, cellular, and tissue scales have been developed 

as well [30–32]. See reviews [33–37] for different mathematical modeling approaches. Such 

models provide quantitative tools for testing therapies that improve treatment response and 

circumvent unfortunate consequences such as transient regression or relapse.

Mathematical models of cell migration and tumor invasion has been developed using a 

range of models in recent years. Cancer cells must exhibit invasive behavior through 

the surrounding tissue for metastasis to occur. Thus, many mathematical models have 

been developed to understand the mechanisms that allows cancer to invade through the 

components of the extracellular matrix by interacting with the microenvironment and 

surrounding cells [38, 39]. The effects of various components in the invasive caner system 

have been studied, including vascularization, matrix-degradative enzyme such as matrix 

metalloproteinases (MMPs), protease such as urokinase plasminogen activator (uPA), cell-
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cell adhesion, and cell-matrix adhesion [40–43]. See the recent review in [44]. Many models 

have been specifically developed for brain cancer [45–47]. While earlier models assumed 

isotropic and homogeneous migration, it became clear that the complex tissue structure 

should be taken into account to model the aniotropic nature of glioma invasion. [11] models 

the directed movement of cells along the aligned neural fiber tracts of white matter using 

DTI data. This work shows that information of the direction and degree of anisotropy 

obtained from the diffusion tensors is effective in modeling the anisotropic structure of 

brain tissue. [48] extends the aforementioned model by including adhesion mechanisms 

between the glioma cells and the extracellular matrix associated to white matter tracts, and 

demonstrates that the adhesion mechanism is crucial to explain thin invasive front of glioma. 

Patient-specific model of brain tumor has been studied in [49] by calibrating the DTI derived 

glioma invasion model to data of 10 patients. This work compares the prediction between 

isotropic and anisotropic model and investigates the level of anisotropy that anisotropic 

model makes better prediction compared to isotopic model. While there are extensive list 

of literature on modeling cancer cell migration, including glioma invasion, there are less 

number of work on modeling the NSC migration. One of the few models is an agent based 

model developed in Rockne et al. (PLoS ONE 13(8), e0199967, 2018) [10], that models the 

migration of NSC as directed movement along the white matter tract using DTI data.

In this paper, we develop a mathematical model that describes the delivery of therapeutic 

NSCs in mouse brain with glioma. The remainder of this paper is structured as follows. 

The NSC migration model in normal brain without cancer is summarized in Section 2.1. 

In Sections 2.2 and 2.3, we extend the model developed in Rockne et al. (PLoS ONE 

13(8), e0199967, 2018) [10] by adding chemotaxis and stochasticity within the population. 

While the former model only included directed migration of NSCs along white matter tracts, 

our model includes additional directed migration due to uPA concentration via chemotaxis. 

In addition, we model stochasticity within the population in their migration speed and 

sensitivity to chemotaxis. The effects of these added parameters are studied in Section 3.1, 

where we examine the distance of cell migration, proportion on white matter tracts, and 

cancer arrival rate. In Section 3.2, intranasal injection and intracerebral injection strategies 

are compared for three different scenarios regarding the location of glioma. In particular we 

study tumor sites relatively close to and farther away from the white matter tract, as well as 

two tumor sites on the opposite side of the brain. Finally, a summary of our work and future 

directions are discussed in Section 4.

2. NSC migration model

The mathematical model of NSC migration in the 3-dimensional mouse brain is presented 

in this section. Each subsection describes the parts of our model that extends [10], 

namely, three-dimensional migration, chemotaxis, and stochasticity. The overall diagram 

of migration model for individual NSC is shown in Figure 1.

2.1. NSC migration model along white matter tracts

NSCs are known to migrate along the white matter tracts in the brain. In particular, 

the correlation between the orientation of NSC and anisotropy of white matter has been 
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recognized in [10]. Accordingly, the direction of migration of NSCs is determined by 

the structural orientation of the brain tissue, computed with structure tensor analysis. The 

eigenvectors and corresponding eigenvalues of the structure tensor are used to compute the 

direction and relative orientation of both the white and grey matter composing the brain 

tissue. For brain image data I(x), the structure tensor at x is defined as following.

Tσ(x) =
Ix(x)2 Ix(x)Iy(x)

Ix(x)Iy(x) Iy(x)2
.

The eigenvectors and eigenvalues of the structure tensor are denoted ei and λi, respectively. 

In [10], a model for NSC migration in two-dimensions has been developed, where the 

anisotropy of white matter is quantified using the coherence of the structure tensor, as

Mcoℎ
2D =

λ1 − λ2
λ1 + λ2

2
.

Here, λ1 and λ2 are the eigenvalues of diffusion tensor which can be ordered so that λ1 ≥ λ2 

> 0 and at least one eigenvalue is assumed to be nonzero. The eigenvector that corresponds 

to the largest eigenvalue, e1 = (ex, ey) is converted into its angle as Mang = tan−1(ey/ex) if 

ex ≠ 0, and Mang = π if ex = 0. In three-dimensions, fractional anisotropy can be used to 

describe the degree of anisotropy. Fractional anisotropy is calculated as

Mcoℎ
3D = 3

2
λ1 − λ 2 + λ2 − λ 2 + λ3 − λ 2

λ1
2 + λ2

2 + λ3
2 ,

where λ1, λ2, and λ3 are the eigenvalues of diffusion tensor, and λ = λ1 + λ2 + λ3 /3 is the 

mean of the eigenvalues.

The governing equation of the NSC migration in non-tumor bearing naive brain is as 

follows. In both two- and three-dimensional models, a region is regarded as white matter if 

Mcoh is larger than a certain threshold value, denoted as ϵM. Thus, if

Mcoℎ(x) ≥ ϵM,

x is regarded as white matter, and otherwise grey matter. The cells in white matter will 

follow the elongated direction of white matter tract, that is given by the eigenvector e1 that 

corresponds to the largest eigenvalue. Otherwise, if the cells are in grey matter, they will not 

have any preferred direction, and we model NSC movement as a random walk.

v =
±dwMev(x), Mcoℎ(x) ≥ ϵM
dgξ(ω), Mcoℎ(x) < ϵM

(2.1)
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where Mev(x) = e1(x)/∥e1(x)∥ is the normalized direction of white matter, ξ(ω) is a 

random sample of unit length, and dw and dg are step sizes. The random walk ξ can be 

computed as follows. In the two-dimensional model, ξi(ω) ∈ ℝ2 is a random sample on a 

unit circle boundary, and ξi(ω) ∈ ℝ3 is a random sample on a unit sphere surface in the 

three-dimensional model, such that, ∥ξi∥ = 1. Among the two directions, Mev or −Mev, that 

NSC can take, we assume that NSCs choose the direction that is consistent with the previous 

step, assuming that the movement of NSCs are under the influence of inertia. To compute 

such direction, at time step ti, we take the sign of the inner product between xi−xi−1 and Mev, 

that is,

v = sign xi − xi − 1 ⋅ Mev xi dwMev(x) .

Although in our current model, the NSCs strictly follow the white matter tract once it is 

on it, a noise term could be added to allow stochastic variation, e.g., v = ±dw Mev(x) + ϵ. 

We will describe in the following section that NSCs can leave the white matter tract via 

chemotaxis signal.

2.2. NSC migration model with chemotaxis

In addition to the migration along the white matter tract, we model the tumor-tropic 

migration toward cancer by chemotaxis. In particular, we consider NSCs to be sensitive 

to uPA concentration that is known to be significantly higher in glioma than in normal 

brain tissue [12]. Moreover, hypoxia and metastasis is known to induce overexpression of 

the uPA and its receptor. To model the chemotaxis movement of NSCs, we consider the 

concentration of uPA as C(x, y, z). We assume that the time scale of uPA diffusion is 

significantly longer than the time scale of the NSC migration, thus consider C(x, y, z) to be 

time-independent. uPA concentration is modeled to decay from the center of the tumor (xc, 

yc, zc), as

C(x, y, z) = 1 +
x − xc

2

σx2
+

y − yc
2

σy2
+

z − zc
2

σz2

−p
,

where (σx, σy, σz) represents the distance from the tumor that the substance is halved in 

each x, y, and z direction, and p represents how gradually the substance decay. Chemotaxis 

is the movement of cells in a direction corresponding to a chemical stimulus, for example, 

an increasing uPA concentration in our case. Therefore we include the gradient of uPA 

concentration λc∇C(x) = λc(∂xC, ∂yC, ∂zC) to Eq (2.1) if uPA concentration C(x) is above a 

certain threshold, denoted as ϵc. Here, λc is the chemotaxis sensitivity parameter.

v = v + λc∇C(X(t)), C(x) ≥ ϵc . (2.2)
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2.3. Stochasticity within the population

NSCs have demonstrated stochasticity in their migration distance and response to 

chemotactic signals. While some NSCs are able to quickly migrate to the intended tumor 

site, many of them are found near the injected location and as well as other parts of the 

brain. Therefore, we choose the migration speed and chemotaxis sensitivity as stochastic 

parameters.

2.3.1. Stochastic migration speed—Stochasticity of NSC migration speed is 

modeled with a beta distribution, B[α, β]. Instead of the deterministic migration speed 

dw in Eq (2.1), we consider a stochastic migration speed

dwψ(ω), ψ(ω) B 1, βw ,

where βw ≥ 1. Note that we take α = 1 so that βw = 1 will result in a uniform distribution, 

and we consider βw ≥ 1 so that more cells are likely to have small speed. This choice is due 

to the experimental results showing that some NSCs move relatively fast, but the majority of 

cells do not move much from the injection site.

2.3.2. Stochastic chemo-sensitivity—Chemosensitivity of NSCs are also assumed 

to be stochastic. We again consider a beta distribution instead of the deterministic 

chemosensitivity parameter λc in Eq (2.2), we consider

λcη(ω), η(ω) B αc, 1 .

Similarly, αc = 1 will result in a uniform distribution of chemosensitivity from 0 to λc 

among the NSCs, and as αc increases as αc ≫ 1, the chemosensitivity will be closer to being 

deterministic.

3. Simulation

In this section, the migration patterns of NSCs in the mouse brain are studied using our 

model. We consider LM-NSC008 cells [4] with the range of parameter values chosen similar 

to [10] as shown in Table 1. In addition, we include functions and parameters to model 

chemotaxis and stochasticity, which we study the effect of in Section 3.1. In Section 3.2, we 

further study the model in the three-dimensional mouse brain, where we focus on comparing 

two different injection strategies, intracerebral and intranasal routes of delivery. We initialize 

our simulation with 1,000 NSCs. Time step is chosen as Δt = 1/1,000 days. In both the 

2-dimensional and 3-dimensional models, we begin by initializing our NSC by randomly 

generating them within a given radius of the injection site. Then each NSC at every Δt 
performs one of two actions: if it is on the white matter, it migrates along the direction of the 

white matter tract, or if it is on the grey matter, it moves to a random direction. In addition, 

the migration step due to chemotaxis is appended. We repeat this process up to 30 days.
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3.1. Parameter study in 2D

First, we study how variations in our model parameters effect NSC migration and 

chemotaxis. We use a two-dimensional cross-section of mouse brain and intracerebral 

delivery using mouse DTI from [10]. The image is a vertical cross-section of a mouse brain 

with size 8,892× 5,004 pixels and length 1.444 μm per pixel. For this study, we consider 

two tumor locations, one close to the injection site in the frontal lobe (Tumor 1) and another 

further away, past the anterior commissure (Tumor 2). The tumor locations are plotted in 

Figure 4 in red circles.

3.1.1. NSC migration speed—The maximum migration speed of NSCs in white matter 

is parameterized by dw and in gray matter by dg. We fix dw = 5 so that the migration speed is 

dw× 1.444 μm per time step, Δt = 1/1,000 in days. Figure 2 compares the migration patterns 

using different values of dw and dg. When the migration speed is slower in the gray matter, 

such as dg = 0.5 and dw = 5, the NSCs mostly stay on the white matter tracts. On the 

other hand, when the migration speeds are identical, such as dw = dg = 5, NSCs are more 

randomly distributed across the entire brain. We also observe that cells arrive at the anterior 

commissure only when dg is large enough, for example when dg = 5. Among the 1,000 cells 

that are injected, cell numbers in the order of O(10) reach the anterior commissure at t = 

3.75 days following NSC injection. Further, we quantify the distance from the injection site. 

The box-plot in Figure 2 compares the distance traveled by NSCs for different values of dg. 

The median of distance from the injection site on day 5 increases from around 1,000 μm 
when dg = 0.5 to 2,000 μm when dg = 5.

We modeled the maximum migration speed dw to be stochastic, in particular, we considered 

a beta distribution, B[1, βd] for dw. The first parameter is fixed at 1 so that the distribution is 

skewed toward zero. This is done to reflect experimental results, which show that fewer cells 

travel rapidly, while most cells stay close to the injection site. To study the effect of this, we 

vary the second parameter βw ∈ [1, 4]. When βd = 1, the migration speed of the population 

is uniformly distributed in [0, dw], however, as βw increases, the distribution will be skewed 

more towards zero. In addition, we rescale the values so that the average is consistent with 

the deterministic case, so that there will be more outliers that have large migration speed 

as we increase βw. The results of comparing βw = 1 and βw = 4 are shown in Figure 3, 

where an increased value of βw yields more NSCs that travel above a distance of 8,000 μm, 

while the median distance decreases. We comment that the effect of larger migration speed 

dg remains when stochasticity is added. For fixed βw = 1, increasing dg results in more NSCs 

migrating a longer distance arriving at the anterior commissure. Increasing βw with fixed dg 

and dw gives the same result.

3.1.2. Chemotaxis and sensitivity to chemoattractant—Figure 4 compares the 

trajectory of NSC migration in the case of non-tumor bearing naive brain as compared to 

when a glioma brain tumor is present. Without a tumor to target, the NSCs migrate along 

the white matter tracts in the corpus callosum, and mostly stay on the tracts. However, 

when a tumor is present in the middle of corpus callosum and anterior commissure, NSCs 

effectively migrate to the cancer site by the chemotaxis mechanism. Note that we use the 

chemotaxis sensitivity parameter value as λc = 6.
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In addition, we compare two tumor sites as shown in Figure 4. The first tumor (Tumor 1) 

is located in the right frontal lobe between the corpus callosum and the anterior commissure 

which is closer to the injection site. The other tumor (Tumor 2) is located further away 

from the injection site past the anterior commissure. The white line represents the shortest 

migration path of NSC from the injection to the cancer site. We observe distinct migration 

patterns in the two tumor sites. When the cancer is located closer to the injection site, NSCs 

can directly migrate to the cancer site. However, when the cancer is located further away 

past the anterior commissure, NSCs cannot detect the chemotaxis gradient when they are 

injected. However, as they migrate along the white matter tract, and the ones that move 

closer to the cancer site detect the chemoattractant and start moving toward the tumor site.

Figure 5 shows the percentage of NSCs that arrive at the cancer site for different values of 

chemosensitivity parameter λc. As expected, approximately four times more NSCs arrive at 

the closer site (Tumor 1) as compared to the more distant site (Tumor 2). We also observe 

that increasing the chemosensitivity parameter λc substantially increases the proportion 

of NSCs that arrive at the cancer. When λc = 10 almost 85% arrive at cancer site 1 

and above 20% arrive at cancer site 2, despite being further away. We comment that by 

adding stochasticity to the chemosensitivity parameter, the arrival at the cancer site reduces 

significantly especially for smaller values of αc. As the stochastic parameter increases as αc 

≥ 4, the results approach the deterministic model with the same chemosensitivity value.

3.2. Comparison of intranasal and intracerebral injection in 3D

In this section, we simulate the model on a three-dimensional mouse brain, and focus 

on comparing two different injection strategies, intracerebral and intranasal injection. 

Intracerebral administration of NSCs injects cells directly into the brain, which is one 

of the most direct methods of drug delivery to the target site since it bypasses the blood-

brain barrier and other mechanisms that limit drug distribution. However, this method is 

invasive such that it requires opening the skull, and also the wound from the injection 

needle can cause a hostile environment for the NSCs to survive. An alternative method 

is intranasal administration that insufflates the drug through the nose. The therapeutic 

agents are then transported through the nasal cavity to the olfactory epithelium that covers 

the upper part, before moving to the olfactory bulb which provides a direct connection 

between the brain and its external environment. The advantage of intranasal injection over 

intracerebral is it’s non-invasive nature of administration while similarly bypassing the 

blood-brain barrier to deliver the drug agents. Also, the possibility of repeated treatment 

is another major advantage of intranasal administration over intracerebral administration, 

whereas intracerebral administration can be given only once.

In Table 2, we summarize experimental results of NSC administration from [6] and 

[55]. In [6], HB1.F3.CD21 NSCs are administered via intracerebral/ventricular route in 

glioma xenograft mice. For GL261 and PBT017 tumor bearing mice, 4 × 105 NSCs were 

administered, and the brains were harvested 2–3 days after NSC administration, respectively. 

The NSCs at cancer sites were quantified by estimating the number of NSC clusters. As 

presented in Table 2, 773 and 1870 clusters were identified in GL261 cell line and 2076 

clusters in PBT017 cell line. Although we cannot calculate the percentage of the arrival 
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exactly, assuming that there are 20 cells per cluster, we estimate 6.61±3.88% and 10.38% 

of arrival percentage for GL261 and PBT017 cell lines, respectively. On the other hand, 

intranasal administration is tested in [55]. For U251 glioma bearing mice, 6 × 105 NSCs 

were administered intranasally. In this experiment, the number of NSCs at cancer site is 

estimated as 3,000–7,000 cells. This corresponds to arrival percentage of 0.55 ± 0.16% 

on day 1 and 1.25% on day 4. Although the two experiments are not controlled to be 

directly comparable, they provide an idea about the efficacy of intracerebral and intranasal 

administration of NSCs. In addition, we comment that our simulation results of percentage 

of cancer arrival are overestimated due to not considering the fraction NSCs dying at the 

injection site. While we assume that all NSCs survive and migrate inside the brain, in reality, 

only 10–20% of NSC are known to survive after injection.

We take the mouse DTI from [56] with size 637 × 557 × 277 pixels and 13.5 μm per pixel. 

Figure 6 shows the structure of the mouse brain, where the white matter tract is marked 

with blue dots. We simulate migration of 1,000 NSCs in both injection strategies, intranasal 

and intracerebral injection. The injection sites are shown with a few migration paths and 

distributions of NSCs on day 30. In this simulation, no cancer was present. We observe that 

NSCs injected through the intranasal route take the white matter tract in the lower part of 

the brain, but a fraction of the cells remain near the injection site. On the other hand, NSCs 

administered through intracerebral path migrate along the white matter tract in the corpus 

callosum. The percentage of NSCs on the white matter tract is shown in Figure 6. In the case 

of intranasal injection, the percentage gradually increases up to 15% at three weeks whereas 

for intracerebral, the cells are injected near or on the white matter tract so that the percentage 

starts higher and decays to around 55 %.

Let us study the two injection methods for brain with glioma. The size of the tumor is 

chosen to be 200 × 200 × 800 μm. We consider the following three scenarios with different 

locations and numbers of cancer as follows:

• Case 1: One cancer site on the front side of right putamen

• Case 2: One cancer site on the rear side of right putamen

• Case 3: Two cancer sites on the left and right putamen

We begin our simulations with 1,000 NSCs for the case of cancer site centered at the front 

side of the right putamen, xc = [230, 300, 175]. The movement of NSCs throughout the 

brain is observed using both methods of injection, intranasal and intracerebral. With this 

framework for study set in place, Figure 7 shows the distribution of NSCs at the final 

simulation time, day 30, and some trajectories. We can observe that the NSCs arrived at the 

cancer location in both injections. In particular, most of the intracerebrally injected NSCs 

are shown to be at the cancer site. The boxplot showing the distance from the injection site 

reveals that intracerebral NSCs mostly seem to travel and stay around 3,000 μm from the 

injection site within three days, which agrees with the distance to the cancer site. On the 

other hand, the intranasal NSCs seem to spread out gradually from their initial starting point, 

with some outliers most likely indicating those few cells that travel much farther and manage 

to reach the white matter deeper in the brain. This contrast is due to the cancer site being 

directly connected to the intracerebral injection site via a white matter tract which functions 
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as the shortest path that the NSCs traverse. In Figure 8, we see that the intracerebral cells are 

able to take a much more direct path to the cancer location as opposed to the intranasal cells 

that follow a winding path from the olfactory bulb to the center of the brain. The fraction of 

NSCs that reached the cancer site, which exemplifies the contrast provided by the difference 

in starting position. Around 14% of NSCs injected intranasally reach the cancer site, as 

opposed to the approximately 90% of NSCs injected intracerebrally.

The second simulation with cancer present places the cancer site centered at the rear side 

of the right putamen, xc = [120, 400, 150]. Compared to the first simulation, this cancer 

location is further away from both injection sites making NSC treatment more challenging. 

Figure 9 shows that the NSC that takes the shortest path from the intranasal injection site to 

the cancer location navigates through the brain along the white matter tract until it becomes 

close enough to the cancer and can read the chemotaxis signal. Such a path may not be a 

straight line to its destination, resulting in it taking a longer route around the brain. This is 

in contrast with case 1 where the cancer site was relatively close to the intranasal injection 

site, and both the injection site and cancer were located near a white matter tract causing the 

shortest path to be more direct. We see that as a result of this challenging tumor location, 

in both injection strategies, the percentages are fairly low, capping out at around 5% in the 

intracerebral simulation and 1% in the intranasal simulation. Thus for cancer sites that are 

located further back in the brain away from the white matter tract, intranasal injection may 

not be a feasible option.

The third simulation has two cancer sites present, one centered at the front side of the right 

putamen, xc = [230, 300, 175] and the other centered at the middle of the left putamen xc 

= [400, 360, 155]. We observe that in intranasal injection, the NSC that took the shortest 

path to reach either cancer travels directly through the olfactory bulb to the cancer sites. 

This may be due to the closer location of the tumor from the injection site that some of 

the NSC can migrate with chemotactic driving force. On the other hand, the intracerebrally 

injected NSC has the advantage of being much closer to the cancer site on the right putamen, 

while the cancer site on the left putamen can be accessed through crossing the white matter 

tract to the other side of the brain. The direct result of this advantage can be seen in Figure 

10, where the percentage of NSCs injected intracerebrally which reach the right cancer site 

is over 80%, and approximately 15% arrive at the left cancer site within two weeks. The 

proximity of the right cancer site to the injection causes the cells to stick to this site. This 

drawback has been observed in [6] from the experiment considering intracerebral/ventricular 

NSC administration to PBT017 glioma bearing mice. 1,640 NSC clusters arrived at the 

tumor on the same side of the injection, but only 230 clusters at the tumor on the opposite 

side. However, intranasal injection yields more evenly distributed NSCs from our simulation 

although the overall percentage is lower. Around 5% of NSCs arrive at the right cancer 

site and 9% arrive at the left cancer site. Considering the fact that intranasal injection can 

be given repeatedly, intranasal injection may yield a more uniform distribution of NSCs 

especially if there are multiple cancer sites at distinct locations.
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4. Conclusions

In this paper, we develop an agent based model of therapeutic neural stem cell migration in 

a three-dimensional mouse brain with and without glioma brain tumor. As an extension to 

the original two-dimensional model in Rockne et al. (2018), our model allows us to examine 

the neural stem cell migration in a three-dimensional brain that elevates the potential usage 

of in silico simulation. In addition, the effect of uPA is added to model the chemotactic 

behavior of the neural stem cells, which makes them a promising therapeutic agent for 

cancer treatment. Finally, the stochasticity regarding the migration speed and sensitivity to 

chemotaxis is modeled with stochastic parameters. The effect of these added parameters on 

the migration distance, percentage in white matter tracts, and arrival percentage at the cancer 

sites are studied.

Using our model, we examine the efficacy of NSC treatment for different cancer locations 

and different injection strategies. In particular, we focus on comparing intranasal and 

intracerebral injections. Intranasal drug delivery provides an alternative and effective 

strategy to intracerebral injection which is more invasive. We compare the migration pattern 

of neural stem cells and tumor arrival rates of the two injection strategies. Considering the 

fraction of NSCs to arrive among injected NSCs, intracerebral injection is more effective 

due to its closer distance to the cancer site and injection location being on the white matter 

tract. However, due to such strong dependency on the injection location, when multiple 

cancer sites exist, the NSCs are concentrated at the nearest site which makes the distribution 

of NSCs less uniform compared to the intranasal injection. Although intranasal injection 

show a smaller arrival rate compared to intracerebral injection, NSCs are still able to follow 

the white matter tract all across the brain and a considerable amount of NSCs reach the 

cancer site. Moreover, when two tumor sites are located on opposite sides of the brain, 

intranasal injection yields a more even distribution compared to intracerebral injection. 

Considering that repeated administration is possible in intranasal delivery, our simulations 

supports the efficacy of intranasal delivery of NSC treatment, especially when there are 

multiple tumor sites across the brain.

Future work includes calibrating the model to experimental data and conducting parameter 

sensitivity analysis more carefully. We also plan to build on our model inspired by various 

cell migration modeling approaches and improve upon it. As discussed in Section 2.1, 

stochasticity can be added to the directed migration in our model. More sophisticated 

stochastic processes can be used, for instance cell position and velocity can be modeled as 

jump processes [57], where this approach enables incorporation of biochemical pathways 

into random walk description [58, 59]. On a similar note, modeling cell signaling networks 

can incorporate the feedback interaction between NSCs and chemoattractants [51]. In 

addition to the chemical component of the migration process, integrating the mechanical 

component is another possibility [60]. For instance, [61] derives and compares individual 

based mesoscopic model and population based macroscopic model to describe mesenchymal 

migration of cells in fibre networks, which provides us methods to model the NSC migration 

along the white matter fibers in multiple scales [62]. We also note that the model can be 

improved by including cell-cell interaction and contact inhibition [63]. Interaction between 

NSCs and glioma cells is another component to be added, in addition, to the interaction 
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between NSCs, extracellular matrix, various cytokines and chemokines, and immune cells 

[13, 14, 64]. Phenomena of leader and follower cells [63, 65] in collective cell migration 

[66, 67] have been reported in many other systems including neural crest cells [68, 69] and 

we hope to investigate the possibility of such phenomena in NSC migration as well. In the 

future, the calibrated model can be used to study various dosing strategies. In particular, how 

to determine the dosage levels and how they should be spread out is an important question to 

be studied.
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Figure 1. 
Summary diagram of the NSC migration model with chemotaxis.
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Figure 2. 
NSC distribution comparing different values of grey matter migration speed, dg, using dw = 

5, dg = 0.5 (top) and dw = dg = 5 (bottom). Note that using dw = dg results in scattered NSC 

with many of them located outside the white matter. When NSCs migrate slower in gray 

matter, such as dg = 0.5, they stay mostly in the white matter. Furthermore, NSCs only arrive 

at the anterior commesure when the gray matter migration speed is large enough, e.g., dg = 

5. The boxplot shows the distance NSCs traveled from injection site, where we observe the 

NSC migration distance approximately doubles when dg = 5 compared to dg = 1.
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Figure 3. 
Distance NSCs traveled from injection site comparing different values of stochastic 

migration speed, βw = 1 (left) and βw = 4 (right). We observe an increasing number of 

NSC outliers both sooner and in total as βw increases, while the median distance decreases.
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Figure 4. 
Cell trajectories of NSC migration without cancer (left) and with cancer (middle, right). The 

injection site and cancer is marked with a black star and a red circle, respectively. In the 

normal case, NSCs migrate along white matter tracts, however, when cancer is present, the 

cells robustly migrate to the cancer site when the cancer is in the frontal lobe, close to the 

injection site. In case the tumor further away past the anterior commissure, NSCs travel first 

along the white matter tract before they get close enough to the cancer site and pick up the 

chemotaxis signal. The minimal migration path is marked in white line.
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Figure 5. 
Percentage of NSCs arrived at the tumor site comparing different target locations, frontal 

lobe (Tumor 1) and further away pass anterior commissure (Tumor 2). As chemosensitivity 

λc increases, the amount of NSC that reaches the cancer site also increases.
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Figure 6. 
Comparison of intranasal (left) and intracerebral (right) administration of NSCs without the 

presence of cancer. The white matter tract is marked by blue dots. Selected few trajectories 

of NSCs (top), the location of NSCs on day 30 (middle), and the percentage of NSCs on 

white matter tracts (bottom) are shown. NSCs injected by intranasal administration slowly 

migrate to the center of the brain following the white matter tract in the lower part. On the 

other hand, NSCs injected in the cerebrum migrate along the white matter tract of the corpus 

callosum and spread out more easily across the brain. The percentage of intranasal NSCs 

on white matter tracts trends slowly up to over 16%. In case of intracerebral NSCs, the 

percentage decays from 70 to 55%, since the cells are injected near the white matter tract, 

but spread throughout the brain.
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Figure 7. 
Case 1: Location of NSCs on day 30 (top) and distance NSCs travel from injection site 

(bottom) starting from intranasal injection site (left) and the intracerebral injection site 

(right). The NSCs from the intranasal injection spread evenly throughout the simulation. 

On the other hand, majority of the NSC from the intracerebral injection rapidly migrates 

towards the cancer site while leaving some outliers near the injection site.
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Figure 8. 
Case 1: The migration paths of selected NSCs towards the tumor centered at the front side 

of right putamen (top) and the percentage of NSCs that reach the cancer site (bottom). The 

cells are injected either intranasally (left) and intracerebrally (right). The red line represents 

the NSC that traveled the shortest path from its initial position to the cancer site. The 

shortest path taken by the intracerebrally injected NSCs directly follows the major white 

matter tract, while intranasally injected NSCs have to navigate through a longer distance. 

NSCs from the intranasal injection site travel gradually to the cancer site, with about 14% 

reaching their destination on day 30. Meanwhile, NSCs from the intracerebral injection site 

swiftly travel to the location of the tumor and a much greater percent arrive at around 90%.
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Figure 9. 
Case 2: The migration paths of selected NSCs towards the tumor centered at the rear side 

of the right putamen (top) and the percentage of NSCs that reach the cancer site (bottom). 

The cells are injected either intranasally (left) and intracerebrally (right). We observe that 

when injected intranasally, only about 1% ever arrive on day 30 while when injected 

intracerebrally, this number jumps up to 5% total.
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Figure 10. 
Case 3: Percentage of NSC that arrive at the cancer site on the left putamen (top) and at 

the cancer site on the right putamen (bottom) over time (days). The starting points are the 

intranasal injection site (left) and the intracerebral injection site (right). We can observe that 

more NSC reaches both cancer sites when injected intracerebrally, which is likely because 

this injection site is overall closer the cancer sites and begins on white matter. However, the 

distribution of NSCs among the two cancer site is more uniform when intranasally injected.
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Table 1.

Model parameters, their biological interpretation, and their range of values. Values and ranges of dw and dg are 

taken from [10], and other parameters are estimated.

biological meaning

Mcoh(x) Degree of antisotropy at x = (x, y, z)

Mev(x) Elongated direction of white matter at x

C(x) Chemokine concentration at x

biological meaning value units reference

d w Maximum NSC migration speed on white matter [0.5, 5] μm day−1* [10, 50]

d g Maximum NSC migration rate on gray matter [0.1, 5] μm day−1* [10, 50]

λ c Sensitivity to chemoattractant [3, 10] μm day−1* [50, 51]

β d Stochasticity in migration speed [1, 4] 1 [52, 53]

α c Stochasticity in sensitivity to chemoattractant [1, 5] 1 [51–53]

ϵ M threshold of fractional anisotropy for white matter 0.4 1 [54]

*
Additional scaling of multiplying with X/T is needed to convert the values to the written units, where X = 1.444 μm for 2D DTI, X=13.5 μm for 

3D DTI, and T = Δt = 1/1,000 day.
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Table 2.

Experimental results of HB1.F3.CD21 NSCs administered via intracerebral/ventricular [6] and intranasal [55] 

injection.

injection glioma time dosage arrival reference

Intracerebral/ventricular
GL261 2 days 4 × 105 cells 1321 ± 775.7 clusters

[6]
PBT017 3 days 4 × 105 cells 2076 clusters

Intranasal U251
1 day 6 × 105 cells 3300 ± 934 cells

[55]
4 days 6 × 105 cells 7420 cells
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