
UCLA
UCLA Electronic Theses and Dissertations

Title
Structure Learning of Bayesian Networks: Group Regularization and Divide-and-Conquer

Permalink
https://escholarship.org/uc/item/3gn676qm

Author
Gu, Jiaying

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gn676qm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Structure Learning of Bayesian Networks:

Group Regularization and Divide-and-Conquer

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Jiaying Gu

2018

c© Copyright by

Jiaying Gu

2018

ABSTRACT OF THE DISSERTATION

Structure Learning of Bayesian Networks:

Group Regularization and Divide-and-Conquer

by

Jiaying Gu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2018

Professor Qing Zhou, Chair

Bayesian networks, with structure given by a directed acyclic graph (DAG), are a popular

class of graphical models. In this dissertation, we develop two structure learning methods

for Bayesian networks.

First we propose a score-based algorithm for discrete data that can incorporate experi-

mental intervention for causal learning. Learning Bayesian networks from discrete or cate-

gorical data is particularly challenging, due to the large parameter space and the difficulty in

searching for a sparse structure. In this thesis, we develop a maximum penalized likelihood

method to tackle this problem. Instead of the commonly used multinomial distribution, we

model the conditional distribution of a node given its parents by multi-logit regression, in

which an edge is parameterized by a set of coefficient vectors with dummy variables encoding

the levels of a node. To obtain a sparse DAG, a group norm penalty is employed, and a

blockwise coordinate descent algorithm is developed to maximize the penalized likelihood

subject to the acyclicity constraint of a DAG. When interventional data are available, our

method constructs a causal network, in which a directed edge represents a causal relation.

We apply our method to various simulated and real data sets. The results show that our

method is very competitive, compared to many existing methods, in DAG estimation from

both interventional and high-dimensional observational data. In addition, an R package dis-

cretecdAlgorithm for this algorithm is published on CRAN, with a user friendly interface.

ii

The second method we propose is a framework for fast learning of extremely large

Bayesian networks. The size of the DAG space grows super-exponentially in the number

of nodes, and it is challenging to develop an efficient structure learning method for massive

networks. We propose a three step divide-and-conquer framework for Gaussian observational

data: 1) partition the full DAG into several sub-networks (P-step), 2) estimate each discon-

nected sub-network individually (E-setp), 3) fuse sub-networks by adding edges between

them (F-step). To partition the full DAG into some sub-networks, a modified hierarchical

clustering with average linkage is proposed to automatically choose the number of sub-

networks. For the estimation step, users can apply any proper structure learning algorithm;

in our implementation we choose to use the Concave penalized Coordinate Descent with

reparameterization (CCDr) algorithm (Aragam and Zhou, 2015) as an example. Finally we

develop a hybrid fusion step that uses both conditional independence tests and a penalized

likelihood scoring function to recover the structure of the full DAG. The simulation results

show that our three step framework had significant improvement in both speed and accu-

racy compared to estimating the DAG as a whole with the algorithm used in the second

estimation step.

iii

The dissertation of Jiaying Gu is approved.

Adnan Youssef Darwiche

Yingnian Wu

Mark Stephen Handcock

Qing Zhou, Committee Chair

University of California, Los Angeles

2018

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Bayesian Networks . 1

1.2 Background: Some Fundamental Concepts and Theorems 3

1.2.1 Markov equivalence . 4

1.2.2 Causal learning and interventional data 6

1.3 Rescent Developments in Structure Learning Methods 9

1.4 Outline and Overview . 10

2 Causal Learning with Categorical Data . 12

2.1 Discrete Bayesian Networks . 12

2.1.1 A multi-logit model . 13

2.1.2 Group norm penalty . 15

2.2 Algorithm . 16

2.2.1 Single coordinate descent step . 16

2.2.2 Blockwise coordinate descent . 18

2.2.3 Solution path . 20

2.3 Asymptotic Theory . 21

2.4 Simulation Studies . 29

2.4.1 Experimental setup . 29

2.4.2 Results for interventional data . 32

2.4.3 Results for high-dimensional observational data 34

2.4.4 Timing comparison . 37

2.5 Applications to Real Networks . 38

v

2.5.1 Comparison with the K2 Algorithm 38

2.5.2 Application to flow cytometry data 39

2.6 Discussions . 41

3 R Packages: discretecdAlgorithm and sparsebn 50

3.1 Introduction and Related Packages . 50

3.2 Using the sparsebn Package for Structure Learning of Discrete Bayesian Net-

works . 51

3.2.1 Data Structures . 52

3.2.2 Installation . 53

3.3 An Example of Discrete Cytometry Data . 53

3.3.1 Getting sparsebnData object . 54

3.3.2 Structure Learning . 55

3.3.3 Prior Knowledge . 58

3.3.4 Solution paths . 60

3.3.5 Parameter estimation . 62

3.3.6 Model selection . 64

3.4 Discussions . 65

4 Learning Massive Gaussian Bayesian Networks 67

4.1 Motivation and Outline . 67

4.2 A Gaussian Model for Continuous Data and Assumptions 68

4.2.1 Gaussian model for continuous data 68

4.2.2 Features and assumptions . 70

4.3 A Divide-and-Conquer Framework . 72

4.3.1 Partition . 73

vi

4.3.2 Estimation . 77

4.3.3 Fusion . 80

4.4 Applications to Real Networks . 85

4.4.1 Comparison with the CCDr algorithm 86

4.4.2 Performance of the clustering step . 92

4.4.3 Recovery rate of the fusion step . 93

4.4.4 Influence of the number of clusters k 94

4.5 Discussions . 95

4.6 Supplemental Materials . 97

5 Summary and Discussion . 112

vii

LIST OF FIGURES

2.1 A typical convergence plot . 20

2.2 The effect of interventions in terms of the SHD, where each node has m interven-

tional data points while the total sample size n is fixed 35

2.3 Box-plot of test data log-likelihood for four algorithms with log-likelihood scaled

by the sample size n = 50 . 36

2.4 (A) The consensus signaling network in human immune system cells, (B) DAG

estimated by the CD algorithm . 40

4.1 An example on the linear structural equation model. 69

4.2 Example for DAGs with and without clusters 71

4.3 Example for DAGs with and without clusters 72

4.4 Example on choosing k and lk. This is an upper portion of the clutering tree.

Red clusters are clusters with more than 0.05p nodes, and the grey ones are small

clusters. The level lk is marked in the red box, and in this case k = 3. 77

4.5 Time comparison of the CCDr algorithm, the MMHC algorithm and the PC

algorithm. C is for the CCDr algorithm, P is for the PC algorithm, M is for the

MMHC algorithm. 79

4.6 log10 time for networks with 5 identical sub-networks. The line with -C- is for

the CCDr algorithm, and the line with -P- is for the PEF method. From left to

right, networks are formed with 5 replicates of PATHFINDER (p = 109), ANDES

(p = 223), DIABETES (p = 413), LINK (p = 724), MUNIN (p = 1041). 88

4.7 log10 time for networks with increasing number of sub-networks. The line with

-C- is for the CCDr algorithm, and the line with -P- is for the PEF method. From

left to right, each network is k replicates of MUNINs, where k = 1, 2, 3, 4, 5, 6, 7, 8. 90

4.8 log10

(
TC
TP

)
for all networks. Dots in blue are for networks generated by scheme

(i.) and (ii.); Dots in black are for networks generated by scheme (iii.) 91

viii

LIST OF TABLES

2.1 Comparison between our CD algorithm and the PC algorithm on simulated in-

terventional data . 44

2.2 Comparison between our CD algorithm and the EE-DAG sampler on simulated

interventional data . 45

2.3 Comparison between our CD algorithm and the EE-DAG sampler on simulated

interventional data . 46

2.4 Comparison between our CD algorithm and the GIES algorithm on simulated

interventional data . 47

2.5 Comparison among our CD algorithm and other algorithms on simulated obser-

vational data . 48

2.6 Comparison between our CD algorithm and the K2 Algorithm 49

2.7 Comparison on the flow cytometry data set . 49

4.1 Timing comparison in munites for networks with 5 identical sub-networks. . . . 87

4.2 Timing comparison in minutes for network with increasing number of sub-netwroks

(MUNIN), . 89

4.3 Comparison between the CCDr algorithm and the PEF method 99

4.4 Comparison between the CCDr algorithm and the PEF method 100

4.5 Comparison between the CCDr algorithm and the PEF method 101

4.6 Partition step summary . 102

4.7 Comparison between the PEF method and the PE method 103

4.8 Comparison between the PEF method and the PE method 104

4.9 Comparison between the PEF method and the PE method 105

4.10 Accuracy of the PEF method and the PE step when limiting kmax = 5. 106

4.11 Accuracy of the PEF method and the PE step when limiting kmax = 5. 107

ix

4.12 Running time of the PEF method when kmax = 5 108

4.13 Time comparison wetween the CCDr algorithm and the PEF method. 109

4.14 Time comparison wetween the CCDr algorithm and the PEF method. 110

4.15 mix: Time (min) for dags with no between cluster edges. 111

x

VITA

2009–2013 B.S., Department of Mathmatics, Major in Information and Computing

Sciense, Fudan University, Shanghai, China.

2013–present Expected Ph.D., Major in Statistics, University of California-Los Angeles.

PUBLICATIONS

Aragam, B., Gu, J., and Zhou, Q. (2018). Learning large-scale Bayesian networks with the

sparsebn package. Journal of Statistical Software, to appear.

Gu, J., Fu, F., and Zhou, Q. (2018). Penalized estimation of directed acyclic graphs from

discrete data. Statistics and Computing, DOI: 10.1007/s11222-018-9801-y.

Aragam, B., Gu, J., Amini, A. A., and Zhou, Q. (2017). Learning high-dimensional DAGs:

Provable statistical guarantees and scalable approximation. NIPS Workshop on Advances

in Modeling and Learning Interactions from Complex Data.

xi

CHAPTER 1

Introduction

1.1 Bayesian Networks

Bayesian networks are a class of probabilistic graphical models whose structure encodes

the conditional independence relationships among a set of random variables. A Bayesian

network can be graphically represented by a directed acyclic graph (DAG). It is constructed

with nodes and directed edges. Each node represents a random variable and each edge can

represent the causal influence between two nodes. Recent years have seen its popularity

in the biological and medical sciences for inferring gene regulatory networks and cellular

networks, partially attributed to the fact that it can be used for causal inference. Learning

the structure of biological networks from data is a key to understanding their functions. In

biological networks, each protein can be regarded as a node in a Bayesian network, and their

causal relationships as edges. If there is no protein-protein interaction between two nodes of

interest, they are not directly related and consequently there is no edge between them.

Due to the directionality, Bayesian networks are capable of representing causality among

variables. There is a natural interpretation of the cause-effect relationship encoded in the

structure of Bayesian networks, where parents can serve as “cause” and children as “effect”.

This dissertation aims to find efficient methods to recover the structure of Bayesian networks.

Firstly, we develop a method for discrete networks to learn the causal relationship from

datasets with help of interventions. We develop a coordinate descent algorithm that is able

to take as input a mixture of observational and interventional data. We will discuss details

of causal learning and interventions in the following Section 1.2.2. And then, we propose a

method for fast learning of massive Gaussian Bayesian networks from observational data.

1

Mathematical representation of the structure of a Bayesian network for p random vari-

ables X1, . . . , Xp is given by a DAG G = (V,E). The set of nodes V = {1, . . . , p} rep-

resents the set of random variables {X1, . . . , Xp}, and the set of edges is given by E =

{(j, i) ∈ V × V : j → i}, where j → i is a directed edge in G. Given the structure of G, the

joint probability density (mass) function of (X1, . . . , Xp) can be factorized as

P (x1, . . . , xp) =

p∏
i=1

P (xi|ΠGi), (1.1)

where ΠGi = {j ∈ V : (j, i) ∈ E} is called the set of parents of Xi and P (xi|ΠGi) denotes the

conditional probability density (CPD) of Xi given ΠGi . Throughout this thesis, we use i and

Xi interchangeably.

Let AG ∈ {0, 1}p×p be the adjacency matrix for a DAG G, it is defined as AG = (aij)p×p,

where

aij =

1, (i, j) ∈ E

0, (i, j) /∈ E
.

Due to its directed acyclic nature, every DAG has at least one topological sort. If an

ordering @ is a topological sort of a DAG G, we say that G and @ are compatible. Definition

of topological sort is given as follow,

Definition 1 (Topological sorts). A topological sort of a DAG G is a linear ordering @ of

its nodes such that i ≺ j in @ if i ∈ ΠGj .

We can understand ordering with the help of permutation. Let π be a permutation on the

index set of nodes {1, . . . , p} for a DAG G, and Pπ the operation that permutes the adjacency

matrix AG according to π. For each ordering @ compatible with G, there exists a permutation

π such that Pπ(AG) has column and row indexes as @, and the resulting matrix becomes a

strictly upper triangular matrix. This means a node Xi can only have nodes ahead of it in @

as its parents. For a DAG G there might exist more than one topological sort, and therefore

we may find multiple permutations to make AG a strictly upper triangular matrix.

2

1.2 Background: Some Fundamental Concepts and Theorems

In this section, we will go through some fundamental concepts and theorems in structure

learning of DAGs. We will discuss the linkage between causal learning with the conditional

probability density (1.1) and the conditional independence among variables, and how all

these are related to the structure of Bayesian networks. We first define the conditional

independence for random variables.

Definition 2 (Conditional independence). Let X, Y be two random variables and Z a set

of random variables that follows a probability distribution P , then X are Y are conditionally

independent given Z if P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z),

∀z where P (Z = z) > 0. We denote this conditional independence between X and Y as

IP (X;Y |Z).

The local Markov properties can serve as an alternative definition for Bayesian Networks.

Definition 3 (Local Markov properties). Let G be an directed acyclic graph, V the set

of nodes for G and P the probability distribution over V that generated according to the

structure of G. We say P has the local Markov properties with respect to G if for all X in

V , X is conditionally independent of all its non-descendant nodes in V given the parent set

of X, ΠGX .

We can see from (1.1) that Bayesian networks are graphs equipped with probability

density P such that the pair (G, P) satisfies the local Markov condition. If we examine

the structure of G, there exists equivalent class known as Markov equivalence class, and it

is related to the phenomenon called observational equivalence. Section 1.2.1 will discuss

Markov equivalence and Section 1.2.2 will discuss observational equivalence and show how

experimental intervention can help distinguishing observational equivalent DAGs.

3

1.2.1 Markov equivalence

From the local Markov properties we know that a node i is conditional independent of all its

non-descendants given its parent set ΠGi . As a matter of fact, more conditional independence

information is encoded in the graphical structure of G and can be tested using d-separation.

d-separation describes independencies encoded in DAGs, which is based on the concept

of blocked path. This graphical criterion gives us a way to read off conditional independence

among random variables given a DAG structure. Note that the d-separation test is solely

based on the DAG structure and is irrelevant of the probability distribution vertices follow.

The following definition of v-structure, blocked paths, and d-separation are adapted from

the definition for d-separation in Pearl (1995).

Definition 4 (v-structure). A v-structure is a triplet {i, j, k} ⊂ V of the form i → k ← j,

while i and j are not directly connected, and k is called a collider.

Definition 5 (Blocked path). A path p between nodes X and Y is a succession of arcs from

X to Y , regardless of their directions. A set of random variables Z is said to block p if there

exists a node D on the path that satisfies any of the two conditions :

(i) D is not a collider, and D ∈ Z.

(ii) D is a collider, and neither D nor any of its descendants are in Z.

Definition 6 (d-separation). If X, Y and Z are three disjoint subsets of V in a DAG G,

and let p be any undirected path between x ∈ X and y ∈ Y . Than Z d-separates X from

Y , denoted by DG(X;Y |Z), if and only if every path from X to Y is blocked by Z.

With the concept of d-separation, we can define Markov equivalent classes as follow:

Definition 7 (Markov equivalence). Let G and G ′ be two DAGs with the same set of nodes

V . They are Markov equivalent if for any three disjoint subsets X,Y ,Z ⊆ V , the following

equivalence holds:

DG(X;Y |Z)⇔ DG′(X;Y |Z)

4

Given the definition of Markov equivalence, Theorem 1 gives us a convenient way to

examine if two DAGs are Markov equivalent.

Theorem 1 (Verma and Pearl (1990)). Two DAGs G and G ′ are Markov equivalent if and

only if they have the same skeletons and the same v-strucures.

d-separation DG(·) is a test for the network structure on a DAG G while conditional

independence IP (·) describes relationship of random variables given a probability distribution

P . An assumption of faithfulness (Spirtes et al, 1993) is required to build up the equivalence

between these two concepts.

Definition 8 (Faithfulness). Suppose G is a DAG equipped with joint probability distribu-

tion P , then G and P are faithful to each other if and only if all conditional independence

relations implied by P is entailed to G based on the Markov condition. We can also say that

(G, P) satisfies the faithfulness condition.

From the definition of faithfulness, it is easy to arrive at Theorem 2 (Pearl, 2014),

Theorem 2. If a Bayesian network G and the joint probability distribution P on V are

faithful to each other, then,

IP (X;Y |Z)⇔ DG(X;Y |Z)

where X, Y ∈ V and Z ⊆ V .

If (G, P) satisfies the faithfulness condition, we can use conditional independence test

(CI-test) to test for the d-separation in G. And Theorem 3 (Spirtes et al, 1993) provides a

method to determine the existence of an edge using CI-test. Therefore faithfulness is required

in many of the structure learning algorithms, especially constraint-based methods and hybrid

methods (there will be a detailed review of structure learning methods in Section 1.3).

However sometimes faithfulness condition can be hard to enforce in practice, and in this

thesis we propose a score-based algorithm that does not require the faithfulness condition in

Section 2.

5

Theorem 3. Suppose (G, P) satisfies the faithfulness condition, then there is no edge between

a pair of nodes X, Y ∈ V if and only if there exists a subset Z ⊆ V such that IP (X;Y |Z).

Theorem 3 gives us some insights in studying the skeleton of Bayesian networks, but

recovering the structure of a Bayesian network also require us to decide the direction of

edges. So, given a dataset, to what extend can we recover the structure of a DAG? We will

discuss this problem in the next subsection.

1.2.2 Causal learning and interventional data

Given a joint distribution, there may exist multiple factorizations of the form in (1.1), leading

to different DAGs. DAGs encoding the same set of joint distributions form an equivalence

class of a Bayesian network, and this is also known as “distributionally equivalent class”. And

this leads to the observational equivalent phenomenon, where with only observational data,

equivalent DAGs might not be distinguished even with an infinite number of observations.

The distributionally equivalence and the Markov equivalence coincides for data sets gen-

erated from multivariate Normal distribution and multinomial distributions. In Chapter 4

we propose a framework for massive size Gaussian network for observational data set and

we do not distinguish between this two equivalence in that chapter. When used for causal

inference, equivalent DAGs do not have the same causal interpretation. Luckily, equivalent

DAGs can be differentiated using experiments, causal learning with interventional data will

be introduced in the remaining of this subsection.

In order to distinguish different causal interpretations among equivalent DAGs, there are

methods for learning causal relations from a mix of observational and experimental data

(Cooper and Yoo, 1999; Meganck et al, 2006; Ellis and Wong, 2008) and related work on

inferring gene networks from perturbed expression data (Peér et al, 2001; Pournara and

Wernisch, 2004). In our research, we use interventional data to further explore causal re-

lationships in a DAG. Experimental interventions reveal causality among a set of variables

by breaking down various connections in the underlying causal network, and it can help

distinguish equivalent DAGs.

6

First, let us use a simple example to illustrate how experimental intervention works:

Consider DAGs with only two nodes, then the following two DAGs are equivalent: G1: X1 ←

X2 and G2: X1 → X2. Joint distributions for both DAGs are the same P (X1|X2)P (X2) =

P (X1, X2) = P (X2|X1)P (X1) Suppose we have two sets of interventions, i) intervene on X1

and draw it from a known distribution u(X1); ii) intervene on X2 and draw it from a known

distribution u(X2). For those observations under experiment i), the directed edge in G1 has

been cut off by the intervention and the joint distribution becomes u(X1)P (X2), while the

network structure in G2 stays the same and the joint distribution is still u(X1)P (X2|X1).

Similarly, for those observations under experiment ii), the network structure in G1 stays the

same with joint distribution u(X2)P (X1|X2), while for G2 the directed edge has been cut

off so the joint distribution becomes u(X2)P (X1). From this example we see that using

experimental intervention, one can distinguish equivalent DAGs.

We describe below how the joint distribution of a Bayesian network (1.1) can be modified

to incorporate experimental data. Briefly, assuming Xi, i ∈ M ⊂ {1, . . . , p}, is under

experimental intervention, the joint density in (1.1) becomes

P (x1, . . . , xp) =
∏
i/∈M

P (xi|ΠGi)
∏
i∈M

P (xi|•), (1.2)

where P (xi|•) specifies the distribution of Xi under intervention. Experimental data gen-

erated from G can therefore be considered as being generated from the DAG G ′ obtained

by removing all directed edges in G pointing to the variables under intervention. It should

be noted that (1.2) also applies to observational data for which M is simply empty, and in

this case, (1.2) reduces to (1.1). This parameterization also makes it easy to incorporate

interventional data and observational data, and in Section 2 we develop our method under

the assumption that part of the data are generated under experimental intervention, while

regarding purely observational data as the special case of M = ∅ for all data points. In

addition, since distribution of nodes under intervention is already known,
∏

i∈M P (xi|•) in

(1.2) is a constant and can be ignored.

It is worth noticing that, even with interventional data, causal effects encoded in DAGs

may not be identifiable because of interventional Markov equivalence among DAGs (Hauser

7

and Bühlmann, 2012). Denote GM as the DAG obtained by experimentally fixing nodes in

M⊂ {1, ..., p} from G. Let {Mi}N be the set of interventions for N data points, obviously

if a variable Xj ∈ V is under intervention for all Mi, i = 1, ..., p, there is no way for us

to learn the causal relationship between Xj and its parents. Hauser and Bühlmann (2012)

named the interventon set {Mi}N to be conservative if for all Xj ∈ V , there exists at least

one experiment M ∈ {Mi}N that Xj /∈ M. Theorem 4 discusses equivalent DAGs given

interventional data.

Theorem 4. Suppose G1 and G2 are DAGs on V , and {Mi}N is a conservative intervention

set. Then, the following four statements are equivalent:

a). G1 and G2 are interventional Markov equivalent with respect to intervention set {Mi}N

b). ∀M ∈ {Mi}N , GM1 and GM2 are Markov equivalent.

c). ∀M ∈ {Mi}N , GM1 and GM2 have the same skeleton and v-structure.

d). G1 and G2 are Markov equivalent, and ∀M ∈ {Mi}N , GM1 and GM2 have the same

skeleton.

Eberhardt et al (2012) proposed a sufficient condition on the number of interventions

needed to discover all causal relationships encoded in a Bayesian network. They stated that

if any number of nodes are allowed to be simultaneously and independently intervened on

in every data point, log2(p) + 1 experiments are sufficient and in the worst case necessary

to recover all the causal relationships in a Bayesian network for all p ≥ 2. Based on their

work, Eberhardt (2012) proposed an algorithm to determine the optimal intervention sets

Mi, i = 1, ..., N for N data points. In addition, if an upper limit of kmax interventions are

allowed for each data point, Eberhardt et al (2012) suggested that for kmax <
p
2
,
(

p
kmax
− 1
)

+

p
2kmax

log2(kmax) is the sufficient and in the worst case necessary number of experiments

needed to recover all the causal relationships. This means that, if up to 1 variable can

be intervened for every data point, p − 1 experiments are sufficient for a complete causal

learning. In the simulation tests of our CD algorithm for interventional data in Section 2 we

use p sets of experiments of single variable intervention, which is sufficient.

8

1.3 Rescent Developments in Structure Learning Methods

The various algorithms in the literature for structure learning of Bayesian networks fall into

three main categories: constraint-based methods, score-based methods and hybrid methods.

Constraint-based methods

Constraint-based methods rely on repeated conditional independence tests in order to learn

the structure of a network. The main idea is to determine which edges cannot exist in a

DAG using statistical tests of independence, a procedure which is justified whenever the so-

called faithfulness assumption holds. These algorithms first use independence tests to learn

the skeleton of the network, and then orient v-structures along with the rest of the edges.

Because of the existence of Markov equivalent DAGs, the direction of some edges may not be

decided (for more details, see e.g., Koller and Friedman (2009)). The PC algorithm proposed

by Spirtes et al (1993) and the MMPC algorithm proposed by Tsamardinos et al (2006) are

two well-known examples. Another example is the Fast Causal Inference (FCI) algorithm

(Spirtes et al, 1993; Colombo et al, 2012), which allows for latent variables in the network.

The output of these algorithms is a partially directed graph, which means that there may

be some undirected edges in the estimated graph. While the PC algorithm is a powerful

method to learn Bayesian networks in low-dimensions with n very large, the performance

of the PC algorithm is less competitive in high-dimensions compared to recent score-based

methods (Aragam and Zhou, 2015).

Score-based methods

Score-based methods rely on scoring functions such as the log-likelihood or some other loss

functions. The goal of these algorithms is to find a DAG that optimizes a given scoring func-

tion. Some popular scoring functions include several Bayesian Dirichlet metrics (Buntine,

1991; Cooper and Herskovits, 1992; Heckerman et al, 1995), Bayesian information criterion

(Chickering and Heckerman, 1997), minimum description length (Bouckaert, 1993; Suzuki,

9

1993; Lam and Bacchus, 1994), and entropy (Herskovits and Cooper, 1990). One of the

classic score-based methods is the greedy hill climbing (HC) algorithm (Russell and Norvig,

2016). This algorithm is very fast but one needs to carefully choose its scoring function, for

BIC selects out too many edges in high-dimensional settings. For discrete networks, the K2

algorithm (Cooper and Herskovits, 1992) is another popular method, however, this method

requires prior knowledge about the ordering of the network which is often unavailable in

applications. There are also Monte Carlo methods (Ellis and Wong, 2008; Zhou, 2011; Ni-

inimäki et al, 2016), which are quite accurate but also computationally demanding. This

limits Monte Carlo methods to smaller networks with only tens of nodes.

With the rising interest in sparse statistical modeling, score-based methods seem partic-

ularly attractive since various sparse regularization techniques are potentially applicable to

them. Assuming a given natural ordering among the nodes, Shojaie and Michailidis (2010)

decomposed DAG estimation into a sequence of `1-penalized linear regression problems. Fu

and Zhou (2013) recently developed an `1-penalized likelihood approach to structure estima-

tion of sparse DAGs from Gaussian data without assuming a given ordering. This method

has been further generalized to the use of concave penalties by Aragam and Zhou (2015).

Other recent developments on penalized DAG estimation include the work of Schmidt et al

(2007) and Xiang and Kim (2013). There is also theoretical development on score-based

estimation of sparse high-dimensional DAGs under a multivariate Gaussian model (van de

Geer and Bühlmann, 2013; Aragam et al, 2017a; Nandy et al, 2018).

Hybrid methods

Finally, there are hybrid methods which combine constraint-based and score-based methods.

Hybrid methods first prune the search space by using a constraint-based search, and then

learn an optimal DAG structure via score-based search (Tsamardinos et al, 2006; Perrier

et al, 2008; Gámez et al, 2011). The max-min hill-climbing (MMHC) algorithm proposed

by Tsamardinos et al (2006) is a powerful method of this kind. It first uses the MMPC

algorithm to learn the skeleton of the Bayesian network, and then uses the HC algorithm to

10

orient directions.

1.4 Outline and Overview

In this thesis, we propose two structure learning methods for sparse Bayesian networks.

Remaining chapters of this thesis are structured as follow:

• Chapter 2 proposes a score-based method to learn causal discrete Bayesian networks

based on regularized likelihood. The adaptive group lasso penalty is employed to

encourage sparsity. A coordinate descent algorithm is implemented to solve the op-

timization problem. This chapter is an extension of a previous work of Fu and Zhou

(2013) for continuous data.

• Chapter 3 is an introduction and manual for our R packages discretecdAlgorithm

and sparsebn, where the discretecdAlgorithm contains the main program for the

coordinate-descent (CD) algorithm described in Chapter 2, and sparsebn is a user-

friendly wrapper package of several structure learning packages that users can easily

interact with.

• Chapter 4 has extended our work to large graphs and propose a three-stage method

to speed up the structure learning process of massive Bayesian networks. Since the

possible number of DAGs on a variable set V grows super-exponentially in the number

of nodes p, running time can be extremely long due to the computational complexity.

• Chapter 5 summarizes and discusses the two methods we have developed.

11

CHAPTER 2

Causal Learning with Categorical Data

Despite the recent fast developments on sparse regularization methods for learning Gaussian

DAGs, a generalization to discrete data is highly nontrivial. First, each node now represents

a factor coded by a group of dummy variables. In order to select a group of dummy variables

together, we need to use a group norm penalty instead of penalizing individual coefficients.

Second, the log-likelihood function for categorical data has more parameters, and develop-

ment of an algorithm to maximize the penalized log-likelihood becomes much more chal-

lenging. In this chapter, we propose a principled generalization of the penalized likelihood

methodology in our previous work (Fu and Zhou, 2013) to estimate sparse DAGs from cate-

gorical data without knowing the ordering among variables. To reduce the parameter space,

we use a multi-logit regression to model the conditional distributions in a discrete Bayesian

network. A blockwise coordinate descent (CD) algorithm is developed, which may take both

observational and interventional data. Through extensive comparisons, we demonstrate that

our method can outperform many competitors in learning discrete Bayesian networks from

interventional data or from high-dimensional (p > n) observational data. Our algorithm has

been implemented in the R package, discretecdAlgorithm, available on CRAN.

2.1 Discrete Bayesian Networks

In a discrete Bayesian network, each variable Xi is considered a factor with ri levels, indexed

by {1, . . . , ri}. The set of its parents ΠGi has a total of qi =
∏

j∈ΠGi
rj possible joint states

{πk : k = 1, . . . , qi}. Let Θijk = P
(
Xi = j | ΠGi = πk

)
. A discrete Bayesian network G may

be parameterized by Θ = {Θijk ≥ 0 :
∑

j Θijk = 1} via a product multinomial model given

12

the graph structure. The number of parameters in this product multinomial model is

N(Θ) =

p∑
i=1

riqi =

p∑
i=1

ri
∏
j∈ΠGi

rj.

If we assume that each variable has O(r) levels, then

N(Θ) = O

(
p∑
i=1

r1+|ΠGi |

)
, (2.1)

which grows exponentially as the size of the parent set |ΠGi | increases. To reduce the number

of free parameters, we propose a multi-logit model for discrete Bayesian networks under

which development of a penalized likelihood method is straightforward. For the same DAG

structure, the number of parameters can be much smaller compared to the product multi-

nomial model.

2.1.1 A multi-logit model

We encode the ri levels of Xi, i = 1, . . . , p, by a group of di = ri−1 dummy variables, here one

can choose an arbitrary level as a reference category. Let xi = (xi1, .., xidi) ∈ {0, 1}di be the

group of dummy variables for Xi and x = (1,x1, . . . ,xp) be a d-vector, where d = 1+
∑p

i=1 di.

Each xi`, j = 1, ..., di is an indicator of the `th level at the ith data point, where xi` = 1 and

xik = 0, k 6= `, if Xi = `. Note that for a node Xi taking the reference level, we have xi = 0.

For a discrete Bayesian network G, we model the conditional distribution [Xj|ΠGj], j =

1, . . . , p, by the following multi-logit regression model

P (Xj = ` | ΠGj) =
exp(βj`0 +

∑p
i=1 xTi βj`i)∑rj

m=1 exp(βjm0 +
∑p

i=1 xTi βjmi)

=
exp(xTβj`·)∑rj

m=1 exp(xTβjm·)

∆
= pj`(x), (2.2)

for ` = 1, . . . , rj, where βj`0 is the intercept, βj`i ∈ Rdi is the coefficient vector for Xi

to predict the `th level of Xj, and βj`· = vec(βj`0,βj`1, . . . ,βj`p) ∈ Rd. Note that in (2.2),

βj`i = 0 for all ` if i /∈ ΠGj . Thus, our model indeed defines a joint distribution for X1, . . . , Xp

which factorizes according to the DAG G. We choose to use a symmetric form of the multi-

logit model here, as was done in Zhu and Hastie (2004) and Friedman et al (2010). To make

13

this model identifiable, we impose the following constraints on the intercepts

βj10 = 0, j = 1, . . . , p. (2.3)

The nonidentifiability of other parameters can be resolved via regularization as demonstrated

by Friedman et al (2010). The particular form of regularization we use leads to the following

constraints
rj∑
m=1

βjmi = 0, ∀ i, j = 1, . . . , p. (2.4)

Let β = (βjmi), which is a four-way array, denote all the parameters. Given the structure

of G, the number of free parameters is

N(β) =

p∑
j=1

(rj − 1) + rj
∑
i∈ΠGj

di

 . (2.5)

If we further assume that ri = O(r) for all i, then

N(β) = O(r2)|E|+O(rp), (2.6)

which grows linearly in the total number of edges |E|. This rate of growth is much slower

than that of the product multinomial model (2.1). Note that these two models are not

equivalent, and numerical comparisons in Section 2.5 confirm that the proposed multi-logit

model often serves as a good approximation to the product multinomial model.

Suppose that we have a data set X = (Xhi)n×p generated from a causal discrete Bayesian

network G, where Xhi is the level of Xi in the hth data point, h = 1, . . . , n, coded by dummy

variables xh,i ∈ {0, 1}di . Let Ij be the index set of rows where Xi is under intervention and

Oj = {1, . . . , n} \Ij be the index set of rows in which Xj is observational. Note that Ij

are not necessarily mutually exclusive, which means there can be more than one node under

intervention for a data point. Under the multi-logit model (2.2), the log-likelihood function

`(β) can be written according to the factorization (1.2) as

`(β) =

p∑
j=1

∑
h∈Oj

log
[
p(Xhj|xh,i, i ∈ ΠGj)

]
=

p∑
j=1

∑
h∈Oj

[
rj∑
`=1

yhj`x
T
hβj`· − log

{
rj∑
m=1

exp(xThβjm·)

}]
, (2.7)

14

where yhj` = I(Xhj = `) are indicator variables and βj`k = 0 for k /∈ ΠGj .

Remark 1. Although we have assumed the availability of experimental data, it is easy

to see that the log-likelihood (2.7) applies to observational data as well: If there are no

experimental data for Xj, then Oj = {1 , . . . , n} in (2.7).

2.1.2 Group norm penalty

Define βj·i = vec(βj1i, . . . ,βjrji) ∈ Rdirj to be the vector of coefficients representing the

influence of Xi on Xj and βj·0 = (βj10, . . . , βjrj0) ∈ Rrj to be the vector of intercepts for

predicting Xj. The structure of G is coded by the sparsity of βj·i as

βj·i = 0 ⇐⇒ i /∈ ΠGj . (2.8)

In order to learn a sparse DAG from data, we estimate β via a penalized likelihood approach.

It can be seen from (2.8) that, for discrete Bayesian networks, the set of parents of Xj is

given by the set {i : βj·i 6= 0}. The regular `1 penalty is inappropriate for this purpose since

it penalizes each component of β separately. We instead penalize the vector βj·i ∈ Rdirj

as a whole to obtain a sparse DAG via the use of a group norm penalty. Group norm

penalties have been used in the group lasso and its generalizations (Yuan and Lin, 2006;

Meier et al, 2008). Let Gβ denote the graph induced by β so that Π
Gβ
j = {i : βj·i 6= 0} for

j = 1, . . . , p. We define our group norm penalized estimator for a discrete Bayesian network

by the following optimization program:

fλ(β)
∆
= −`(β) + λ

p∑
j=1

p∑
i=1

‖βj·i‖2, (2.9)

β̂λ = arg min
β:Gβ is a DAG

fλ(β), (2.10)

where λ > 0 is a tuning parameter. See Section 2.2.3 for choosing the parameter λ. The

feasible set of (2.10) is a DAG space, which imposes a highly nonconvex constraint. This

is a major challenge for our optimization algorithm. Hereafter, we call βj·i a (component)

group of β.

15

2.2 Algorithm

Structure learning for discrete Bayesian networks is computationally demanding because of

the nonlinear nature of the multi-logit model (2.2). We develop in this section a block-

wise coordinate descent algorithm to solve (2.10). Coordinate descent algorithms have been

proved successful in various settings (Fu, 1998; Friedman et al, 2007; Wu and Lange, 2008)

and their implementations are relatively straightforward.

2.2.1 Single coordinate descent step

We first consider minimizing fλ(β) (2.9) with respect to βj·i while holding all the other

parameters constant. We define

fλ,j(βj··) = −
∑
h∈Oj

[
rj∑
`=1

yhj`x
T
hβj`· − log

{
rj∑
m=1

exp
(
xThβjm·

)}]
+ λ

p∑
k=1

‖βj·k‖2

∆
=−`j (βj··) + λ

p∑
k=1

‖βj·k‖2, (2.11)

where βj·· = (βj·0,βj·1, . . . ,βj·p). Considering the problem of minimizing fλ,j(·) over βj·i, we

write fλ,j and `j as fλ,j(βj·i) and `j(βj·i), respectively.

Following the approach of Tseng and Yun (2009) and Meier et al (2008), we form a

quadratic approximation to `j(βj·i) using the second-order Taylor expansion at β
(t)
j·i , the

current value of βj·i. Adding the penalty, the quadratic approximation is

Q
(t)
λ,j(βj·i) = −

{(
βj·i − β(t)

j·i

)T
∇`j

(
β

(t)
j·i

)
+

1

2

(
βj·i − β(t)

j·i

)T
H

(t)
ji

(
βj·i − β(t)

j·i

)}
+λ‖βj·i‖2, (2.12)

up to an additive term that does not depend on βj·i. The gradient of the log-likelihood

function `j(·) is

∇`j(β(t)
j·i) =

∑
h∈Oj

(
yhj1 − p(t)

j1 (xh)
)

xh,i
...(

yhjrj − p
(t)
jrj

(xh)
)

xh,i

 , (2.13)

16

where p
(t)
j` (x) , ` = 1, . . . , rj, defined in (2.2) are evaluated at the current parameter values. To

give a reasonable quadratic approximation, we use a negative definite matrix H
(t)
ji = h

(t)
ji Idirj

in (2.12) to approximate the Hessian of `j(·), where the scalar h
(t)
ji < 0 and Idirj is the identity

matrix of size dirj × dirj. We choose

h
(t)
ji = hji(β

(t))
∆
=−max{diag(−H`j(β

(t)
j·i)), b}, (2.14)

where H`j is the Hessian of the log-likelihood function `j(·) and b is a small positive number

used as a lower bound to help convergence. Note that it is not necessary to recompute h
(t)
ji

every iteration (Meier et al, 2008). See Section 2.2.3 for more details.

It is not difficult to show the following proposition, which is a direct consequence of the

Karush-Kuhn-Tucker (KKT) conditions for minimizing (2.12).

Proposition 1. Let H
(t)
ji = h

(t)
ji Idirj for some scalar h

(t)
ji < 0 and d

(t)
ji = ∇`j(β(t)

j·i)− h
(t)
ji β

(t)
j·i .

Then, the minimizer of Q
(t)
λ,j(βj·i) in (2.12) is

β̄
(t)
j·i =

0 if ‖d(t)

ji ‖2 ≤ λ,

− 1

h
(t)
ji

[
1− λ

‖d(t)
ji ‖2

]
d

(t)
ji otherwise.

(2.15)

In order to achieve sufficient descent, an inexact line search by the Armijo rule is per-

formed when β̄
(t)
j·i 6= β

(t)
j·i , following the procedure in Meier et al (2008). Put s

(t)
ji = β̄

(t)
j·i −β

(t)
j·i ,

and let ∆(t) be the change in fλ,j when the log-likelihood is linearized at β
(t)
j·i , i.e.,

∆(t) = −(s
(t)
ji)T∇`j(β(t)

j·i) + λ‖β̄(t)
j·i‖2 − λ‖β(t)

j·i‖2.

Pick η, δ ∈ (0, 1) and α0 > 0, and let α(t) be the largest value in the sequence {α0η
k}k≥0

such that

fλ,j(β
(t)
j·i + α(t)s

(t)
ji) ≤ fλ,j(β

(t)
j·i) + δα(t)∆(t).

Then set

β
(t+1)
j·i = β

(t)
j·i + α(t)s

(t)
ji , (2.16)

which completes one iteration for updating βj·i. In our implementation, we choose η = 0.5,

δ = 0.1 and α0 = 1 following the suggestion by Meier et al (2008).

17

It follows from Proposition 1 with λ = 0 that for the unpenalized intercepts,

β
(t+1)
j·0 = β̄

(t)
j·0 = −d(t)

j0 /h
(t)
j0 . (2.17)

In addition, some of the parameters are always constrained to zero, e.g., βj·j and βj10 for all

j.

2.2.2 Blockwise coordinate descent

Our CD algorithm consists of two layers of iterations. In the outer loop, we cycle through

all pairs of nodes to update the active set of edges, including their directions. In the inner

loop, we only cycle through the active edge set to update the parameter values.

We first describe the outer loop. Due to the acyclicity constraint in (2.10), we know a

priori that βi·j and βj·i cannot simultaneously be nonzero for i 6= j. This suggests performing

the minimization in blocks, minimizing over {βi·j,βj·i} simultaneously. In order to enforce

acyclicity, we use a simple heuristic (Fu and Zhou, 2013): For each block {βi·j,βj·i}, we check

if adding an edge from i → j induces a cycle in the estimated DAG. If so, we set βj·i = 0

and minimize with respect to βi·j. Alternatively, if the edge j → i induces a cycle, we set

βi·j = 0 and minimize with respect to βj·i. If neither edge induces a cycle, we minimize over

both parameters simultaneously. The cycle check is implemented by a breath-first search

algorithm. We outline below (Algorithm 1) the complete blockwise CD algorithm for discrete

Bayesian networks. In the algorithm, βj·i ⇐ 0 is used to indicate that βj·i must be set to

zero due to the acyclicity constraint given the current estimates of the other parameters.

Minimization of fλ,j(·) with respect to βj·i is done with the single CD step with line search

(2.16).

Let β(t) denote the parameter value after one cycle of the outer loop (after line 19 in

Algorithm 1). Denote its active edge set by E(t) = {(i, j) : β
(t)
j·i 6= 0}. The inner loop solves

the following problem:

min
β
fλ(β), subject to supp(β) ⊂ E(t), (2.18)

where fλ is defined in (2.9). We use β(t) as the initial value and cycle through βj·i for

18

(i, j) ∈ E(t). In particular, the direction of an edge will not be reversed but edges may be

deleted if their parameters βj·i are updated to zero. See Algorithm 2 for an outline of the

inner loop.

By construction, E(t) satisfies the acyclicity constraint and thus the feasible region in

(2.18) is simply a Euclidean space. Since fλ itself is convex, the CD algorithm for the inner

loop has nice convergence properties. In analogy to Proposition 2 in Meier et al (2008), we

arrive at the following convergence result.

Proposition 2. Suppose that the sequence {β(k)} is generated by the inner loop. If the

matrix H
(k)
ji is chosen according to (2.14), then every limit point of the sequence {β(k)} is a

minimizer of problem (2.18).

However, since the search space for the outer loop is the full DAG space, which is highly

nonconvex, rigorous theory on its convergence is yet to be established. Therefore, a practical

stopping criterion is employed. After the convergence of an inner loop, we obtain the current

active set. If one more iteration of the outer loop does not change the active set, we then

stop Algorithm 1. On the other hand, we also set a maximum number of iterations for the

outer loop. For all the examples we have tested, our CD algorithm has shown no problem in

convergence. For all the examples we have tested, the stopping criterion is met within five

iterations of the outer loop, and our CD algorithm has shown no problem in convergence.

As an illustration, Figure 2.1 plots ‖β(t+1)−β(t)‖∞ against t for a dataset generated from

a small-world network with p = 50, where t indexes iterations in both the inner and the outer

loops. In this figure there are three peaks, each appearing after the algorithm finishes an

outer loop. The curve between two neighboring peaks demonstrates the convergence of the

inner loop. The heights of the three peaks decay very fast, suggesting convergence of the

outer loop. Similar patterns are observed for data generated from other types of DAGs.

This empirical observation is in line with recent theoretical work by Lee et al (2016) who

have established that gradient descent converges to a local minimizer of a nonconvex objective

function for almost all initial values and have suggested similar behavior for coordinate

descent.

19

0 50 100 150

0
5

1
0

1
5

Plot for converge

number of loops

M
a

x
im

u
m

 d
if
fe

re
n

c
e

 o
f

c
o

e
ff

ic
ie

n
ts

Figure 2.1: A typical convergence plot

2.2.3 Solution path

We use Algorithm 1 to compute β̂λ (2.10) over a grid of J values for the tuning parameter,

λ1 > . . . > λJ > 0, where at λ1 every parameter other than the intercepts is estimated as

zero. It follows from the KKT conditions for (2.9) that

λ1 = max
1≤i,j≤p

‖∇`j(βj·i)|βj·i=0‖2, (2.19)

in which βj·0 is set to the MLE of the intercept assuming all βj·i, i = 1, . . . , p, are zero.

The solution β̂λm is used as a warm start for estimating β̂λm+1 , m = 1, . . . , J−1. To save

computational time, we set h
(t)
ji = hji(β̂λm) (2.14) in the CD algorithm for β̂λm+1 , instead of

updating h
(t)
ji every iteration.

Traditional model selection criteria such as BIC do not work well for the purpose of

estimating DAGs from data. In our simulation results, the hill-climbing (HC) algorithm

(Gámez et al, 2011), which uses BIC as the scoring function, always selects too many edges.

20

There are also numerical studies (Scutari, 2016) in which BIC tends to select too few edges

on a different set of DAGs, showing that BIC could be sensitive and unstable. In order to

select a suitable tuning parameter, we use an empirical model selection criterion proposed

by Fu and Zhou (2013). Let Ĝλm be the DAG induced by β̂λm and eλm be the number of

edges in Ĝλm . We reestimate β by the maximizer β†λm of the log-likelihood `(β) (2.7) given

G = Ĝλm using the R package nnet (Venables and Ripley, 2002). We define the difference

ratio between two estimated DAGs Ĝλm and Ĝλm+1 by dr(m,m+1) = ∆`(m,m+1)/∆e(m,m+1),

where ∆`(m,m+1) = `(β†λm+1
) − `(β†λm) and ∆e(m,m+1) = eλm+1 −eλm , if ∆e(m,m+1) ≥ 1.

Otherwise, we set dr(m,m+1) = dr(m−1,m+1). The selected tuning parameter is indexed by

m∗ = sup { 2 ≤ m ≤ J : dr(m−1,m)

≥ α ·max{dr(1,2), . . . , dr(J−1,J)}}. (2.20)

According to this criterion, an increase in model complexity, measured by the number of

predicted edges, is accepted only if there is a substantial increase in the log-likelihood. We

choose α = 0.3 for all the result in this work.

2.3 Asymptotic Theory

In this section, we establish asymptotic theory for the DAG estimator β̂λ (2.10) assuming

that p is fixed and n→∞. By rearranging and relabeling individual components, we rewrite

β as φ = (φ(1),φ(2)), where φ(1) = vec(β1·1, . . . ,β1·p, ,βp·1, . . . ,βp·p) is the parameter

vector of interest and φ(2) = vec(β1·0, . . . ,βp·0) denotes the vector of intercepts. Hereafter,

we denote by φj the jth group of φ, such that φ1 = β1·1, φ2 = β1·2, . . . , φp2 = βp·p, and so

on. We say φ is acyclic if the graph Gφ induced by φ (or the corresponding β) is acyclic.

Define φ[k] (k ∈ {1, . . . , p}) to be the parameter vector obtained from φ by setting

βk·i = 0 for i = 1, . . . , p. In other words, the DAG Gφ[k]
is obtained by deleting all edges

pointing to the kth node in Gφ; see (2.8). We assume the data set X consists of (p+1) blocks,

denoted by X j of size nj × p, j = 1, . . . , p + 1. The node Xj is experimentally fixed in X j

for the first p blocks, while the last block contains purely observational data. Let Ij be the

21

set of row indices of X j. As demonstrated by (1.2), we can model interventional data in the

kth block of the data matrix X k as i.i.d. observations from a joint distribution factorized

according to Gφ[k]
. Denote the corresponding probability mass function by p(x|φ[k]), where

x = (x1, . . . , xp) and xj ∈ {1, . . . , rj} for j = 1, . . . , p. To simplify our notation, denote the

parameter for the (p+ 1)th block by φ[p+1] = φ. Then the log-likelihood of X is

L(φ) =

p+1∑
k=1

Lk(φ[k]) =

p+1∑
k=1

log p(X k | φ[k]), (2.21)

where log p(X k|φ[k]) =
∑

h∈Ik log(p(Xh·|φ[k])) and Xh· = (Xh1, . . . ,Xhp). The penalized log-

likelihood function with a tuning parameter λn > 0 is

R(φ) = L(φ)− λn
p2∑
j=1

‖φj‖2

=

p+1∑
k=1

Lk(φ[k])− λn
p2∑
j=1

‖φj‖2, (2.22)

where the component group φj (j = 1, . . . , p2) represents the influence of one variable on

another. Let Ω = {φ : Gφ is a DAG} be the parameter space. A penalized estimator φ̂ is

obtained by maximizing R(φ) in Ω.

Though interventional data help distinguish equivalent DAGs, the following notion of

natural parameters is needed to completely establish identifiability of DAGs for the case

where each variable has interventional data. We say that i is an ancestor of j in a DAG G

if there exists at least one path from i to j. Denote the set of ancestors of j by an(j).

Definition 9 (Natural parameters). We say that φ ∈ Ω is natural if i ∈ an(j) in Gφ implies

that j is not independent of i under the joint distribution given by φ[i] for all i, j = 1, . . . , p.

For a causal DAG, a natural parameter implies that the effects along multiple causal

paths connecting the same pair of nodes do not cancel. This is a reasonable assumption

for many real-world problems, and is much weaker than the faithfulness assumption. Under

the faithfulness assumption, all conditional independence restrictions can be read off from

d-separations in the DAG. If nodes i and j are independent in φ[i], then by faithfulness the

nodes i and j must be separated by empty set and thus i /∈ an(j) in Gφ[i]
. This implies that

22

i /∈ an(j) in Gφ as well, by the construction of Gφ[i]
. Indeed, we see that the faithfulness

assumption implies the natural parameter assumption.

To establish asymptotic properties of our penalized likelihood estimator, we make the

following assumptions:

(A1) The true parameter φ∗ is natural and an interior point of Ω.

(A2) The parameter θj of the conditional distribution [Xj|ΠGj ;θj] is identifiable for each

j = 1, . . . , p. The log-likelihood function `j(θj) = log p(xj|ΠGj ;θj) is strictly concave

and continuously three times differentiable for any interior point.

Recall that the kth block of our data, X k, can be regarded as an i.i.d. sample of size nk

from the distribution p(x|φ∗[k]) for all k, while we define φ∗[p+1] = φ∗ for the last block of

observational data.

Theorem 5. Assume (A1) and (A2). If p(x|φ[k]) = p(x|φ∗[k]) for all possible x and all

k = 1, . . . , p, then φ = φ∗. Furthermore, if nk �
√
n for all k = 1, . . . , p, then for any

φ 6= φ∗,

P (L(φ∗) > L(φ))→ 1 as n→∞. (2.23)

Theorem 6. Assume (A1) and (A2). If λn/
√
n → 0 and nk �

√
n for all k = 1, . . . , p,

then there exists a global maximizer φ̂ of R(φ) such that ‖φ̂− φ∗‖2 = Op(n
−1/2).

Before we show the proofs of the two theorems, recall a topological sort @ for a DAG is

a linear ordering, and it implies the ancient-descendant relationship in a Bayesian network.

Due to its directed acyclic nature, every DAG has at least one topological sort. If an ordering

@ is a topological sort of a DAG G, we say that G and @ are compatible. Let S(G) denote

the set of all topological sorts of a DAG G.

Lemma 7. For any φ0 ∈ Ω, there is a δ(φ0) > 0 such that if φ ∈ Ω and ‖φ−φ0‖2 < δ(φ0)

then S(Gφ) ∩ S(Gφ0) 6= ∅.

Proof of Lemma 7. If Gφ0 is an empty graph which is compatible with any ordering, the

statement holds trivially. Otherwise, let δ(φ0) = 1
2

minj:φ0j 6=0‖φ0
j‖2 > 0, where φ0

j is the

23

jth component group of φ0 (see Appendix). If ‖φ − φ0‖2 < δ(φ0) and φ0
i 6= 0 for some

i ∈ {1, . . . , p2}, then φi 6= 0 as well, since otherwise ‖φ − φ0‖2 ≥ ‖φ0
i ‖2 > δ(φ0). This

implies that every edge in Gφ0 is also an edge in Gφ and thus Gφ and Gφ0 have at least one

common topological sort.

This lemma shows that every DAG in a sufficiently small neighborhood of φ0, denoted

by nb(φ0) ⊂ Ω, has a topological sort that is also compatible with Gφ0 .

Proof of Theorem 5. We prove the first claim by contradiction. Suppose φ 6= φ∗ and

p(x|φ[k]) = p(x|φ∗[k]) for k = 1, . . . , p. There are two cases to consider depending on the

topological sorts of Gφ and those of Gφ∗ .

Case 1 : S(Gφ) ∩ S(Gφ∗) 6= ∅. Let @ ∈ S(Gφ) ∩ S(Gφ∗), i.e., an ordering compatible

with both Gφ and Gφ∗ . Assume without loss of generality that in this ordering i ≺ j if

i < j. Apparently, @ is also compatible with Gφ[k]
and Gφ∗

[k]
for k = 1, . . . , p. Then we

can write p(x|φ[k]) =
∏p

i=1 p(xi|x1, . . . , xi−1,φ[k]) =
∏p

i=1 p(xi|Π
Gφ[k]

i ,φ[k]) and p(x|φ∗[k]) =∏p
i=1 p(xi|x1, . . . , xi−1,φ

∗
[k]) =

∏p
i=1 p(xi|Π

Gφ∗
[k]

i ,φ∗[k]). Since p(x|φ[k]) = p(x|φ∗[k]) for all pos-

sible x, it follows that Π
Gφ[k]

i = Π
Gφ∗

[k]

i for all i and thus Gφ[k]
= Gφ∗

[k]
for all k. However, since

φ 6= φ∗, there exists some k such that φ[k] 6= φ∗[k]. Therefore, there exists a k such that the

common probability mass function p(x|φ[k]) = p(x|φ∗[k]), factorized according to a common

structure Gφ[k]
= Gφ∗

[k]
, can be parameterized by two different parameters φ[k] and φ∗[k]. This

is impossible, since according to assumption (A2) [Xj|Π
Gφ
j] is identifiable.

Case 2 : S(Gφ) ∩ S(Gφ∗) = ∅, that is, none of the orderings of Gφ∗ is compatible with

Gφ. In this case, there must exist a pair of indices (i, j) such that in Gφ∗ Xi ∈ an(Xj), but

in Gφ Xj is a non-descendant of Xi. Then Xj is independent of Xi in the DAG of φ[i], since

in Gφ[i]
Xi has no parents and Xj is a non-descendant of Xi. However, in Gφ∗

[i]
we still have

Xi ∈ an(Xj). Since φ∗ is natural, Xi and Xj are not independent in φ∗[i]. Therefore, there

exists 1 ≤ i ≤ p such that p(x|φ[i]) 6= p(x|φ∗[i]), which contradicts our assumption.

So in both case 1 and case 2 we have a contradiction. Thus, the first claim holds.

24

To prove the second claim (25), note that by the law of large numbers,

1

n
(L(φ)− L(φ∗)) =

p+1∑
k=1

nk
n

1

nk

∑
h∈Ik

log
p(Xh·|φ[k])

p(Xh·|φ∗[k])

=

p+1∑
k=1

αk

{
Eφ∗

[k]

[
log

p(Y|φ[k])

p(Y|φ∗[k])

]
+O(n

− 1
2

k)

}
, (2.24)

where αn = nk

n
and Y is a random vector with probability mass function p(x|φ∗[k]). Using

Jensen’s inequality, Eφ∗
[k]

[
log

p(Y|φ[k])

p(Y|φ∗[k])

]
= ck ≤ 0 for all k = 1, . . . , p + 1. Furthermore,

by the above arguments for the first claim of identifiability, there exists j ∈ {1, . . . , p} such

that cj < 0 is a negative constant. In order to guarantee the right hand side of the equation

(2.24) to be negative, it is sufficient to have min
k=1,...,p

αk � n−
1
2 . This completes the proof.

Proof of Theorem 6 . Let Y be a random vector with probability mass function p(x|φ) and

I(φ) = Eφ

{[
∂

∂φ
log p(Y|φ)

] [
∂

∂φ
log p(Y|φ)

]T}

be the Fisher information matrix. We consider two cases.

Case 1 : Consider φ ∈ nb(φ∗). By Lemma 7, Gφ and Gφ∗ have a common compatible

ordering. If we restrict to the lower dimensional space Ω[k] =
{
φ[k] : φ ∈ Ω

}
, the same

argument applies to an arbitrarily small neighborhood of φ∗[k] in this space, that is, Gφ[k]

and Gφ∗
[k]

share a compatible ordering. Then it follows from the arguments used in Case 1

in the proof of Theorem 1 that, p(x|φ[k]) 6= p(x|φ∗[k]) for φ[k] ∈ nb(φ∗[k])\{φ∗[k]} and some

non-negligible set of x. Thus,

Eφ∗
[k]

[
log p(Y|φ∗[k])

]
> Eφ∗

[k]

[
log p(Y|φ[k])

]
, k = 1, . . . , p+ 1,

which implies that I(φ∗[k]) is positive definite for all k.

Let u ∈ {u : φ∗ + anu ∈ Ω} and uj be its jth component group defined in the same way

as φj. Without loss of generality, we can assume that ‖u‖2 = M where M is a fixed positive

constant. Further, let u[k] be the vector defined similarly as φ[k] by setting uj = 0 if the jth

group corresponds to an edge pointing to Xk. Note that
∑p+1

k=1‖u[k]‖2
2 ≥ ‖u‖2

2. Let δkmin > 0

25

be the minimal eigenvalue of I(φ∗[k]) and ρ = mink=1,...,p+1(αkδ
k
min/2). Then

p+1∑
k=1

αk
2

uT[k]I(φ∗[k])u[k] ≥
p+1∑
k=1

αk
2
δkmin‖u[k]‖2

2 ≥ ρ

p+1∑
k=1

‖u[k]‖2
2 ≥ ρ‖u‖2

2. (2.25)

Write an = ω(bn) if b−1
n = O(a−1

n). Let ω(1/
√
n) = an = o(1). Recall that B = {j : φ∗j 6=

0, 1 ≤ j ≤ p2}. We have

R(φ∗ + anu)−R(φ∗)

≤ L(φ∗ + anu)− L(φ∗)− λn
∑
j∈B

(‖φ∗j + anuj‖2 − ‖φ∗j‖2)

≤
p+1∑
k=1

[
Lk(φ

∗
[k] + anu[k])− Lk(φ∗[k])

]
+ λnan

∑
j∈B

‖uj‖2, (2.26)

where the last line follows from the triangle inequality. By assumption (A2), Taylor expansion

of Lk around φ∗[k] in (2.26) leads to

p+1∑
k=1

[
an{∇Lk(φ∗[k])}Tu[k] −

1

2
nka

2
nu

T
[k]I(φ∗[k])u[k] {1 + op(1)}

]
+ λnan

∑
j∈B

‖uj‖2

≤
p+1∑
k=1

[
√
αk
√
nan
{∇Lk(φ∗[k])}T√

nk
u[k] {1 + op(1)}

]
− ρna2

n‖u‖2
2 {1 + op(1)}

+ λnn
−1/2
√
nan

∑
j∈B

‖uj‖2,

where we have used (2.25) and that nk/n = αk. Now dividing both sides by
√
nan, we arrive

at

(
√
nan)−1 [R(φ∗ + anu)−R(φ∗)]

≤
p+1∑
k=1

[
√
αk
{∇Lk(φ∗[k])}T√

nk
u[k] {1 + op(1)}

]
− ρ
√
nan‖u‖2

2 {1 + op(1)}

+ λnn
−1/2

∑
j∈B

‖uj‖2. (2.27)

Note that n
−1/2
k ‖∇Lk(φ∗[k])‖2 = Op(1) for all k by the central limit theorem, and λn/

√
n =

o(1). Therefore, the second order term in (2.27) dominates the first and the third terms

uniformly if
√
nan is sufficiently large. Hence, for any ε > 0, there exists a constant C <∞

26

such that

P

[
sup

an‖u‖2≥C/
√
n

R(φ∗ + anu) < R(φ∗)

]
≥ 1− ε, (2.28)

when n is sufficiently large.

Case 2 : Consider φ ∈ Ω\nb(φ∗). Let @i (1 ≤ i ≤ p!) be an ordering of the p vari-

ables. Since R(φ) is a strictly concave function in the subspace Ωi = {φ ∈ Ω : @i

is compatible with Gφ} by assumption (A2), there exists a unique local maximizer φ̂i of R(φ)

in Ωi. The pointwise convergence in probability of the random concave function n−1R(φ)

implies that φ̂i →p φ
i, where φi ∈ Ωi is the unique maximizer of its limiting function; see

Andersen and Gill (1982) and Pollard (1991). Let M ∆
={φi : φi 6= φ∗} which is a finite set.

For any φi ∈M we have

1

n
R(φi)− 1

n
R(φ∗) ≤ 1

n
L(φi)− 1

n
L(φ∗)− 1

n
λn
∑
j∈B

(‖φij‖2 − ‖φ∗j‖2)

→p

p+1∑
k=1

αkEφ∗
[k]

[
log

p(Y|φi[k])

p(Y|φ∗[k])

]
− 1

n
λnO(1), (2.29)

by (2.24). The second term is o(n−
1
2) since λn = o(n

1
2), while the first term is negative and

on the order of αj � n−
1
2 for some j ∈ {1, . . . , p}, as shown in (2.24). Thus, the last line

will be negative when n is large. Since |M| is finite, this implies that for any ε > 0,

P

[
sup
M

R(φi) < R(φ∗)

]
≥ 1− ε, (2.30)

when n is sufficiently large.

Combining (2.28) and (2.30), we have shown that there is a global maximizer φ̂ of R(φ)

such that ‖φ̂− φ∗‖2 = Op(n
− 1

2).

Theorem 5 confirms that the causal DAG model is identifiable with interventional data

assuming a natural parameter. Theorem 6 implies that there is a
√
n-consistent global

maximizer of R(φ) with the group norm penalty. Note that Assumption (A2) does not

specify a particular choice of model for the conditional distribution [Xj|ΠGj] and thus these

theoretical results apply to a large class of DAG models for discrete data. In particular, the

multi-logit regression model (2.2) satisfies (A2).

27

Remark 2. The assumption on the sample size of interventional data, nk �
√
n, imposes a

lower bound on how fast the fraction αk = nk/n� n−1/2 can approach zero for k = 1, . . . , p.

Although this allows the observational data to dominate when αk → 0, the fractions of

interventional data must be larger than the typical order Op(n
−1/2) of statistical errors

so that (2.23) can hold to establish identifiability of the true causal DAG parameter φ∗.

This guarantees that the global maximizer φ̂ will locate in a neighborhood of φ∗ with high

probability. Once in this neighborhood, the convergence rate of φ̂ then depends on the

size n of all data, both interventional and observational. Therefore, increasing the size of

observation data will lead to more accurate estimate φ̂ as long as we keep αk � n−1/2 for

k = 1, . . . , p.

Remark 3. It is interesting to generalize the above asymptotic results to the case where

p = pn grows with the sample size n, say, by developing nonasymptotic bounds on the `2

estimation error ‖φ̂− φ∗‖2. However, in order to estimate the causal network consistently,

sufficient interventional data are needed for each node, i.e., nk must approach infinity, and

thus p/n→ 0 as n→∞. This limits us to the low-dimensional setting with p < n. Suppose

we have a large network with p � n. One may first apply some regularization method on

observational data to screen out independent nodes and to partition the network into small

subgraphs that are disconnected to one another. Then for each small subgraph, we can

afford to generate enough interventional data for every node and apply the method in this

paper to infer the causal structure. Our asymptotic theory provides useful guidance for the

analysis in the second step.

For purely observational data, the theory becomes more complicated due to the existence

of equivalent DAGs and parameterizations. It is left as future work to establish the consis-

tency of a global maximizer for high-dimensional observational data. See Aragam and Zhou

(2015) for related analysis on Gaussian Bayesian networks.

28

2.4 Simulation Studies

We evaluate the CD algorithm on simulated data sets. As stated in Remark 1, the log-

likelihood (2.7) applies to observational data as well. Therefore, we apply the CD algorithm

on both interventional data and observational data. In order to assess the accuracy and effi-

ciency of the CD algorithm, we compare it with a few competing methods. For interventional

data, we compare our CD algorithm with the PC algorithm (Kalisch and Bühlmann, 2007),

the greedy interventional equivalent search (GIES) algorithm (Hauser and Bühlmann, 2015)

and the equi-energy sampler (EE sampler) (Kou et al, 2006). For observational data we

compare the CD algorithm with the hill-climbing (HC) algorithm (Gámez et al, 2011), the

max-min hill-climbing (MMHC) algorithm (Tsamardinos et al, 2006), and the PC algorithm.

Among these competitors, the PC algorithm is a constraint-based method, the MMHC is a

hybrid method and the others are all score-based.

Details about data generation and parameter choices will be discussed in Section 2.4.1.

In Section 2.4.2, we compare DAGs estimated from interventional data. Section 2.4.3, on

the other hand, presents results on high-dimensional observational data. The comparison of

running times is provided in Section 2.4.4.

2.4.1 Experimental setup

Four types of networks are used to compare the methods: the bipartite graph, the scale-

free network, the small-world network, and random DAGs. In each setting, we consider the

combination of three main parameters: (n, p, s0), where n is the sample size, p is the number

of nodes, and s0 is the number of true edges.

We generated bipartite graphs, scale-free networks, and small-world networks with the

R package igraph (Csárdi and Nepusz, 2006). The bipartite graphs were generated by

the Erdős-Rényi model (Renyi and Erdos, 1959). Each bipartite graph in our datasets had

0.2p top nodes, 0.8p bottom nodes, and s0 = p directed edges from the top to the bottom

nodes. The structure of a scale-free network was generated using the Barabási-Albert model

29

(Barabási and Albert, 1999). These networks had s0 = p−1 directed edges. The small-world

networks were generated by the Watts-Strogatz model (Watts and Strogatz, 1998). A graph

initially generated by the model was undirected. To convert it to a DAG, edge directions

were chosen according to a randomly generated topological sort. In this way, a small-world

network had s0 = 2p directed edges. Random DAGs were sampled using the R package

pcalg (Kalisch et al, 2012), and each DAG had s0 ≈ p edges.

In all the simulation studies, each variable was assumed to be binary, i.e., rj = 2 for all

j. In this case, each group of parameters βj·i = (βj1i, βj2i) ∈ R2. If Πj = ∅, Xj would be

sampled from its two levels with equal probability. Otherwise, the parameters βj·0 and βj·i,

i ∈ Πj, were chosen such that

pj`(xh) =
exp(2

∑
i∈Πj

yhi`)

exp(2
∑

i∈Πj
yhi1) + exp(2

∑
i∈Πj

yhi2)

for ` = 1, 2, where yhi` = I(Xhi = `). The value of a variable under intervention was

randomly fixed to one of its levels regardless of its parents.

For each dataset, we input to our CD algorithm a sequence of 40 values of λ, starting

from λ1 (2.19) and ending at 0.01λ1. Since we assume the graphs are sparse, we stop a

solution path when the number of predicted edges exceeds 3p. Consequently, a sequence of

DAGs is estimated and one of them will be picked by our model selection criterion (2.20)

with α = 0.3. To avoid any potential bias in the estimation, we pick a random order to cycle

through all the blocks in the outer loop of Algorithm 1.

The EE sampler is used for comparisons on interventional data. Its implementation for

DAG estimation was done as in Zhou (2011). We will call it the EE-DAG sampler hereafter.

In each run, we simulate 10 chains with a 0.1 chance of equi-energy jumps. To obtain an

estimated DAG, we threshold the average graph from the target chain (the 10th chain). More

precisely, an edge will be predicted if its posterior inclusion probability is greater than 0.5.

The HC algorithm is a standard greedy method, while the MMHC algorithm is a hybrid

method. For these two algorithms, we use the R package bnlearn (Scutari, 2010, 2017).

These methods are designed specifically for observational data and thus are compared with

our method only on observational data. For both the HC and the MMHC algorithm, we have

30

the option to limit the number of parents per node, but since this algorithm can estimate

a reasonable number of edges, we did not set an upper limit. It is worth noticing that, in

our simulation results the HC algorithm predicts much more edges than the number of true

edges most of the time. It is an indication that the regular BIC might not serve as a good

model selection criterion in high-dimensional case.

The PC algorithm is a popular constraint-based algorithm for learning Bayesian networks,

with an efficient implementation in the R package pcalg (Kalisch et al, 2012; Hauser and

Bühlmann, 2012). However, it may not produce a DAG for every data set, and instead

its output is a completed partially directed acyclic graph (CPDAG), which contains both

directed and undirected edges. To make a fair comparison, we distinguish undirected edges

from directed ones in our calculation of various performance metrics, with details provided

later. The tuning parameter for the PC algorithm is the significance level for conditional

independence tests, which is chosen as α = 0.01 for all data.

The GIES algorithm is an algorithm designed specifically to learn Bayesian networks

from a mixture of observational and interventional data, by searching over the so-called

interventional equivalence classes. Like for the PC algorithm, this method also might not

produce a DAG but a partial directed graph (a graph in the interventional Markov equivalent

family). Note that given a pure observational data set, the interventional Markov equivalent

classes decrease to Markov equivalent class, and the algorithm should be producing a CPDAG

just like the PC algorithm. Only with enough sets of experimental intervention, the GIES

algorithm is able to produce a DAG, we have discussed details for the condition of “enough

experiments” in Chapter 1. Under our experimental setting in Section 2.4.2, the GIES

algorithm should be able to recover the DAG structure. Therefore we compare our CD

algorithm with GIES algorithm for interventional data. However, the implementation of

this algorithm in the pcalg package, the only implementation we found, can only take

continuous data as input. So we generated continuous data from the simulated discrete

data. We convert our discrete data to continuous data using the following procedure: for

a discrete variable Xj with rj levels at the hth data point, the node takes level Xhj. We

generated continuous data X̃hj by sampling from Unif [Xhj,Xhj + 1], Xhj ∈ {0, 1, ..., rj − 1}.

31

2.4.2 Results for interventional data

For each type of network, we generated graphs with p = 50 and p = 100. For each node

Xj, we generated nj data points where the node is under intervention, so that the sample

size n =
∑p

j=1 nj for interventional data. We chose nj ∈ {1, 5} for all j = 1, . . . , p to test

the performance of the algorithms given different amount of intervention. In particular,

when nj = 1 we have n = p, which lies on the boundary between low- and high-dimensional

settings. In combination, our choices of the data size were (n, p) ∈ {(50, 50), (250, 50),

(100, 100), (500, 100)}. For each combination of (n, p), we generated 20 data sets.

We compare the DAGs estimated by four algorithms, the CD algorithm, the EE-DAG

sampler, the PC algorithm, and the GIES algorithm. For an estimated DAG, we distinguish

between expected edges, which are estimated edges in the true skeleton with the correct

direction, and reversed edges, which are in the true skeleton but with a reversed direction.

Let P, E, R, and FP denote, respectively, the numbers of predicted edges, expected edges,

reversed edges, and false positive edges (excluding the reversed ones) in an estimated DAG,

and recall that s0 is the number of edges in the true graph. Then the number of missing edges

is M = s0 − E− R. The accuracy of DAG estimation is measured by the true positive rate

(TPR), the false discovery rate (FDR), the structural Hamming distance (SHD) (Tsamardi-

nos et al, 2006), and the Jaccard index (JI), defined as TPR = E/s0, FDR = (R + FP)/P,

SHD = (R + M + FP), and JI = E/(P + s0 − E). Note that SHD was originally defined

for CPDAGs, and our definition here measures the Hamming distance between two DAGs.

Both SHD and JI are single performance metrics for DAG estimation. We mark in boldface

results with the optimum SHD and JI scores in the subsequent tables.

Results reported in Table 2.1 are the comparisons between our CD algorithm and the

PC algorithm, while in Table 2.2 are the comparisons between our CD algorithm and the

EE-DAG sampler. Results are averages over 20 data sets for each setting (n, p, s0). For

our CD algorithm, we report two results for each setting, (i) result with the smallest SHD

along the solution path; (ii) result using our model selection criterion (2.20) with α = 0.3.

In Table 2.1, in order to make a clear comparison, we report lower and upper bounds of

32

the SHD and the Jaccard index for CPDAGs estimated by the PC algorithm. Counting

all undirected edges in a CPDAG that are in the true skeleton as expected edges, we will

have a lower bound for the SHD and an upper bound for the Jaccard index. Counting these

undirected edges as reversed edges will give us an upper bound for the SHD and a lower

bound for the Jaccard index.

It is obvious from Table 2.1 that in majority of the cases our CD algorithm outperformed

the PC algorithm. The SHD score is smaller than the lower bound of the PC algorithm, and

the Jaccard index is higher than the upper bound of the PC algorithm. Only for random

DAGs and small-world networks with n = 100, the SHD of our CD algorithm is slightly

higher than the lower bound of the SHD while the Jaccard index is slightly lower than

the upper bound of the PC algorithm, showing that our algorithm was close to the best

performance one could hope for the PC algorithm. Note that when calculating the TPRs

and FDRs in the table, the undirected edges are counted as expected ones, which clearly

favors the PC algorithm.

We were only able to test the EE-DAG sampler on small graphs with p = 50 because

its computing time was too long for graphs with p = 100. For the cases of n = p = 50

(Table 2.2), we see that the smallest SHD our CD algorithm can achieve along a solution

path is 20% lower than the EE-DAG sampler for bipartite graphs, random DAGs and scale-

free networks, and 10% lower for small-world networks. The EE-DAG sampler predicted

much more false positive edges (FP) but slightly fewer reversed edges (R) than our CD

algorithm. For the cases of n = 5p (Table 2.3), the EE-DAG sampler had an outstanding

performance, with a lower SHD and a higher Jaccard index for all cases. These observations

are largely in agreement with our expectation. The EE-DAG sampler searches for DAGs by

sampling from a posterior distribution under the product multinomial model with a conjugate

Dirichlet prior, which is close to `0 regularization when n is large. Thus, it is expected to

have good performance when p is small and n is large. However, the search is combinatorial

in nature, which makes it impractical for even moderately large networks (such as the graphs

with p = 100 here). On the contrary, our CD algorithm showed no problem in estimating

graphs with hundreds of nodes and can obtain comparable or better results in the cases of

33

n = p = 50.

We also did a comparison between the CD algorithm and the GIES algorithm, reported

in Table 2.4. The results seem to suggest that the GIES algorithm often selects too many

edges. When n = p = 100, the number of edges the GIES algorithm predicted was around

3s0 in most of the cases. Consequently, it showed a much higher FDR as well as a larger

SHD. Recall that the available package for the GIES algorithm can only take continuous

data, which were generated by taking a transformation of the simulated discrete data. As

a result, this comparison could be confounded by the use of different although related data

sets, and thus is only intended to illustrate how the two algorithms would work.

In order to show how interventional data improve the accuracy, we did more experiments.

Figure 2.2 shows how the SHD decreases when adding intervention to an observational data

set, for all four types of graphs with n = 500 and p = 50. We started with a purely

observational data set, and replaced m observational data points by m interventional data

points for each node, for m = 1, 2, ..., 10. The sample size was fixed as n = 500. Therefore,

we would finally have a data set with 10 interventions for each node. Figure 2.2 shows the

average of 20 experiments, with a very clear downward trend in all plots. The curve for

the bipartite graph is not as smooth as the curves for the other types of networks. This is

because the improvement for bipartite graphs is not as significant as the other networks.

2.4.3 Results for high-dimensional observational data

In this section, we apply our CD algorithm to high-dimensional observational data and com-

pare its performance with the PC algorithm, the MMHC algorithm, and the HC algorithm.

Metrics for estimation accuracy in this section are modified from those for interventional

data. Since equivalent DAGs cannot be distinguished with observational data, we define

reversed edges with regard to CPDAGs. A CPDAG is a partially directed graph that has

all compelled (directed) edges in the equivalent class of a DAG. We calculate CPDAGs for

both an estimated DAG and the true DAG. A reversed edge (R) refers to a predicted edge

that satisfies the following two conditions: i) Its direction in the estimated DAG is wrong

34

0 2 4 6 8 10

9
.0

1
0

.0
1

1
.0

1
2

.0

Bipartite

0 2 4 6 8 10

4
5

6
7

8
9

Scale−free

0 2 4 6 8 10

5
5

6
5

7
5

8
5

Small−world

0 2 4 6 8 10

1
0

1
2

1
4

1
6

Random DAG

m (number of interventions per node)

S
H

D

Figure 2.2: The effect of interventions in terms of the SHD, where each node has m inter-

ventional data points while the total sample size n is fixed

compared to the true DAG. ii) The direction of this edge is inconsistent between the CPDAGs

of the true and estimated DAGs, including the case where the edge is directed in one CPDAG

but undirected in the other. Likewise, we define reversed edges in a CPDAG predicted by

the PC algorithm as edges in the true skeleton that have an inconsistent direction with the

true CPDAG. The number of expected edges (E) is the number of estimated edges in the

true skeleton excluding those reversed ones.

For high-dimensional data, we generated graphs with p = 200 for each type of the net-

works. We chose n = 50 and the number of true edges s0 ranged from 190 to 400 for these

graphs. Again, 20 data sets were generated for each combination of (n, p).

Table 2.5 summarizes the comparison results. One sees that our model selection criterion

works quite well: The SHDs of CD and CD* in Table 2.5 are very close. Our CD or CD*

algorithm has the highest Jaccard index for all networks, and the SHD is also quite low

compared to other algorithms for most of the networks. Only for the case of small-world

35

networks, the lowest SHD our CD algorithm can achieve is slightly higher than the MMHC

algorithm. We can see that when running the HC algorithm with the default setting, it

tends to predict too many edges that for the more sparse networks like bipartite graphs,

scale-free networks and random DAGs, the number of edges it predicted is almost twice the

number of true edges. This makes the HC algorithm had a much higher TPR as well as

a higher FDR and larger SHD than all the other algorithms. The PC algorithm predicted

too few edges in scale-free networks and small-world networks, which led to a substantially

lower TPRs and JIs, and the FDRs were quite high for bipartite networks. The MMHC

algorithm, on the other hand, predicted a comparable number of edges as our CD algorithm

in most cases. However its performance was much worse than our CD algorithm except for

the small-world case. Our CD algorithm presents a clear advantage over all other algorithms

in these high-dimensional cases.

CD HC MMHC PC

−
4
0

−
2
0

0

Bipartite

CD HC MMHC PC

−
4
0

−
2
0

0
1
0

Scale−free

CD HC MMHC PC

−
3
0

−
1
0

0

Small−world

CD HC MMHC PC

−
8
0

−
4
0

0

Random DAG

D
if
fe

re
n
c
e
 o

f
lo

g
−

lik
e
lih

o
o
d

Figure 2.3: Box-plot of test data log-likelihood for four algorithms with log-likelihood scaled

by the sample size n = 50

To further evaluate the quality of estimated networks, we computed test data log-

likelihood to compare the predictive power. We generated 500 test data sets of the same

size (n = 50) for each DAG with p = 200. We used each estimated graph to calculate the

36

total log-likelihood of a test data set. Note that the output graph of the PC algorithm is a

CPDAG, for which we cannot directly calculate the test data log-likelihood. However, since

the likelihood for any data set under every DAG in an equivalence class is the same, we

converted a CPDAG output by the PC algorithm to an arbitrary DAG in the equivalence

class and then calculated its test data log-likelihood. Figure 2.3 is the box-plot of test data

log-likelihood for the four types of graphs in terms of the difference from the median of the

test data log-likelihood of the CD algorithm. DAGs estimated by the CD algorithm were

chosen by our model selection criterion.

It is seen from Figure 2.3 that our CD algorithm has the highest test data log-likelihood

for all types of networks. Note that even though for small-world networks case where our

CD algorithm do not have the best SHD, it has the best predictive power. We can see that

for small-world networks, our CD algorithm and the HC algorithm have comparable SHD

and Jaccard index. Both Jaccard indexes is much higher than the MMHC algorithm and

the PC algorithm and both algorithm has a much higher skeleton true positive rate, and

that is why they have higher log-likelihood for small-world networks. Figure 2.3 shows that

our method also has a very good predictive power in high-dimensional cases. We see that

the HC algorithm has a much lower test data log-likelihood for most cases, which suggests

overfitting given the observation that this algorithm often predicts too many edges. These

results demonstrate the critical role of sparsity not only in structure estimation but also in

predictive modeling.

2.4.4 Timing comparison

We comment briefly on the comparison of running time among the algorithms. The running

time for generating a whole solution path for the interventional data (results in Tables 2.1

and 2.2) was within 40 seconds for all graphs. The PC algorithm was about two times faster

than our CD algorithm for bipartite graphs and random DAGs, but it did not scale well for

scale-free networks and small-world networks. For these two types of networks, running time

of the PC algorithm was much longer for n = 500 and p = 100. For the high-dimensional

37

data in Table 2.5, it took between 2 and 20 seconds for our method to compute the entire

solution path. The speed of the PC algorithm was quite comparable to our CD algorithm

on these data sets. The MMHC algorithm was faster which took at most 5 seconds for all

data sets. The fastest algorithm was the HC algorithm, however, its accuracy in learning

Bayesian networks was too bad so we will not go into details for this algorithm. Our method

gives a principled way to incorporate interventional data and is often more accurate than

the other competitors. These merits in performance justify its utility. In addition, there

is room for a more efficient implementation of our algorithm which may improve its speed

substantially.

2.5 Applications to Real Networks

In this section, we apply our CD algorithm to real networks. In Section 2.5.1, we examine how

the proposed multi-logit model compares to the product multinomial model by comparing

our CD algorithm to the K2 algorithm (Cooper and Herskovits, 1992). We will then apply

our method to a real data set in Section 2.5.2.

2.5.1 Comparison with the K2 Algorithm

The K2 algorithm is a well-known method for learning discrete Bayesian networks based on

a product multinomial model. However, it requires an input ordering of the nodes. A wrong

ordering can severely damage the quality of the estimated graph. Therefore, we provide

the K2 algorithm with an ordering that is compatible with the true DAG to obtain the

best estimation. In order to conduct a fair comparison, we also input the same ordering to

our CD algorithm by only running the inner loop of Algorithm 2, which is equivalent to a

sequence of p− 1 penalized multi-logit regression problems. With a known ordering, a main

difference between the two algorithms is the underlying model, the multi-logit model for our

CD algorithm and the multinomial model for the K2 algorithm. We used a Matlab package

K2 (Bielza et al, 2011) to run the algorithm. The K2 algorithm also requires an upper

bound for the maximum number of parents for each node. In our experiments, we set the

38

upper bound to be 4. We chose 8 real networks provided by the bnlearn package, where p

ranges from 8 to 441. Observational data were simulated from these networks, and for each

DAG, 20 data sets were generated independently according to a product multinomial model.

This comparison will demonstrate how well our proposed multi-logit model approximates

the multinomial model.

Summary of the comparison for the 8 networks is provided in Table 2.6. Since a correct

ordering is given, there will not be any reversed edges, and thus, in this table, we only report

P, TPR, FDR, SHD, and JI. Here we matched the number of predicted edges of our CD

algorithm with the K2 algorithm. It can be seen that for most graphs the SHD for our CD

algorithm is lower than that of the K2 algorithm, while the JI is higher, except the networks

asia and hailfinder. Since the data sets were simulated by product multinomial models, this

result confirms that our proposed multi-logit model serves as a good approximation to the

full multinomial model. This comparison also suggests that the group norm regularization

in our method may be more efficient than using an upper bound on the parent size as in the

K2 algorithm.

2.5.2 Application to flow cytometry data

We consider in this section applying the CD algorithm to a real data set that has been

extensively studied. The data set was generated from a flow cytometry experiment conducted

by Sachs et al (2005), who studied a well-known signaling network in human primary CD4+

T-cells of the immune system. This chosen network was perturbed by various stimulatory

and inhibitory interventions. Each interventional condition was applied to an individual

component of the network. Simultaneous measurements were taken on p = 11 proteins

and phospholipids of this network from individual cells under each condition. Since three

interventions were targeted at proteins that were not measured, samples collected under

these conditions were observational. Among the 11 measured components, five proteins and

phospholipids were perturbed. The data set contains measurements for n = 5, 400 cells. Each

variable has three levels (high, medium and low), and consequently, the size of a component

39

group of β is 6 for this data set.

The classical signaling network

Raf

Mek

PLCg
PIP2

PIP3

Erk

Akt

PKA

PKC
p38

JNK

(A)

CD network (17 edges)

Raf

Mek

PLCg
PIP2

PIP3

Erk

Akt

PKA

PKC
p38

JNK

(B)

Figure 2.4: (A) The consensus signaling network in human immune system cells, (B) DAG

estimated by the CD algorithm

Figure 2.4A is a plot for the known causal interactions among the 11 components of this

signaling network. These causal relationships are well-established, and no consensus has

been reached on interactions beyond those present in the network. This network structure is

often used as the benchmark to assess the accuracy of an estimated network. Therefore, we

call it the consensus model. Our estimated network by the CD algorithm with the smallest

SHD along the solution path is shown in Figure 2.4B. The DAG is qualitatively close to the

consensus model. More detailed performance measures are reported in Table 2.7, including

both results for the DAG with the smallest SHD (CD algorithm) and the one selected by our

model selection criterion (CD algorithm*). As a comparison, we include the DAGs estimated

by three competing methods, the order-graph sampler (Ellis and Wong, 2008), the EE-DAG

sampler, and the PC algorithm. Our CD algorithm showed a very competitive performance,

predicting more or comparable number of expected edges and fewer reversed edges than the

other three methods. Our method also had the least number of false positive edges among

all the methods. All these led to the lowest SHD and highest Jaccard index for our CD

algorithm. Note that for the PC algorithm, we counted all 3 undirected edges in the true

40

skeleton as expected edges in the calculation of the SHD and JI. Yet our CD algorithm still

outperformed it. Markov chain Monte Carlo (MCMC) methods for DAG estimation often

have good performance when the number of nodes p is small, but they do not scale well.

Thus, it is comforting to see that our method, which can handle larger networks, outperforms

MCMC methods on this relatively small network.

In addition, we have also compared our CD algorithm and the K2 algorithm on this

data set. Given a true ordering, our CD algorithm predicted exactly the same number of

expected edges with 1 less false positive edge than the K2 algorithm, as reported in Table

2.7. This implies that the proposed multi-logit model fits this data set as well as the product

multinomial model.

2.6 Discussions

We have developed a maximum penalized likelihood method for estimating sparse discrete

Bayesian networks under a multi-logit model. In order to avoid penalizing separately indi-

vidual dummy variables for a factor, a group norm penalty is utilized to encourage sparsity

at the factor level. A blockwise coordinate descent algorithm is developed where each coordi-

nate descent step is solved by iteratively applying a quadratic approximation. The acyclicity

constraint imposed on the structure of Bayesian networks can be enforced in a natural way

by the coordinate descent algorithm. Our method has been evaluated on simulated graphs

and real-world networks, with both interventional and observational data. We have demon-

strated that the CD algorithm outperforms many existing methods, particularly when n ≤ p.

We have also performed an analysis of a flow cytometry data set generated from a signaling

network in human immune system cells. The DAG estimated by the CD algorithm is close

to the consensus model. Since the true network is not available, the estimated edges provide

candidate causal interactions that could be tested in future experiments.

Computation for estimating discrete Bayesian networks is demanding due to the size

of the parameter space and the nonlinear nature of the multi-logit model. There is room

for improving the efficiency of the CD algorithm. For example, one may incorporate the

41

idea of stochastic gradient descent in the quadratic approximation step, which will reduce

significantly the computation. Moreover, since our search space is non-convex, introducing

such components of stochastic optimization may also increase the chance of finding a global

minimizer of the penalized loss function. Other future directions include studying the con-

sistency of our penalized estimator when the number of nodes p = pn grows with the sample

size n and investigating the use of group concave penalties.

42

Algorithm 1 CD algorithm for estimating discrete Bayesian networks

1: Initialize β such that Gβ is acyclic

2: for i = 1, . . . , p− 1 do

3: for j = i+ 1, . . . , p do

4: if βj·i ⇐ 0 then

5: βi·j ← arg minβi·j fλ,i(·), βj·i ← 0

6: else if βi·j ⇐ 0 then

7: βi·j ← 0, βj·i ← arg minβj·i fλ,j(·)

8: else

9: S1 ← minβi·j fλ,i(·) + fλ,j(·)|βj·i=0

10: S2 ← fλ,i(·)|βi·j=0 + minβj·i fλ,j(·)

11: if S1 ≤ S2 then

12: βi·j ← arg minβi·j fλ,i(·), βj·i ← 0

13: else

14: βi·j ← 0, βj·i ← arg minβj·i fλ,j(·)

15: end if

16: end if

17: end for

18: end for

19: Update intercepts βj·0 for j = 1, . . . , p

20: Inner loop given the active edge set (Algorithm 2)

21: Repeat step 2 to 20 until some stopping criterion is met

Algorithm 2 Inner loop

1: Input E(t) and initialize β = β(t)

2: for (i, j) ∈ E(t) do

3: βj·i ← arg minβj·i fλ,j(·)

4: end for

5: Repeat step 2 to step 4 until convergence.

43

Table 2.1: Comparison between our CD algorithm and the PC algorithm on simulated

interventional data

Graph (n, p, s0) Method P E R FP TPR FDR SHD JI

Bipartite (100, 100, 100) CD 98.2 63.0 18.6 16.5 0.630 0.355 53.5 0.466

CD* 60.5 41.2 14.5 4.7 0.412 0.316 63.5 0.345

PC 50.0 5.6(18.3) 21.9 4.2 0.239 0.085 (80.3, 98.7) (0.039, 0.191)

(500, 100, 100) CD 104.2 81.7 17.1 5.5 0.816 0.217 23.8 0.666

CD* 86.3 68.8 15.8 1.7 0.688 0.203 32.9 0.586

PC 80.5 29.2(27.1) 20.5 3.8 0.562 0.047 (47.5, 74.6) (0.193, 0.454)

Scale-free (100, 100, 99) CD 99.2 74.8 17.9 6.5 0.756 0.245 30.8 0.610

CD* 103.3 76.3 18.1 8.8 0.771 0.260 31.5 0.611

PC 59.1 4.9(49.5) 2.8 1.9 0.549 0.032 (46.5, 96.0) (0.032, 0.525)

(500, 100, 99) CD 98.8 85.0 13.4 0.4 0.859 0.140 14.5 0.758

CD* 105.2 85.5 13.6 6.2 0.863 0.186 19.8 0.726

PC 74.0 1.2(71.0) 0.0 1.8 0.729 0.023 (28.6, 99.5) (0.007, 0.717)

Small-world (100, 100, 200) CD 145.2 69.1 49.1 26.9 0.346 0.523 157.9 0.250

CD* 121.1 59.1 42.7 19.2 0.296 0.511 160.1 0.226

PC 67.7 11.7(45.4) 7.7 3.0 0.285 0.045 (146.0, 191.3) (0.046, 0.271)

(500, 100, 200) CD 168.8 98.8 53.0 17.0 0.494 0.412 118.2 0.367

CD* 135.1 82.0 46.6 6.5 0.410 0.393 124.5 0.324

PC 117.0 43.0(26.2) 46.2 1.5 0.346 0.0130 (132.2, 158.4) (0.158, 0.283)

Random DAG (100, 100, 101.5) CD 91.8 56.6 24.7 10.4 0.556 0.384 55.4 0.414

CD* 61.0 38.5 18.9 3.5 0.381 0.365 66.5 0.311

PC 66.2 22.4(28.7) 12.5 2.6 0.506 0.040 (53.0, 81.8) (0.156, 0.441)

(500, 100, 102.0) CD 103.4 76.2 23.4 3.8 0.746 0.263 29.8 0.591

CD* 85.8 64.2 19.8 1.8 0.636 0.253 39.6 0.524

PC 96.7 60.5(24.2) 10.6 1.3 0.837 0.0140 (18.6, 42.9) (0.438, 0.755)

CD is the result of our CD algorithm with the smallest SHD along the solution path; CD* is

the result of our CD algorithm using our model selection criterion; The number in parentheses

in column E for the PC algorithm reports the number of predicted undirected edges in the

true skeleton

44

Table 2.2: Comparison between our CD algorithm and the EE-DAG sampler on simulated

interventional data

Graph (n, p, s0) Method P E R FP TPR FDR SHD JI

Bipartite (50, 50, 50) CD 30.8 19.4 6.5 4.8 0.389 0.362 35.4 0.316

CD* 29.6 17.8 6.5 5.3 0.355 0.398 37.6 0.286

EE 53.9 27.4 4.8 21.6 0.548 0.486 44.2 0.362

Scale-free (50, 50, 49) CD 48.5 30.2 6.8 11.4 0.617 0.376 30.1 0.452

CD* 51.0 31.0 6.8 13.2 0.633 0.387 31.2 0.454

EE 60.6 32.9 3.1 24.6 0.670 0.453 40.8 0.434

Small-world (50, 50, 100) CD 70.2 35.0 25.9 9.2 0.350 0.498 74.2 0.260

CD* 39.5 21.2 15.8 2.5 0.212 0.458 81.2 0.181

EE 62.4 30.6 16.1 15.7 0.306 0.507 85.0 0.234

Random DAG (50, 50, 46.8) CD 34.1 20.4 8.3 5.5 0.441 0.400 31.9 0.340

CD* 26.1 16.4 6.8 2.9 0.361 0.363 33.2 0.296

EE 50.0 25.2 7.0 17.8 0.547 0.492 39.3 0.358

CD is the result of our CD algorithm with the smallest SHD along the solution path; CD*

is the result of our CD algorithm using our model selection criterion

45

Table 2.3: Comparison between our CD algorithm and the EE-DAG sampler on simulated

interventional data

Graph (n, p, s0) Method P E R FP TPR FDR SHD JI

Bipartite (250, 50, 50.0) CD 53.2 39.4 7.7 6.2 0.787 0.259 16.9 0.617

CD* 36.1 28.3 6.0 1.8 0.566 0.215 23.6 0.488

EE 51.8 47.9 1.8 2.1 0.958 0.073 4.2 0.892

Scale-free (250, 50, 49.0) CD 48.9 44.5 4.0 0.3 0.908 0.089 4.8 0.837

CD* 50.6 44.6 4.2 1.9 0.910 0.118 6.3 0.815

EE 50.6 48.4 0.6 1.6 0.988 0.0430 2.2 0.946

Small-world (250, 50, 100.0) CD 84.6 49.5 28.4 6.8 0.495 0.414 57.2 0.366

CD* 44.2 28.6 15.3 0.4 0.286 0.351 71.8 0.247

EE 81.7 70.5 7.0 4.2 0.705 0.136 33.6 0.635

Random-DAG (250, 50, 49.9) CD 49.5 36.5 9.6 3.4 0.743 0.261 16.2 0.592

CD* 38.9 29.8 7.6 1.6 0.607 0.237 21.1 0.515

EE 49.6 45.8 2.6 1.2 0.927 0.076 4.8 0.864

CD is the result of our CD algorithm with the smallest SHD along the solution path; CD*

is the result of our CD algorithm using our model selection criterion

46

Table 2.4: Comparison between our CD algorithm and the GIES algorithm on simulated

interventional data

Graph (n, p, s0) Method P E R FP TPR FDR SHD JI

Bipartite (100, 100, 100) CD 98.2 63.0 18.6 16.5 0.630 0.355 53.5 0.466

CD* 60.5 41.2 14.5 4.7 0.412 0.316 63.5 0.345

GIES 322.5 82 13.8 226.7 0.820 0.745 244.7 0.242

(500, 100, 100) CD 104.2 81.7 17.1 5.5 0.816 0.217 23.8 0.666

CD* 86.3 68.8 15.8 1.7 0.688 0.203 32.9 0.586

GIES 187.9 92.4 7.6 88.0 0.924 0.507 95.5 0.474

Scale-free (100, 100, 99) CD 99.2 74.8 17.9 6.5 0.756 0.245 30.8 0.610

CD* 103.3 76.3 18.1 8.8 0.771 0.260 31.5 0.611

GIES 276.9 82.1 15.3 179.5 0.829 0.703 196.4 0.281

(500, 100, 99) CD 98.8 85.0 13.4 0.4 0.859 0.140 14.4 0.758

CD* 105.2 85.5 13.6 6.2 0.863 0.186 19.8 0.726

GIES 173.8 93.3 5.7 74.8 0.943 0.461 80.4 0.522

Small-world (100, 100, 200) CD 145.2 69.1 49.1 26.9 0.346 0.523 157.8 0.250

CD* 121.1 59.1 42.7 19.2 0.296 0.511 160.1 0.226

GIES 316.2 89.0 51.4 175.9 0.445 0.717 286.9 0.210

(500, 100, 200) CD 168.8 98.8 53.0 17.0 0.494 0.412 118.2 0.367

CD* 135.1 82.0 46.6 6.5 0.410 0.393 124.5 0.324

GIES 284.1 152.2 34.1 97.9 0.761 0.464 145.8 0.459

Random DAG (100, 100, 101.5) CD 91.8 56.6 24.7 10.4 0.556 0.384 55.4 0.414

CD* 61.0 38.5 18.9 3.5 0.381 0.365 66.5 0.311

GIES 318.2 77.2 20.6 220.6 0.761 0.757 244.9 0.226

(500, 100, 101.5) CD 103.4 76.2 23.4 3.8 0.746 0.263 29.8 0.591

CD* 85.8 64.2 19.8 1.8 0.636 0.253 39.6 0.524

GIES 192.9 93.0 8.7 91.2 0.911 0.518 100.2 0.461

CD is the result of our CD algorithm with the smallest SHD along the solution path.

CD* is the result of our CD algorithm using model selection criterion with α = 0.3.

47

Table 2.5: Comparison among our CD algorithm and other algorithms on simulated obser-

vational data

Network (n, p, s0) Method P E R FP TPR FDR SHD JI

Bipartite (50, 200, 200.0) CD 108.7 69.6 20.6 18.6 0.348 0.357 148.9 0.290

CD* 90.2 59.6 17.8 12.8 0.298 0.333 153.2 0.258

PC 75.7 26.9 34.2 14.6 0.134 0.643 187.7 0.108

MMHC 101.0 34.9 11.8 54.2 0.174 0.655 219.3 0.131

HC 393.0 108.7 31.2 253.1 0.544 0.723 344.4 0.225

Scale-free (50, 200, 199.0) CD 139.6 83.8 15.8 39.9 0.421 0.402 155.1 0.326

CD* 201.8 106.8 21.6 73.4 0.537 0.470 165.6 0.365

PC 99.5 46.5 23.1 30.0 0.234 0.532 182.5 0.185

MMHC 97.8 43.3 8.2 46.2 0.218 0.556 201.9 0.171

HC 349.1 118.1 25.7 205.3 0.593 0.662 286.2 0.275

Small-world (50, 200, 400.0) CD 88.2 28.9 36.2 23.0 0.072 0.533 394.1 0.058

CD* 296.5 84.6 110.8 101.1 0.212 0.714 416.5 0.138

PC 70.2 7.3 54.4 8.6 0.018 0.898 401.2 0.016

MMHC 87.5 35.4 29.3 22.9 0.088 0.595 387.5 0.078

HC 259.6 79.2 80.8 99.5 0.198 0.695 420.4 0.137

Random DAG (50, 200, 203.6) CD 113.0 68.8 28.1 16.1 0.339 0.386 150.9 0.278

CD* 101.2 63.7 25.1 12.4 0.315 0.364 152.3 0.265

PC 97.3 47.1 37.0 13.2 0.233 0.515 169.7 0.187

MMHC 112.5 54.0 22.4 36.0 0.267 0.520 185.6 0.207

HC 388.1 99.7 46.0 242.5 0.491 0.743 346.4 0.203

CD* is the result of our CD algorithm using our model selection criterion

48

Table 2.6: Comparison between our CD algorithm and the K2 Algorithm

CD Algorithm K2 Algorithm

Network (n, p, s0) P TPR FDR SHD JI P TPR FDR SHD JI

asia (250, 8, 8) 10.2 0.719 0.430 6.7 0.469 10.1 0.838 0.331 4.7 0.597

sachs (250, 11, 17) 14.5 0.732 0.133 6.6 0.659 14.7 0.538 0.374 13.3 0.408

child (250, 20, 25) 31.1 0.656 0.469 23.3 0.416 30.1 0.602 0.500 25.0 0.376

insurance (250, 27, 52) 50.4 0.473 0.511 53.2 0.316 51.1 0.414 0.578 60.0 0.265

alarm (250, 37, 46) 60.8 0.664 0.497 45.6 0.401 60.8 0.618 0.531 49.9 0.364

hailfinder (250, 56, 66) 80.2 0.525 0.558 76.9 0.313 79.1 0.546 0.542 73.0 0.331

hepar2 (250, 70, 123) 137.6 0.269 0.756 194.5 0.146 139.9 0.236 0.792 204.8 0.124

pigs (250, 441, 592) 773.65 0.863 0.334 343.5 0.600 788.8 0.704 0.472 547.4 0.432

Table 2.7: Comparison on the flow cytometry data set

Method P E R M FP SHD JI

CD algorithm 17 10 3 7 4 14 0.370

CD algorithm* 14 8 3 9 3 15 0.308

PC algorithm 17 5(3) 4 8 5 17 0.276

Order-graph sampler 20 8 4 8 8 20 0.250

EE-DAG sampler 26 9 6 5 11 22 0.243

Results given a correct ordering

Method P E R M FP SHD JI

CD algorithm 28 18 0 2 10 12 0.600

K2 algorithm 29 18 0 2 11 13 0.581

The order-graph sampler result comes from the mean graph (Figure 11 in Ellis and Wong,

2008)

49

CHAPTER 3

R Packages: discretecdAlgorithm and sparsebn

We have developed an R package discretecdAlgorithm based on the algorithm described

in Chapter 2. The package is now available on CRAN. It aims to handle discrete data sets,

and it is able to take as input observational data, interventional data, or a mixture of both.

In this chapter, we will go through the design of this package and show some examples.

3.1 Introduction and Related Packages

The discretecdAlgorithm belongs to a family of R packages, it imports some of the utility

functions from the package sparsebnUtils, and exports to the package sparsebn (Aragam

et al, 2017b) which is a wrapper of several structure learning packages. Structure of the

family of our packages is shown as follow:

sparsebn

discretecdAlgorithm ccdrAlgorithm

sparsebnUtils

Note that the ccdrAlgorithm (Aragam et al, 2017b) package is another structure learning

package for continuous Bayesian networks. Users can access our discrete CD algorithm 1

via either the discretecdAlgorithm package by cd.run or the sparsebn package by

estimate.dag. We recommend users to interact with the spasrsebn package because it

50

is more user-friendly and is compatible with several commonly used packages for graphs:

graph (Gentleman et al, 2016), network (Butts, 2008), and igraph (Csárdi and Nepusz,

2006). Please refer to Aragam et al (2017b) for more details.

3.2 Using the sparsebn Package for Structure Learning of Discrete

Bayesian Networks

In this section, we will introduce the estimation methods for discrete data in sparsebn

package. The main function is estimate.dag, which can be called as follows:

1 R> estimate.dag(data , lambdas = NULL , lambdas.length = 20,

2 + whitelist = NULL , blacklist = NULL , error.tol = 1e-04,

3 + max.iters = NULL , edge.threshold = NULL , concavity = 2,

4 + weight.scale = 1, convLb = 0.01, upperbound = 100,

5 + adaptive = FALSE , verbose = FALSE)

The main arguments are data, lambdas, and lambdas.length. By default, the lambdas

argument is NULL and a standard sequence of J = 20 regularization parameters is generated.

If desired, the user can pre-compute a vector of regularization parameters to be used instead,

in which case this vector should be passed through the lambdas argument. If there is prior

knowledge of (directed) edges that are known to be present in the network, these can be

specified via the whitelist argument. Similarly, if there is prior knowledge of (directed)

edges that are known to be absent from the network, these can be specified via the blacklist

argument. The rest of the arguments control the convergence of the internal algorithms, and

are intended for advanced users. This method returns a sparsebnPath object described in

Section 3.2.1 which stores the solution path.

The objects returned by estimate.dag are graphs, and in particular they do not include

estimates of model parameters such as edge weights or conditional variances. To obtain these

parameters, sparsebn includes the estimate.parameters method as follows:

1 R > estimate.parameters(fit , data , ...)

51

where fit is the output of estimate.dag and data is the data to be used for parameter

estimation.

3.2.1 Data Structures

sparsebn uses three different S3 classes in order to represent data (sparsebnData), graphs

(sparsebnFit), and solution paths (sparsebnPath). For each of these classes, the usual

generics are defined such as print, summary, and plot.

The sparsebnData class is used to represent both continuous and discrete data with

experimental interventions, and to use the discrete CD algorithm we should specify type =

"discrete". Observational data corresponds to the degenerate case where our data set does

not contain any interventions, and is treated as such by the sparsebn package. The slots

are:

- data: This is the original data as a data frame with n observations and p variables.

- type: "discrete" or "continuous".

- levels: A list of levels for each variable. This is a list of length p whose jth component

is a vector containing the levels of the jth variable.

- ivn: The list of interventions for each observations. This is a list of length n whose

ith component is a vector of node names (or indices) that are under intervention for

the ith observation. Default is NULL for observational data.

The sparsebnPath class represents a solution path, which is the output of the main func-

tion estimate.dag. Internally, this is a list of sparsebnFit objects whose jth component

corresponds to the jth value of λ in the solution path, λmax > λ1 > · · · > λmin. Since this

class is essentially a wrapper for this list, it has no named slots. The sparsebnFit class

represents an individual graph estimate from a DAG learning algorithm. The graph itself

is stored as an edgeList object in the edges slot, which is an internal implementation of a

child-parent edge list.

52

3.2.2 Installation

sparsebn is an open-source package and is made freely available through CRAN. To install

the latest stable version in R,

1 R> install.packages("sparsebn")

For advanced users, the development versions can be downloaded directly from GitHub.

Using devtools, the entire suite of packages can be installed via

1 R> devtools :: install_github(c("itsrainingdata/sparsebnUtils/dev",

2 + "itsrainingdata/ccdrAlgorithm/dev",

3 + "gujyjean/discretecdAlgorithm/dev",

4 + "itsrainingdata/sparsebn/dev"))

Note that by installing the sparsebn package, users have automatically installed packages

discretecdAlgorithm, ccdrAlgorithm and sparsebnUtils.

3.3 An Example of Discrete Cytometry Data

To illustrate the use of the sparsebn package on discrete data, we use the flow cytometry

data set in Chapter 2 Section 2.5.2 as an example in this section. First, we load the data

from the sparsebn package:

1 R> library("sparsebn")

2 R> data("cytometryDiscrete")

3 R> names("cytometryDiscrete")

4 [1] "dag" "data" "ivn"

Note that this is not a data.frame, but instead a list of R objects that will be useful for this

specific example. Each component of this list stores an important part of the experiment:

- dag is the consensus network with 11 nodes and 17 edges, as described above.

- data is raw data collected from these experiments.

53

- ivn is a list of interventions for each observation in the dataset.

The remaining of this section will go through the main steps for structure learning of this

discrete flow cytometry data set: (1) Converting cytometryDiscrete to a sparsebnData

object, (2) Running the structure learning algorithm, (3) Incorporating with prior knowledge,

(4) Checking the solution path, (5) Estimating the parameters, (6) Selecting regularization

parameter.

3.3.1 Getting sparsebnData object

In order to distinguish different types of data—namely, experimental versus observational

and continuous versus discrete—we use the sparsebnData class which wraps a data.frame

into an object containing this auxiliary information. All of the methods implemented in

sparsebn expect input as sparsebnData.

To use this class, we need two important pieces of information: The raw data as a

data.frame, and a list of interventions for each observation in the dataset. If the dataset

does not contain any interventions, then the latter can be omitted. In order to create a

sparsebnData object from the cytometry data, we first extract the necessary objects from

cytometryDiscrete:

1 R> cyto.raw <- cytometryDiscrete$data

2 R> cyto.ivn <- cytometryDiscrete$ivn

Finally, for discrete data, we may wish to manually specify the levels of each variable,

which can be done using the levels argument. When this argument is omitted, we attempt

to automatically infer the levels. Note that in doing so, however, levels which are missing

from the data will not be recognized by the sparsebnData constructor. We can manually

set the levels argument as follows:

1 R> cyto.levels <- lapply (1: ncol(cyto.raw),

2 + function(x){c(0, 1, 2)})

3 R> names(cyto.levels) <- colnames(cyto.raw)

54

Now we can create the required sparsebnData object:

1 R> cyto.data <- sparsebnData(data = cyto.raw ,

2 + type = "discrete", ivn = cyto.ivn , levels = cyto.levels)

Notice that we need to explicitly specify that the data is discrete, and the last argument

levels can be omitted since there is no missing levels in this case.

1 > print(cyto.data)

2 raf mek plc pip2 pip3 erk akt pka pkc p38 jnk

3 1: 0 0 0 1 2 1 0 2 0 1 0

4 2: 0 0 0 0 2 2 1 2 0 1 0

5 3: 0 0 1 1 2 1 0 2 1 0 0

6 4: 0 0 0 0 2 1 0 2 0 2 0

7 5: 0 0 0 0 2 1 0 2 0 0 0

8 ---

9 5396: 0 0 0 0 1 1 0 1 1 0 0

10 5397: 0 0 0 0 0 1 1 0 0 1 1

11 5398: 0 0 0 0 1 1 0 1 1 0 0

12 5399: 0 1 0 0 0 0 0 1 1 0 0

13 5400: 1 1 0 0 1 1 0 1 1 1 0

14

15 5400 total rows (5390 rows omitted)

16 Discrete data w/ interventions on 3600/5400 rows.

This is an example of a mixture of observational and interventional data set where 3600 out

of 5400 data points were under intervention.

3.3.2 Structure Learning

To learn the structure of a Bayesian network from this data we use the estimate.dag()

method, which runs Algorithm 1 when we set type = "discrete". To call this method

using the default parameter settings, use:

55

1 R> cyto.learn <- estimate.dag(data = cyto.data)

2 R> print(cyto.learn)

3 sparsebn Solution Path

4 11 nodes

5 5400 observations

6 8 estimates for lambda in [1.791 , 9.7712]

7 Number of edges per solution: 0-6-9-13-15-21-30-38

8

9 R> summary(cyto.learn)

10 sparsebn Solution Path

11 11 nodes

12 5400 observations

13 8 estimates for lambda in [1.791 , 9.7712]

14 Number of edges per solution: 0-6-9-13-15-21-30-38

15

16 lambda nedge

17 1 9.771153 0

18 2 7.668010 6

19 3 6.017547 9

20 4 4.722330 13

21 5 3.705896 15

22 6 2.908238 21

23 7 2.282269 30

24 8 1.791033 38

In addition to data, there are several optional parameters that can be passed to function

estimate.dag. The main arguments of interest are lambdas and lambdas.length, which

allow the user to adjust the grid of regularization parameters λmax > λ1 > · · · > λmin in

(2.9).

56

By default, estimate.dag produces a solution path of 20 estimates with the grid chosen

adaptively to the data. This grid can be shortened or lengthened by specifying the parameter

lambdas.length:

1 R> estimate.dag(data = cyto.data , lambdas.length = 50)

For even more fine-tuning, the lambdas argument allows the user to explicitly input their

own grid. For convenience we have included the generate.lambdas method, which provides

a mechanism for generating grids of arbitrary lengths on either a linear or log scale. To

generate a grid with a linear scale, use scale = "linear":

1 R> cyto.lambdas <- generate.lambdas(lambda.max = 10,

2 + lambdas.ratio = 0.001, lambdas.length = 10,

3 + scale = "linear")

4 R> cyto.lambdas

5 [1] 10.00 8.89 7.78 6.67 5.56 4.45 3.34 2.23 1.12 0.01

To use a log scale, use scale = "log":

1 R> cyto.lambdas <- generate.lambdas(lambda.max = 10,

2 + lambdas.ratio = 0.001, lambdas.length = 10, scale = "log")

3 R> cyto.lambdas

4 [1] 10.000 4.642 2.154 1.000 0.464 0.215 0.100 0.046

5 0.022 0.010

If we run the CD algorithm with a user specified lambda sequence:

1 R> estimate.dag(data = cyto.data , lambdas = cyto.lambdas)

2 sparsebn Solution Path

3 11 nodes

4 5400 observations

5 4 estimates for lambda in [1, 10]

6 Number of edges per solution: 0-13-31-42

57

Note that there are only 4 estimates because for discrete CD algorithm we have set the

default upper limit on the number of edges estimated to be alpha = 3 times the number of

nodes, that is 33 in this case. alpha is an argument in cd.run of discretecdAlgorithm

package. We can justify the value of alpha to get denser estimations:

1 R> library("discretecdAlgorithm")

2 R> cd.run(indata = cyto.data , lambdas = cyto.lambdas ,

3 + alpha = 10)

4 sparsebn Solution Path

5 11 nodes

6 5400 observations

7 10 estimates for lambda in [0.01, 10]

8 Number of edges per solution: 0-13-31-42-53-55-55-55-55-55

This feature has not been exported to the sparsebn package yet.

3.3.3 Prior Knowledge

In some contexts, users may have prior knowledge regarding edges that must be present or

absent from the network. For example, it may already be known that PIP3 regulates PIP2

(see Figure 2.4 (A)). In this case, estimation of the underlying network can be substan-

tially improved by incorporating this information into the estimation procedure. With the

sparsebn package, this can be done via whitelists and blacklists, which specify edges that

must be present and absent, respectively.

For example, to specify a known relationship between PIP3 and PIP2, we can create a

whitelist as follows:

1 R> whitelist <- matrix(c("pip3", "pip2"), nrow = 1)

2 R> estimate.dag(cyto.data , whitelist = whitelist)

3 sparsebn Solution Path

4 11 nodes

5 5400 observations

58

6 8 estimates for lambda in [1.791 , 9.7712]

7 Number of edges per solution: 1-7-10-14-15-21-28-37

We can see that now instead of the NULL graph, the solution path starts with a DAG with

1 edge. Thus, this whitelist ensures that the edge PIP3→PIP2 will be present in the final

estimates. The whitelist argument should be a two-column matrix, where the first column

stores parents and the second stores children (i.e., a from-to adjacency list):

1 R> whitelist

2 [,1] [,2]

3 [1,] "pip3" "pip2"

Similarly, we can specify a blacklist, which stores edges that are known to be absent. For

example, we can forbid any edges between RAF and MEK as follows:

1 R> blacklist <- rbind(c("raf", "jnk"), c("jnk", "raf"))

2 R> estimate.dag(cyto.data , blacklist = blacklist)

As with the whitelist, the blacklist should be a two-column matrix. Note that we specify

both directions RAF→MEK and MEK→RAF. If it is known that the direction can only go

in one direction, then a single direction may be specified instead.

Blacklists are useful for specifying known root and leaf nodes in a Bayesian network. In

the cytometry network, PIP3 is a root node (i.e., it has no parents). Thus, we can forbid

any edges pointing into PIP3. Similarly, JNK, P38, and AKT are leaf nodes (i.e., they have

no children), so we can forbid any edges pointing away from all three nodes. To specify this,

we make use of the specify.prior function, which automatically builds an appropriate

blacklist given the names of the root and leaf nodes. Any number of root and/or leaf nodes

can be specified.

1 R> blacklist <- specify.prior(roots = "pip3",

2 + leaves = c("jnk", "p38", "akt"),

3 + nodes = names(cyto.data$data))

4 R> estimate.dag(cyto.data , blacklist = blacklist)

59

Finally, whitelists and blacklists can be combined arbitrarily, as long as they are consistent

in the sense that no edge appearing in the whitelist appears in the blacklist, and vice versa.

This allows for a powerful specification of prior knowledge in learning networks from data.

3.3.4 Solution paths

The output of estimate.dag is a sparsebnPath object, which stores the entire solution path

that is returned by the method, and each estimate is stored as the internal class sparsebnFit.

Since sparsebnPath objects also inherit from the list class in base R, we can inspect the

first solution using ordinary R indexing. Note that for sparsebnFit objects, the print and

summary methods are identical, so the output below is shown only once.

1 R> print(cyto.learn [[1]])

2 R> summary(cyto.learn [[1]])

3 CCDr estimate

4 5400 observations

5 lambda = 9.77115285854563

6

7 DAG:

8 <Empty graph on 11 nodes.>

The first estimate will always be the empty graph, which is a consequence of how we

employ warm starts in the solution path. The third estimate, for example, shows a bit more

structure:

1 R> print(cyto.learn [[3]])

2 R> summary(cyto.learn [[3]])

3 CCDr estimate

4 5400 observations

5 lambda = 6.01754700798802

6

7 DAG:

60

8 [raf] pka

9 [mek] pka raf

10 [plc] pip2 pka

11 [pip2]

12 [pip3]

13 [erk] akt pka

14 [akt] pka

15 [pka]

16 [pkc]

17 [p38] pka

18 [jnk]

Each row in the output above corresponds to a child node—indicated by the square

brackets—with its parents listed to the right without brackets. Formally, this is an adjacency

list ordered by children. For large graphs, explicit output of the parental structure as shown

here is omitted by default, however, this behaviour can be overridden via the maxsize

argument. Alternatively, we can retrieve the adjacency matrix for this estimate:

1 R> get.adjacency.matrix(cyto.learn [[3]])

2 11 x 11 sparse Matrix of class "dgCMatrix"

3 [[suppressing 11 column names ’raf’, ’mek , ’plc’ ...]]

4

5 raf . 1

6 mek

7 plc

8 pip2 . . 1

9 pip3

10 erk

11 akt 1

12 pka 1 1 1 . . 1 1 . . 1 .

61

13 pkc

14 p38

15 jnk

Note the use of the Matrix package (Bates and Maechler, 2018), which reduces the

memory footprint on large graphs. Finally, for large graphs, it may be desirable to inspect

a subset of nodes, which can be done using the show.parents method:

1 R> show.parents(cyto.learn [[3]], c("raf", "pip2"))

2 [raf] pka

3 [pip2]

3.3.5 Parameter estimation

It is important to note that the output of estimate.dag is a sequence of graphs, i.e., no

parameters (edge weights, etc.) have been estimated at this stage. The next step is to

estimate the values of the parameters associated with the underlying joint distribution. This

is easy to do:

1 R> cyto.param <- estimate.parameters(cyto.learn ,

2 + data = cyto.data)

The output is a list of parameters in our multi-logit model (2.2), for example the param-

eters for the third estimation is:

1 R> cyto.param [[3]]

2 $raf

3 (Intercept) pka_1 pka_2

4 1 0.4219942 -0.9457959 -2.282747

5 2 1.8258925 -3.6595227 -5.034717

6

7 $mek

8 (Intercept) raf_1 raf_2 pka_1 pka_2

62

9 1 -2.12277 1.951786 -0.0136459 1.096985 -2.494880

10 2 -13.34661 13.228964 14.2988204 -3.373844 -4.733759

11

12 $plc

13 (Intercept) pip2_1 pip2_2 pka_1 pka_2

14 1 -2.204715 2.394603 1.886452 -0.5895796 -0.1304795

15 2 -1.724715 4.910626 6.774940 -18.8440374 -15.3974901

16

17 $pip2

18 integer (0)

19

20 $pip3

21 integer (0)

22

23 $erk

24 (Intercept) akt_1 akt_2 pka_1 pka_2

25 1 -0.4927002 -0.1564742 9.716911 2.605460 2.757640

26 2 -4.1401389 3.0175745 19.423297 3.319035 4.235309

27

28 $akt

29 (Intercept) pka_1 pka_2

30 1 0.00321718 -0.7273075 -1.184633

31 2 0.31229882 -6.0676902 -13.011249

32

33 $pka

34 integer (0)

35

36 $pkc

37 integer (0)

63

38

39 $p38

40 (Intercept) pka_1 pka_2

41 1 -1.2242978 -0.4220145 -0.8272241

42 2 0.3761702 -7.0447429 -2.2011545

43

44 $jnk

45 integer (0)

All these parameters are estimated using the R package nnet.

3.3.6 Model selection

Unlike existing methods, the output of estimate.dag is a solution path with multiple es-

timates of increasing complexity, indexed by the regularization parameter. Thus, it is im-

portant to be able to pick out estimates for inspection and further exploration. For ad

hoc exploration, the select method is useful: This allows one to select an estimate from a

sparsebnPath object based on the number of edges, the regularization parameter λ, or the

index j. When selecting by the number of edges or by λ, fuzzy matching is used by default

so that the closest match is returned to within a given tolerance. Selecting by index is equiv-

alent to subsetting as usual with the subset operator ‘[[]]’. To save space, the output of

the following code is suppressed:

1 R> select(cyto.learn , edges = 9)

2 R> select(cyto.learn , edges = 10)

In the first line above, an exact match is returned. In the second line, the closest match

is returned since there is no graph with exactly 10 edges in the solution path.

1 R> select(cyto.learn , lambda = 9.75)

2 R> select(cyto.learn , lambda = 9.7)

In both of the above examples, the closest match is returned.

64

1 R> select(cyto.learn , index = 4)

2 R> cyto.learn [[4]]

In the both lines above, an exact match is returned. Note that the second line is equivalent

to the first.

For practical applications, one is often concerned with selecting an optimal value of λ.

We implemented the empirical model selection criterion described in Chapter 2 Section 2.2.3

in sparsebn via the method select.parameter:

1 R> selected.lambda <- select.parameter(cyto.learn , cyto.data ,

2 + alpha = 0.3)

3 R> selected.lambda

4 [1] 5

Our model selection method selected out the 5th DAG with 15 edges along the solution

path. Note that the default setting for the argument alpha is 0.1, this value works well for

continuous data sets. As for discrete data sets the empirical value for alpha should be set

as 0.3.

3.4 Discussions

In this chapter, we went through some examples for learning discrete Bayesian networks

with sparsebn package, which imports the main algorithm for structure learning of discrete

data from discretecdAlgorithm package. Implementation for our discrete CD algorithm

includes the following features:

- Learning from a mixture of interventional and observational data set.

- Having competitive performance with high-dimensional data.

- Accepting prior knowledge: black-list and white-list.

- Providing an empirical model selection method to determine the tuning parameter λ

65

along the solution path.

In our future updates we can provide the users an option to input a known ordering of the

graph, in addition to black-list and white-list users might also have a prior knowledge on

the topological ordering of the network. Also in our current implementation of the discrete

CD algorithm, we store the DAG structure in matrix form, to save memory and speed up

our algorithm we can implement it in a sparse matrix form like what the authors did for the

ccdrAlgorithm package. Moreover, we might further scale our algorithm by introducing

stochastic gradient descent when the number of observations is big.

To sum up, we have developed a user friendly R package so that users can have convenient

access to our algorithm. And we will keep maintaining and updating our packages in the

future.

66

CHAPTER 4

Learning Massive Gaussian Bayesian Networks

4.1 Motivation and Outline

The DAG space grows super-exponentially in the number of nodes p. The number of DAGs

when p = 1, 2, 3, 4, 5 is 1, 3, 25, 543, 29281, respectively. Although there is no closed-form

formula for counting the number of DAGs given p, Robinson (1977) showed the following

recursive equation to count the number of directed acyclic graphs,
ap =

∑p
k=1(−1)k+1

(
p
k

)
2k(p−k)ap−k

a0 = 1

,

where ap is the number of DAGs with p nodes. There exist some effective algorithms to learn

the structure of DAGs, but as the number of nodes increases it is still very challenging to

scale the algorithm, and the amount of time it takes for structure learning of large Bayesian

networks might be hours or even days. In this chapter, we propose a three step divide-

and-conquer framework that integrates various structure learning algorithms for massive

networks. Our proposed method is able to significantly reduce the running time without

losing much accuracy.

Many real-world networks show block structure to some degree, with weak or no connec-

tions between subgraphs. We can speed up the structure learning process by the following

steps:

1. Break down the full DAG into several disconnected small networks using a clustering

algorithm (Partition/P-step).

67

2. Use a structure learning algorithm like the CD algorithm proposed in Chapter 2 to

learn the DAG structure for each subgraph (Estimation/E-step).

3. Finally recover edges among disconnected subgraphs (Fusion/F-step).

We will call this three step framework the PEF method hereafter.

This chapter focuses on the case of continuous observational data. All technical details,

computer implementations and simulation results are for observational continuous data. The

remaining of this Chapter is organized as follows: Section 4.2 introduces the statistical

model and features for the PEF method. Section 4.3 describes our PEF method in detail.

Section 4.4 demonstrates our simulation results when applying the PEF method to real

networks with comparisons to other DAG learning algorithms. Section 4.5 summarizes our

contribution in this chapter and future directions.

4.2 A Gaussian Model for Continuous Data and Assumptions

In this chapter we consider the case of continuous networks, where the variables X1, . . . , Xp

jointly follow a multivariate normal distribution. In addition, we assume the data sets to be

purely observational. Discrete networks and interventional data sets will be left as future

work. Furthermore, since state-of-the-art algorithms can efficiently recover structures of

DAGs with hundreds of nodes, our algorithm is mainly designed for networks with thousands

of nodes or even bigger. Also, in many applications only high-dimensional data is available

for massive networks, so we will focus on the high-dimensional scenario in this chapter.

Another assumption that motivates the partition step is that the full DAG can be roughly

separated into subgraphs. And finally faithfulness is assumed for the PEF method. Detailed

discussion on the assumptions will be in Section 4.2.2.

4.2.1 Gaussian model for continuous data

Gaussian Bayesian network is a Bayesian network where all its variables X1, . . . , Xp are

continuous and all the conditional probability densities (CPD) in Equation 1.1 are linear

68

Gaussian. The CPD can be written as the following linear structural equation model,

Xj =

p∑
i=1

βijXi + εj, εj ∼ N(0, σ2
j), j = 1, ..., p. (4.1)

Note that βij represents the influence of Xi on Xj, therefore if Xi /∈ ΠGj then βij = 0. So

Equation 4.1 can also be written as,

Xj =
∑
i∈ΠGj

βijXi + εj, (4.2)

where all βij 6= 0. If we let B = (βij) ∈ Rp×p be the parameter matrix, it can also be regarded

as the weighted adjacency matrix, where the weight for edge (i, j) ∈ E is the coefficient βij.

For example, suppose G is a DAG with 5 nodes V = {1, 2, 3, 4, 5}, and the DAG structure is

illustrated in Figure 4.1 (a).

X1 X2 X3

X4

X5

(a)

The Gaussian model for DAG in (a) should be:

X1 = ε1

X2 = ε2

X3 = ε3

X4 = β14X1 + β24X2 + ε4

X5 = β45X4 + β35X3 + ε5

(b)

Figure 4.1: An example on the linear structural equation model.

Recall in Chapter 2, βj·i is the influence of Xi has on Xj which is a matrix, and for the

Gaussian case it reduces to a scaler βij. Therefore the parameter matrix B for the discrete

model is a four-way array. In our discrete CD algorithm, we learn the structure of a DAG

via the sparsity pattern of βj·i, similarly we can learn the DAG structure via the sparsity

pattern of βij. Similar to Equation 2.8, we have,

βij = 0 ⇐⇒ i /∈ ΠGj .

69

If we rewrite Equation 4.1 in matrix form, it should be

X = BX + E, E ∼ N(0,Σ) (4.3)

where Σ = diag(σ2
1, ..., σ

2
p). Let data set generated from a continuous Bayesian network G

be X = (X1| . . . |Xp)n×p, and let Bj be the jth column of B. Then the log-likelihood for this

Gaussian model becomes,

`(B,Σ) =

p∑
j=1

[
−n

2
log(σ2

j)−
1

2σ2
j

‖Xj −XBj‖2

]
. (4.4)

4.2.2 Features and assumptions

The major challenge we wish to conquer in this chapter is the computational challenge for

massive size networks with thousands or even ten thousands of nodes. The PEF framework

should have the following features:

i. Fast learning of massive networks with thousands or even ten thousands of nodes.

ii. Works well on high-dimensional data.

iii. Do not assume a prior knowledge on ordering of nodes.

Remark 4. Our PEF framework is specifically designed for massive networks, so we recom-

mend researchers use this algorithm for large networks rather than small ones with less than

a few hundreds of nodes. This is because the way we formulate our algorithm might sacrifice

some accuracy for speed. When the network is too small the advantage of our algorithm in

speed will not be that obvious or necessary. So feature (i.) is not only a feature of our PEF

method but also an assumption. In addition, our main focus is on high-dimensional setting,

which is a very common scenario for massive networks.

There are two assumptions we need for the PEF method. We will discuss them in detail

in the remaining of this section.

70

Clustered network structure

This assumption is needed in the first P-step. As mentioned in Section 4.1, we use a clustering

algorithm to breakdown the full DAG into small disconnected sub-networks in the P-step.

An implicit assumption is that the full DAG has clustered structure where edges are denser

within clusters than between clusters.

N2

N3

N1

N4

N5

N6 N7

N8 N9 N10

N11 N12

N13

N14

N15

N16

N17 N18

(a) G1

N1N2

N3 N4

N5

N6 N7

N8

N9

N10 N11

N12

N13

N14

N15

N16

N17

(b) G2

Figure 4.2: Example for DAGs with and without clusters

As we can see, there are 3 clusters in Figure 4.2 (a), where C1 = {N1, N2, N3, N4, N5},

C2 = {N6, N7, N8, N9, N10, N11, N12}, and C3 = {N13, N14, N15, N16, N17, N18}. And we can

see C1 and C2 are connected while C3 is isolated from the first two clusters. We can break

down G1 into three clusters by cutting off the edge 4→ 8. On the other hand, if we look at

Figure 4.2 (b), G2 just has one big cluster. It does not make sense no matter how we partition

the DAG into more than one sub-network. And if we force the DAG into two sub-networks,

there might be some serious consequences when we run the estimation step. For example,

if we partition the DAG into two clusters C1 = {N1, N2, N3, N4, N5, N6, N7, N8, N9} and

C2 = {N10, N11, N12, N13, N14, N15, N16, N17, N18}. And if ignoring directions, in the second

E-step the graph we would recover is shown in Figure 4.3.

If we compare Figure 4.3 with Figure 4.2 (b), it is easy to see that we can recover the

71

N1N2

N3

N4

N5

N6

N7

N8

N9

(a) GC1

N10

N11

N12

N13

N14

N15

N16

N17

(b) GC2

Figure 4.3: Example for DAGs with and without clusters

true conditional dependency for cluster C1 where node {N2, N3, N4, N5, N6, N7, N8, N9} are

all connected to N1. However, without the hub node N1, G2 becomes a clique.

Faithfulness

Definition for faithfulness can be found in Chapter 1. With this assumption, d-separation and

conditional independence in the joint distribution coincides. This assumption is needed in

our fusion step, when we refine DAG structure using a sequence of conditional independence

tests. It may seem like that the faithfulness assumption can be quite restrictive, but Meek

(1995) has proved for Gaussian networks, with respect to Lebesgue measure, the set of

distributions that are unfaithful to a DAGG has measure 0. So our assumption of faithfulness

is reasonable here.

4.3 A Divide-and-Conquer Framework

In this section we propose a framework for learning massive size sparse Bayesian networks,

and all technical details discussed are specifically for observational Gaussian data. We de-

scribe the three steps: Partition, Estimation, Fusion in the following three subsections.

72

4.3.1 Partition

Assume we have a DAG G constructed with several disconnected or weakly connected sub-

networks, we want to break it into subgraphs using clustering techniques. Let Ci, i = 1, ..., k,

be the k clusters we get in the P-step, Si = |Ci| the size of the ith cluster, sw the number of

total edges within clusters, and sb the number of edges between different clusters. Alterna-

tively, we can think of sb as the number of edges we “cut-off” in the clustering process. And

those cut-off edges may be recovered in the third F-step of our algorithm. We wish to have

the following three desirable parameters in the clustering step,

- k as large as possible: The larger the k the faster the second E-step and the more

running time we can save.

- sb as small as possible: We want to breakdown the full DAG without too much damage

on the DAG structure. This will help our second step to recover the majority number

of edges.

- max(Si) as small as possible: Running time of the E-step will be dominated by the

largest cluster, so the more uniform the size of the clusters the more time we can save.

We propose a modified version of hierarchical clustering with average linkage that au-

tomatically chooses the number of clusters k. Generally, hierarchical clustering falls into

two categories: agglomerative method and divisive method. Suppose there are N nodes

Zi, i = 1, . . . , N to be clustered.

- Agglomerative method : It is also known as Agnes. It is a bottom-up method that starts

with N clusters where each cluster is a single node Zi. In every step, two most similar

clusters merges into a bigger cluster. The algorithm stops until every nodes merges

into one big cluster {Z1, . . . , ZN}.

- Divisive method : It is also known as Diana. It is a top-down method that starts with a

cluster with all nodes {Z1, . . . , ZN}. In each step, the most heterogeneous cluster will

73

be divided into two sub-clusters. The algorithm stops until there are N nodes where

each single node Zi is a cluster.

Both methods will return a tree with N levels, and divisive methods are like the inverse of

the agglomerative methods. The agglomerative method is more intuitive, distance between

two clusters is easy to calculate, and there are varieties of definition for distance among

clusters. On the other hand, for divisive method after selects out the most heterogeneous

cluster, there are 2n− 1 ways of splitting a cluster with n nodes. Therefore divisive methods

need other heuristics to split the cluster. R applications on the hierarchical clustering are

mainly agglomerative methods, hclust in package stats and agnes in package cluster are

two examples, they have some different implementations for the linkage functions. A divisive

method available in R is diana in package cluster, and there is only one implementation

available. In the partition step, we choose to use agglomerative clustering.

Our choice of distance

Let X and Y be two vectors in Rn, the most common distance between X and Y defined

for clustering algorithms is the Euclidean distance dE(X, Y) = ‖X − Y ‖2. If X, Y are

centered and scaled to have variance 1, dE(X, Y) =
√

2− 2rXY , where rXY = corr(X, Y).

It is obvious that if X and Y are perfectly positively correlated, dE(X, Y) is the smallest, 0.

And when they are perfectly negatively correlated, dE(X, Y) is the largest, 2. We can see

the Euclidean distance does not match our intuition for distance between nodes in Bayesian

networks. Two nodes should have the largest distance when their correlation is 0, and the

smallest distance when they are perfectly correlated. So |rXY | can be a measure of similarity

between X an Y . We define the distance between nodes of a Bayesian network as

dB(X, Y) = 1− |rXY |, (4.5)

where dB(X, Y) ∈ [0, 1].

Remark 5. With this choice of distance, the regular K-means algorithm is not suitable

our problem. There is a kernel K-means algorithm that allow users to define the similarity

74

matrix, but it is not proper in our case because generally the term “center” does not really

make sense for Bayesian networks. And like the regular K-means algorithm, the kernel K-

means algorithm requires observations in a cluster Ci be close to its center in the projected

space. For Bayesian networks, two nodes may not have very high correlation to be in one

cluster; on the other hand, the logic is more like “a friend of my friend should also be my

friend”. With a proper choice of linkage function for agglomerative method, hierarchical

clustering can achieve this property.

Our choice of the linkage function

There are various ways to define distance between two clusters. Some popular methods

are but not restricted to: single linkage, complete linkage, average linkage, centroid linkage,

Ward’s method. Among those, the first three methods allow users to define their own

dissimilarity matrix, and the clustering result relies largely on the user defined distance. Let

two clusters be CA and CB, and D(A,B) the distance between CA and CB. D(A,B) for the

first three methods are defined as follows:

- Single linkage. Ds(CA, CB) = min
X∈CA,Y ∈CB

d(X, Y).

- Complete linkage. Dc(CA, CB) = max
X∈CA,Y ∈CB

d(X, Y).

- Average linkage. Da(CA, CB) = 1
|CA||CB |

∑
X∈CA

∑
Y ∈CB

d(X, Y).

Single linkage is related to the minimum spanning tree (MST), where MST is a collection

of edges with the minimum total weight that connects all the nodes. Gower and Ross (1969)

showed that the single linkage cluster is obtained by removing edges from the MST from

the edge with the largest weight to the smallest. And as Hartigan (1981) pointed out, the

K-nearest neighbors is an extension of the single linkage method. Single linkage is famous

for its chaining effect, since for single linkage the merging logic is strictly local, clusters tends

to have very long chains. For Bayesian networks, single linkage excels in clustering DAGs

with disconnected clusters. But when clusters are weakly connected in a sense that there are

a few edges connecting different clusters, single linkage will not be able to detect them. In

75

my simulation, when clustering a DAG with disconnected clusters, agglomerative clustering

using single linkage always has adjusted rand index (ARI) close to 1. However, when I add

a few edges between clusters, single linkage tends to identify a few big clusters or even a

unimodal.

Complete linkage is the opposite of the single linkage. According to the definition of

complete linkage, it requires any two nodes in a cluster to have quite high absolute value

of correlation. When the signal-to-noise ratio is small and the chain in DAG is long, it is

almost an impossible requirement, the influence of the root diminishing as information pass

along and can hardly reach to the leaf.

Average linkage is our choice of the linkage function. It is in between of complete linkage

and single linkage, the merging technique is not strictly local but still it considers local

structure, so we can have more averaged sub-clusters (smaller sd(Si)). Compared to single

linkage, sb can be slightly larger for the average linkage but is acceptable.

A modified hierarchical clustering method

A natural question is, how should we choose the number of clusters k? Hartigan (1981)

suggests that it is only of interest to examine clusters with at least 5% of the number of

nodes p. He called them clusters containing a positive fraction. We will refer to clusters with

at least 5% nodes as positive fractions hereafter. We propose a method to automatically

choose k based on this suggestion.

Since only clusters with at least 0.05p nodes are of interest, there can be at most 20

clusters for a DAG. Let kmax be the maximum number of clusters, we know that kmax ≤ 20.

Let Ch be the set of clusters formed at the hth step of the agglomerative method, h =

0, 1, ..., p− 1. Therefore C0 = {{X1}, {X2}, ..., {Xp}} and Cp−1 = {X1, ..., Xp}. Let ki be the

number of positive fractions of Ci. We choose k using the following equation

k = min(kmax,max(ki)), i = 0, ..., p− 1. (4.6)

76

Figure 4.4: Example on choosing k and lk. This is an upper portion of the clutering tree.

Red clusters are clusters with more than 0.05p nodes, and the grey ones are small clusters.

The level lk is marked in the red box, and in this case k = 3.

Let lk be the highest level with k positive fractions,

lk = argmax
i=0,...,p−1

{i : ki = k}. (4.7)

Figure 4.4 is an example on how we choose k and lk.

Relabel clusters in Clk so that S1 ≥ S2... ≥ Sp−lk . Then the first k clusters are positive

fractions, and we assign the rest of the small clusters into the first k clusters in the following

way: We will keep merging the closest clusters, but if the closest clusters are two positive

fractions, where at least one cluster is not a positive fraction. An outline of our modified

algorithm is in Algorithm 3.

In Section 4.4, we will show detailed simulation results on the performance of this clus-

tering method.

77

Algorithm 3 Modified hierarchical clustering

1: Input dissimilarity matrix D to the hierarchical clustering algorithm.

2: Get the output tree structure TD.

3: Choose k by Equation (4.6), lk by Equation (4.7), and set C = Clk .

4: Relabel clusters in C so that S1 > S2 > ... > Sp−lk .

5: while |C| > k do

6: i, j = argmin
i,j:i<j and (i>k or j>k)

Ds(Ci, Cj).

7: Merge Cj into Ci.

8: end while

9: Return C = {C1, C2, ..., Ck}

Note: in Line 6, the distance we use is single linkage, this is mainly for the speed purpose.

4.3.2 Estimation

In the E-step we learn the structure of each sub-network individually. In this step we can

use any structure learning algorithm to estimate the sub-networks. We choose the CCDr

algorithm (Aragam and Zhou, 2015) in the R package sparsebn (Aragam et al, 2017b) as an

example in this chapter. There are two main reasons: 1) the CCDr algorithm has competitive

performance in accuracy for structure learning of large networks with high-dimensional data,

2) The way it is formulated and coded makes it much faster compared to many benchmark

algorithms like the MMHC algorithm and the PC algorithm. Figure 4.5 is a plot to compare

the running time of the CCDr algorithm, the PC algorithm and the MMHC algorithm, this

simulation is done by Aragam et al (2017b), for more details please refer to their paper.

According to their data, when p = 1090, n = 50, the CCDr algorithm is 17 times faster than

the PC algorithm and 52 times faster than the MMHC algorithm.

Note that since running time of most structure learning methods grows on the order of

ω(p), the total running time of learning the small networks in E-step will be much shorter

than estimating the full DAG as a whole. Furthermore, if we have multiple cores, we can

distribute the estimation step. Suppose in the partition step we have divided the full DAG

G into k sub-networks G1, . . .Gk, and the running time for Gi is ti. Running k sub-networks

78

C C C C C C C C C C

200 400 600 800 1000

0
20

40
60

80
10

0

p (number of nodes)

T
im

e
(s

)

P P P P
P

P
P

P

P
P

M M M
M

M
M

M

M

M

M

Figure 4.5: Time comparison of the CCDr algorithm, the MMHC algorithm and the PC

algorithm. C is for the CCDr algorithm, P is for the PC algorithm, M is for the MMHC

algorithm.

on k cores simultaneously will reduce time for the E-step to max(ti), i = 1, . . . , k. And the

running time of the E-step will be dominated by the largest sub-network. According to

our discussion in the previous subsection, if we only consider clusters with at least 5% of

the nodes, there will be at most 20 sub-networks, and computing resource with 20 cores is

reasonable nowadays. Therefore the E-step is where we can save the majority of time.

A review for the CCDr algorithm

The CCDr algorithm is a score-based algorithm for observational continuous data. It uses

the linear structural equation model in (4.1), and their method seek to find the optimizer of

79

the following problem,

fλ(B,Σ)
∆
= −`(B,Σ) + n

p∑
i=1

p∑
j=1

ρλ(|βij|), (4.8)

B̂, Σ̂ = argmin
GB is a DAG

fλ(B,Σ) (4.9)

where the penalty term ρλ is chosen as the minimax concave penalty (MCP) (Zhang et al,

2010).

Similar to our discrete CD algorithm, the CCDr algorithm output a DAG structure. It

uses a block-wise coordinate descent algorithm to optimize the scoring function, an outline

of the CCDr algorithm is in Algorithm 4.

Algorithm 4 CCDr algorithm

1: Input data matrix X , initialize B such that GB is acyclic.

2: for all pairs (i, j), where i 6= j do

3: if βij ⇐ 0 then

4: update βji.

5: else if βji ⇐ 0 then

6: update βij.

7: else

8: update βij and βji that leads to a smaller (4.8).

9: end if

10: end for

11: Repeat 2 to 10 until some stopping criterion.

4.3.3 Fusion

In this Fusion-step, we propose a method to fuse sub-networks from the second step. First,

we use a sequence of conditional independence tests to restrict the search space, and then

we use a score-based method to learn the DAG structure.

80

Conditional independence test

For Gaussian data, we can test conditional independence based on partial correlation (Baba

et al, 2004). Let Z be a vector of random variables (Z1, ..., Zn). Suppose (X, Y,Z) follows

a multivariate Gaussian distribution. Then X and Y are conditional independent given Z

if the partial correlation between X and Y given Z is 0.

The partial correlation between X and Y given Z, denoted by ρXY ·Z , can be obtained

by calculating the correlation of residuals after projecting X and Y onto the space spanned

by Z. Let RX and RY be the residuals from linear regression of X onto Z and Y onto Z,

ρXY ·Z = corr(RX , RY). (4.10)

To simplify the calculation, we do not need to calculate the residuals, but use precision

matrix instead. Let Σ be the covariance matrix of (X, Y,Z), and Ω = (ωij)(n+2)×(n+2) = Σ−1

be the precision matrix. Then the partial correlation can be written as

ρXY ·Z = − ω12√
ω11ω22

, (4.11)

and we have the following equivalence,

IP (X;Y |Z) ⇐⇒ ρXY ·Z = 0. (4.12)

Restrict the search space

Given the local Markov properties, we know that a node i is independent of all its non-

descendants given its parent set ΠGi . So, for two nodes i and j where i ≺ j in an ordering

@ compatible with G, then i is not a descendant of j, and therefore Xi and Xj should be

independent given ΠGj . Without knowing the topological ordering, if Xi and Xj are non-

adjacent then they are independent given the union of their parent sets ΠGi ∪ΠGj . In addition,

recall that Theorem 3 provides us a method to decide if an edge exists using conditional

independence tests. We can arrive at the following corollary:

Corollary 8. If (G, P) satisfies the faithfulness condition (Definition 8), there is no edge

between i and j if IP (Xi;Xj|ΠGi ∪ ΠGj).

81

In light of Corollary 8, we propose a way to produce a set of candidate edges (A) between

the sub-networks obtained in the E-step. Let G1, ...,Gk be the k disconnected sub-networks

estimated from the E-step, Vi the node set for Gi, and Zi the cluster label of node i. Suppose

i ∈ VZi
and j ∈ VZj

, where Zi 6= Zj and Zi, Zj = 1, ..., k, be two nodes from two distinct

sub-networks, it is sufficient to show that there is no edge between i, j if they are conditional

independent given the union of their parent sets:

IP (Xi;Xj|Π
GZi
i ∪ Π

GZj

j) =⇒ (i, j) /∈ A. (4.13)

In this way, we can tune the search space based on the sub-networks we got from the

E-step. Note that if we check the conditional independence between i, j for all possible pairs

between sub-networks, the number of precision matrices we need to calculate is on the order

of O(p2). To save some calculation, we approximate ρ
ij·Π

GZi
i ∪Π

GZj
j

by ρ̃ij = corr(R̃i, R̃j),

where R̃i is the residual from projecting Xi onto its parents Π
GZi
i in GZi

. Consequently,

we can get an approximated active set Ã = {(i, j) : |ρ̃|ij is significantly greater than 0}.

After getting Ã we can further tune the search space to get rid of more false positives.

Algorithm 5 Line 8-Line 15 describes a recursive way to obtain a more refined candidate

edge set A between sub-networks. We propose to go through each node pair (i, j) in Ã and

run the conditional independence test given the union of all their possible parents, Pij and

finally get an active set A. In tth iteration, P
(t)
ij is defined as follow,

P
(t)
ij = {k : (k, i) or (k, j) ∈ A(t)}. (4.14)

Note that node pair (i, j) does not imply direction, and (p, i) ∈ A means (p, i) or (i, p) ∈ A.

The method to tune the search space is given in Algorithm 5.

Remark 6. The way we add edges to active set A is greedy and will be affected by the order

we go through Ã. In our implementation we sort the node pairs in Ã so that we can first go

through node pairs with smaller p-value in test if ρ̃ij is 0. In this way, edges that we have

more confidence in have higher priority. Similarly, after getting A, we also sort it according

to the p-value obtained in the test for (4.13).

82

Algorithm 5 Tune the search space

1: Input data matrix X and G1, ...,Gk. Set Ã = ∅.

2: for all pairs i ∈ VZi
, j ∈ VZj

, where Zi 6= Zj and Zi, Zj = 1, ...k do

3: if |ρ̃ij| is not significantly greater than 0 then

4: add (i, j) to Ã.

5: end if

6: end for

7: Set A(0) = ∅.

8: for all (i, j)t ∈ Ã, t = 1, ..., T do

9: Let Z = Π
GZi
i ∪ Π

GZj

j ∪ P (t−1)
ij , where P t−1

ij is defined in (4.14)

10: if not IP (Xi;Xj|Z) then

11: A(t) = A(t−1) ∪ (i, j)t.

12: else

13: A(t) = A(t−1).

14: end if

15: end for

16: Return A = A(T).

RIC for model selection

For every candidate edge in A, we calculate log-likelihood to decide the direction and use

regularization to enforce sparsity. In low dimensional setting BIC is a popular method, and

it is defined in (4.15)

BIC = −2`+ πλ (4.15)

where π is the number of parameters, λ = log(n) and n is the number of observations. In

the high-dimensional setting, BIC defined in (4.15) will introduce too many false positive

edges, so instead we use RIC (Foster and George, 1994) where λ = 2 log(p) to achieve enough

penalty.

83

For (i, j) ∈ A, we need to compare three models,
M0 : no edge between i and j

M1 : i is parent of j

M2 : j is parent of i.

(4.16)

Consider two linear models. Let XZ be the vector of variables for Z ⊂ V and βZi be the

vector of coefficients for Z onto i. So we have

Xi = βjiXj + βT{ΠGi \j}i
X{ΠGi \j} + εi (4.17)

Xj = βijXi + βT{ΠGj \i}j
X{ΠGj \i} + εj (4.18)

M0 is equivalent to βij = βji = 0, M1 equivalent to βij 6= 0 and βji = 0, M2 equivalent to

βij = 0 and βji 6= 0. Note that for either M1 or M2 (there exist an edge between i, j), if we

run the linear regression, both βij and βji will be significant. Let RIC(M) be the RIC score

for model M , we only add an edge between i, j if

max (RIC(M1),RIC(M2)) < RIC(M0). (4.19)

We can enforce acyclicity similar to the CD algorithm and the CCDr algorithm.

Example in Figure 4.3 shows that partition the full DAG into sub-networks might not

only introduce false negative but also false positives in the estimation step. In Figure 4.3

(b), without the hub node N1 all the disconnected nodes in GC2 form a clique. By cutting off

some of the edges in the P-step, we have changed the structure of sub-networks, and therefore

structure learning algorithm in the E-step might not recover the true graph structure. To fix

this problem, after we go through the active set A we will revisit all edges learned from the E-

step and correct the DAG structure based on new edges added between sub-netwroks. Define

G be the DAG consisting of disconnected sub-DAGs learned from the E-step and SK(G) the

undirected edge set of G. We propose the following method to add edges between sub-

networks and fix sub-DAGs learned from the E-step: After we have obtained candidate edge

set A between sub-networks, we attache all edges in G to the end of A. For all node pairs

(i, j) in A, we first perform a conditional independence test IP (Xi, Xj|ΠGi ∪ ΠGj) to further

84

tune the search space. Then, we check the RIC of M1, M2, and M0, for those node pairs

satisfying Equation 4.19 we use the heuristic for our discrete CD algorithm in Algorithm 1

to enforce acyclicity. If an edge from i to j induces a cycle, we will add an edge j → i, and

if none of the direction induces a cycle we choose the model with a smaller RIC. The full

algorithm for the fusion step is shown in Algorithm 6.

This final fusion step is a hybrid method where we use conditional independence tests

to restrict the search space and RIC to learn the DAG structure. The framework proposed

in Algorithm 6 shares similar logic with the CD algorithm in Chapter 2 and uses the same

heuristic to enforce acyclicity. A major difference here is that the CD algorithm searches in

the parameter space while in the fusion step we search in the DAG space.

4.4 Applications to Real Networks

In this section, we test our PEF method on simulated Gaussian observational data sets

from real networks and compare its performance with the CCDr algorithm. All network

structures are downloaded from repository of the R package bnlearn. The networks used

in this section is: PATHFINDER, ANDES, DIABETES, PIGS, LINK, and the full network

of MUNIN, with the number of nodes p = (135, 223, 413, 441, 724, 1041), and the number

of edges ssub = (195, 338, 602, 592, 1125, 1397). In order to generate massive networks with

clustered structure we replicate the networks for k times and randomly add some edges

between clusters. To simplify our future references, let Net ∈ { PATHFINDER, ANDES,

DIABETES, PIGS, LINK, MUNIN}, define Net(k, α) as the network fused by k replicates

of Net, and with αssub edges added between sub-networks, α ≥ 0 is some constant. And

finally let Net(k) refer to the collection of networks fused by k replicates of Net with some

edges added between clusters. We have three network generation schemes:

i. Net ∈ {PATHFINDER, ANDES, DIABETES, PIGS, LINK}: For the first four types

of networks, we replicate Net for k = 5 times, and get a network with 5 identical

disconnected subgraphs. Define sw to be the number of within cluster edges, sw =

5ssub. Then, we randomly add sb = αsw edges between sub-networks, where α =

85

0, 0.01, 0.02, 0.05, 0.1. The network LINK is very large, and we only test it for the case

where there is no between cluster edges, α = 0. So for Net = LINK, only LINK(5, 0) is

generated. The number of true edges for each network is s0 = sw + sb. In total, there

are 4× 5 + 1 = 21 networks generated for this scheme.

ii. Mixed network: We fuse networks PATHFINDER, ANDES, DIABETES, PIGS, LINK

to get a DAG with k = 5 different subgraphs. Similar to scheme (i.), we randomly

add sb = αsw edges between clusters, α = 0, 0.01, 0.02, 0.05, 0.1. In total, there are 5

networks generated for this scheme. We will refer to these networks as Mix(5, α) for it

is constructed with 5 sub-networks.

iii. MUNIN: It is the largest network available on the bnlearn repository, we replicate

the network for k = (1, 2, 3, 4, 5, 6, 7, 8, 9) times without adding any edges between

sub-networks. So the number of true edges for each DAG is s0 = sw = kssub. In total,

9 networks are generated by this scheme.

Data generation

Each data set was generated according to the linear structural equation model in (4.2). We

sampled βij uniformly from [−1,−0.5] ∪ [0.5, 1] if (i, j) ∈ E and set βij = 0 otherwise. The

error variance σ2
i , i = 1, ..., p were chosen so that all data columns had the same standard

deviation.

The number of observations for all simulated data sets were set to be n = 1000. For all

networks generated in scheme (i.) and (ii.), we generated 10 data sets. And for each network

generated by scheme (iii.), we generated one data set. We use them to test the limit of the

CCDr algorithm, so only one data set was generated for each DAG.

4.4.1 Comparison with the CCDr algorithm

Since in our implementation, the algorithm we use for the E-step is the CCDr algorithm, we

show in this section the comparison of performance between the CCDr algorithm and the

86

PEF method on massive networks. We will first show the improvement in speed of our PEF

framework over the CCDr algorithm on the full DAGs. Then we will show that the PEF

framework actually improves the accuracy of the CCDr algorithm. For all the experiments,

we ran the CCDr algorithm provided in the R package sparsebn with default setting. Like

our discrete CD algorithm, the CCDr algorithm outputs a solution path, and we always

choose the DAG where the number of predicted edges is the closest to the number of edges

in the true graph.

Timing comparison

Table 4.1 and Table 4.2 show the improvement in time of our PEF method over the CCDr

algorithm. Table 4.1 reports how the two methods scale when the size of the sub-networks

increases, networks tested are Net(5, 0) where Net ∈ { PATHFINDER, ANDES, DIABETES,

LINK, MUNIN}. While Table 4.2 reports how the two methods scale when the number of

sub-networks increases, networks tested are MUNIN(k, 0) where k = 1, ..., 8. Both tables

report the total running time of the CCDr algorithm and the PEF method (T) as well as the

running time for each step of the PEF method (P, E, F). Figure 4.6 and Figure 4.7 are plots

for the log10 of total time reported in the tables. For the second E-step in our PEF method,

we report the time if we parallel the estimation of multiple sub-networks. For the running

time without parallelization, please refer to the supplemental material. Finally, Figure 4.8

is a plot of log10

(
TC
TP

)
versus p for all networks generated, where TC is the running time for

the CCDr algorithm and TP is the running time for our PEF method.

From Table 4.1 we see that when the number of sub-networks stayed the same and the

size of the sub-networks became larger, the running time of the PEF method increased mono-

tonically. The scalability of the second E-step depends on the CCDr algorithm. Therefore

we expect the running time of the second E-step of our PEF method to increase as the size

of the sub-networks increases on the same scale of the CCDr algorithm. As we can see for

MUNIN(5, 0), the PEF method is 26 times faster than the CCDr algorithm.

In Table 4.2, we can see that after k = 4 the running time of the PEF method did not

87

Table 4.1: Timing comparison in munites for networks with 5 identical sub-networks.

CCDr PEF

Network p T T P E F

PATHFINDER 545 1.13 0.17 0.01 0.04 0.12

ANDES 1115 5.26 0.35 0.02 0.09 0.24

DIABETES 2065 38.32 1.08 0.06 0.39 0.63

LINK 3620 86.22 3.17 0.17 1.19 1.81

MUNIN 5205 210.27 7.97 0.37 3.91 3.69

Note: p is the number of nodes, T is the total running time, P is the running time for the

P-step, E is the running time for the E-step, F is the running time for the F-step.

increase much. The number of groups our PEF method identified (k̂) is shown in the last

column of Table 4.2. We see that the PEF method identified the correct number of sub-

networks for k ≥ 4, and therefore the running time of the second E-step stayed comparable

to the running time for a single MUNIN network with k = 1. And since we did not add

any between cluster edges, the running time of the Fusion-step did not increase much. This

example shows the advantage of our PEF method when the full DAG is constructed with

multiple sub-networks. From the timing data in Table 4.2, we can see that when k = 4 the

PEF method is 11 times faster than the PEF method, and when the number of sub-networks

increases to k = 8, the PEF method is 94 times faster than the CCDr algorithm. When k

increases to 9, the CCDr algorithm took more than 24 hours to run and we stopped it before

it finished, so there is no data for the CCDr algorithm when k ≥ 9. Our PEF method, on

the other hand, took only 9.25 minutes to run MUNIN(9, 0).

In Figure 4.8, we can see that as p increased, the log-ratio of running time of the two

methods increased almost linearly, which means our PEF method is about 10cp times faster

than the CCDr algorithm, where c is some positive constant. And for the largest network,

our PEF method reached two orders of magnitude improvement.

88

C

C

C

C

C

1000 2000 3000 4000 5000

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

p

lo
g
−

ti
m

e
(m

in
)

P

P

P

P

P

1000 2000 3000 4000 5000

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 4.6: log10 time for networks with 5 identical sub-networks. The line with -C- is for the

CCDr algorithm, and the line with -P- is for the PEF method. From left to right, networks

are formed with 5 replicates of PATHFINDER (p = 109), ANDES (p = 223), DIABETES

(p = 413), LINK (p = 724), MUNIN (p = 1041).

Accuracy comparison

In this section, we show the comparison of accuracy between our PEF method and the CCDr

algorithm in Table 4.3 - Table 4.5. In each table, we report the summary of accuracy for

both structure learning methods. Since we were using pure observational data, metrics for

accuracy are defined the same way as in Chapter 2, Section 2.4.3 for discrete observational

data, taking v-structure and compelled edges into account. We can see that, for all cases,

the SHD of the PEF method is much smaller than the CCDr algorithm, and the JI is higher

89

Table 4.2: Timing comparison in minutes for network with increasing number of sub-netwroks

(MUNIN), .

CCDr PEF

k p T T P E F k̂

1 1041 3.26 1.23 0.02 1.01 0.20 6

2 2082 29.97 4.16 0.07 2.81 1.28 3

3 3123 94.98 5.63 0.17 3.43 2.03 4

4 4164 109.57 9.70 0.24 4.15 5.31 4

5 5205 210.27 7.97 0.37 3.91 3.69 5

6 6246 330.03 8.34 0.56 3.23 4.55 6

7 7287 587.18 10.95 0.75 3.11 7.09 7

8 8328 793.62 8.42 0.99 3.63 3.80 8

Note: k is the number of sub-networks, and other metrics are the same with Table 4.1.

than the CCDr algorithm.

For PATHFINDER(5) the number of observations (n = 1000) is greater than the number

of nodes (p = 545), the advantage of our PEF method is not as obvious as the rest of the big

networks. The number of expected edges of our PEF method is comparable to the CCDr

algorithm, but the reversed edges and the false positive edges are much fewer than the CCDr

algorithm. Overall, the SHD of the estimated DAGs by our PEF method is over 15% lower

and the JI is over 15% higher than the CCDr algorithm.

For all other networks where p > n, the number of expected edges of our PEF method

increased more than 15% compared to the CCDr algorithm in most of the cases, while the

reversed edges and the false positives decreased more than 35% . The overall metric SHD

decreased more than 20% and the JI increased over 30% for all cases.

The accuracy of the PEF method was not affected much by the number of edges added

between clusters. This is because when we fuse all the sub-networks we also correct the

sub-DAG structures obtained in the E-step. Therefore, even if we cut off some edges in the

90

C

C

C C

C
C

C
C

2000 4000 6000 8000

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

p

lo
g
−

ti
m

e
(m

in
)

P

P
P

P
P P

P
P

2000 4000 6000 8000

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Figure 4.7: log10 time for networks with increasing number of sub-networks. The line with

-C- is for the CCDr algorithm, and the line with -P- is for the PEF method. From left to

right, each network is k replicates of MUNINs, where k = 1, 2, 3, 4, 5, 6, 7, 8.

P-step, which may alter the sub-DAG structures, we can still correct sub-networks in the

F-step 4.3.3. Our PEF method has some tolerance for the errors in the partition step, so

even if the full DAG does not have a clear cluster structure and many edges may be cut in

the P-step, our PEF method can still recover a reasonable amount of these edges. We will

show in the next section how our clustering algorithm works with more detailed data.

Note that performance of the PEF method is related to the structure learning algorithm

plugged-in in the second E-step. In the final F-step, we can only remove within-subgraph

edges, so the missing edges within sub-networks introduced in the E-step will never be

added in the fusion step. In addition, the learned subgraph structure may affect our choice

91

2000 4000 6000 8000

0
.5

1
.0

1
.5

2
.0

p

lo
g

−
ra

ti
o

Figure 4.8: log10

(
TC
TP

)
for all networks. Dots in blue are for networks generated by scheme

(i.) and (ii.); Dots in black are for networks generated by scheme (iii.)

for the active set A and the final accuracy. Finally, we also tried to compare the timing

and accuracy performance with some other benchmark structure learning algorithms like

the MMHC algorithm and the PC algorithm. However, for both algorithms, even with the

smallest network PATHFINDER(5, 0) where n = 1000 no algorithm finished running within

a day and I had to stop the algorithms before they output anything.

4.4.2 Performance of the clustering step

Table 4.6 reports the number of estimated clusters k̂, the number of edges cut off in the first

P-step ŝb and the size of the largest sub-networks (Smax) as well as the smallest sub-networks

(Smin). We focus on the behavior of the clustering step on different networks. All networks

studied in this section are constructed with 5 sub-networks.

Recall the three goals for the clustering algorithm: 1) large k̂, 2) small ŝb, 3) small

max(Si), i = 1, ..., k. In our implementation, we set kmax = 20 which is the maximum number

92

of clusters we can get when the positive fraction is defined to have at least 5% nodes of V . And

since for all networks we fuse 5 sub-networks, the PEF method is expected to find at least 5

clusters when the number of between cluster edges added is small. Among all the networks in

Table 4.6, only for PATHFINDER(5) our partition step detected 5 clusters for all sb, and the

sizes of the sub-networks were the most even. The sub-network PATHFINDER looks more

like the star shaped example in Figure 4.2 (b). It has a hub node directly connected to most

of the other nodes. Therefore, a clustering algorithm is unlikely to partition PATHFINDER

into multiple sub-networks. As for ANDES(5), the partition step identified the most number

of clusters. It appears that the graph of ANDES has two to three blocks.

Having larger k̂ means the sub-networks are smaller and the more time we can save in

the second E-step. On the other hand, a larger k̂ also means more edges are cut off and the

structure learned in the E-step could be less accurate. When adding more edges between

sub-networks, ŝb became larger: when sb = 0.1sw the number of edges cut off (ŝb) is around

twice the number of edges added between clusters (sb), that is 0.2s0.

To sum up, our partition step does not aim to find the correct clusters, but to find

a reasonable way to partition the nodes to speed up our algorithm without losing much

accuracy. And our partition Algorithm 3 works fine for this purpose.

Remark 7. We did not use adjusted rand index (ARI) as a metric to assess the partition

step for the following reasons: 1) We are not sure how many blocks are there in each

Net ∈ {PATHFINDER, ANDES, DIABETES, PIGS, LINK, MUNIN}. And after adding

between sub-network edges, there is no clear block structure. 2) As long as the number

of edges cut in the clustering step is much smaller than the number of edges within sub-

networks, we consider the clustering step to work well. 3) We would prefer to partition a

cluster into smaller clusters as long as it can improve the speed and we are able to recover

majority of the cut-off edges in the last F-step.

93

4.4.3 Recovery rate of the fusion step

In this section, we compare the final estimated DAG obtained from our full PEF method

with the DAG estimated from the first two steps, the partition step and the estimation

step, called the PE method. Table 4.7-4.9 report the comparison of the PEF method and

the PE method. The row in method PE is the summary for this two-step method. The

row in method PEF reports the percentage increase for each metric. We can see from the

simulation results that the fusion step always improves the structure of an estimated DAG

with increased E, JI and decreased R, FP, SHD.

Table 4.6 shows that the number of edges cut-off (ŝb) increased as we added more between

cluster edges (sb). Correspondingly, Table 4.7-4.9 show that the number of edges predicted by

the PE method decreased as sb changed from 0 to 0.1sw. Therefore the number of expected

edges from the first two steps decreased as s0 of the full DAG increased. Consequently, the

number of edges we expect to recover in the fusion step increased. From the simulation

results we can see that as sb increased, the fusion step indeed recovered increasing number

of expected edges. The number of expected edges recovered in the fusion step can reach

60% of the number of expected edges recovered in the first two steps. This demonstrates the

critical role of the fusion step.

In addition, we see that our fusion Algorithm 6 can not only recover expected edges, it

is also able to remove reversed and false positive edges. The percentage decrease in reversed

edges stays roughly the same when we increase sb while the percentage decrease in false

positives becomes smaller. For all cases, the F-step reduces 15% to 40% FPs and 15% to

55% Rs, which substantially improves the structure learning accuracy.

All these improvements in accuracy demonstrate that our fusion Algorithm 6 works well

on the simulation data. Since it may recover more expected edges when we cut off more

edges in the partition step, our fusion step is quite flexible with the output of the first two

steps and it may handle networks with a moderate number of between subgraph edges.

94

4.4.4 Influence of the number of clusters k

In all our previous experiments we did not set any limit on the number of clusters we might

get, kmax. In this subsection we will set kmax = 5 and this setting will force the partition step

to partition the full DAG into at most 5 sub-networks. In this way, we will in general obtain

fewer clusters in this subsection’s results, and we can check how the number of clusters affects

the performance of our PEF method.

The summaries of accuracy for the PEF method are reported in Table 4.10-Table 4.11.

Note that we exclude results for PATHFINDER(5) because the number of clusters identified

when kmax = 20 is the same when we set kmax = 5. Comparing simulation results in this

section with Table 4.7-4.9 in Section 4.4.3, the accuracy after the first two steps tends to

be higher if we limit kmax = 5, especially for ANDES(5) and Mix(5). This is because when

we limit the number of clusters, less edges will be cut off in the partition step, which will

lead to a better accuracy in the first two steps. Meanwhile, by comparing our simulation

results with Table 4.3-4.5 in Section 4.4.1, we can see that the accuracy of our PEF method

is comparable between the two choices of kmax.

The summary of running time when we set kmax = 5 is reported in Table 4.12. Compared

to the results in Table 4.13-4.15, we can see that the PEF method is faster when kmax = 20.

The E-step is faster when there are more sub-networks, as the largest sub-network tends to

be smaller.

From the simulation results in this section, we see that the number of sub-networks k̂

chosen in the partition step does not affect the accuracy of our PEF method, and having more

sub-networks can in fact speed up the PEF method. This result again shows the usefulness

of the fusion step, and it also suggests that our clustering algorithm does partition the full

DAG into a reasonable number of sub-networks.

95

4.5 Discussions

In this chapter we developed a three step divide-and-conquer framework for massive networks

constructed with some weakly connected sub-networks. We focused on the high-dimensional

observational Gaussian data, and implemented the PEF method in R and Rcpp. Our sim-

ulation results suggest that our modified hierarchical clustering can partition the DAG into

some reasonable size subgraphs without cutting off too many edges. In addition, our fusion

step can correct and fix the DAG structure damaged by partitioning the full network, so the

overall accuracy of the PEF method is comparable or even better than the structure learning

algorithm used in the estimation step. Finally, our PEF method runs all the simulated data

set within 10 minutes while the CCDr algorithm run more than 24 hours for large network.

There are some possible generalizations for this PEF framework. The algorithm we

currently plugged in produces a DAG. There are some other efficient structure learning algo-

rithms that produce a CPDAG like the PC algorithm and the GES algorithm (Chickering,

2002). We describe in the remaining of this chapter our proposal to modify the fusion step

when the network returned in the E-step is a CPDAG, or a skeleton.

E-step returns k CPDAGs

In the fusion step when we first tune the search space, we regress Xi onto its parent set

ΠGi , where ΠGi is well defined for a DAG. For algorithms that return a CPDAG like the PC

algorithm, we can define neighbors of a node i as Ni = {j : j → i ∈ E or (i, j) ∈ E}, where

E is the edge set of the CPDAG output from the first two steps, i → j is a directed edge,

and (i, j) means an undirected edge between i, j. For this case, we can regress Xi onto Ni.

After we get A, Algorithm 6 go through each node pair (i, j) ∈ A to decide if an edge

exists and also the direction. Recall that in order to enforce sparsity, the direction of an edge

partially depends on the current DAG structure, therefore if the output of the estimation

step is a CPDAG we can treat neighbors as parents in RIC calculation in Algorithm 6. So

we can still estimate a DAG if the estimation step outputs CPDAGs. In addition, we may

96

revise our fusion step to also output a CPDAG, but that will require more investigation.

E-step returns k skeletons

If it is the skeleton that we get from the second E-step, when we tune the search space we

can regress each node i onto all its neighbors nb(i) = {x : (x, i) ∈ E}, that is all its possible

parent set.

Let Ei be the undirected edge set for all subgraphs from the second step, and define +

the operator to concatenate two sets: {a1, ..., al} + {b1..., bh} = {a1, ..., al, b1, ..., bh}. Then

after we get the active set A, we can combine all Ei, i = 1, ..., k and A by appending all Ei

ahead of A: A = E1 + ...+Ek+A so that when we go though the active set all the undirected

edges found within clusters from our estimation step have priority.

All these generalization will be in our future work so that this PEF framework can work

with more structure learning algorithms. Also, there are certain limitations of our current

design and implementation of the PEF method. First of all, in the partition step, we need to

calculate the dissimilarity matrix, and when the number of nodes becomes really large, the

machine might run out of memory. To solve this problem we might use subsample clustering

(Marchetti and Zhou, 2016). For the fusion step, our current implementation takes as input

the correlation matrix of the data columns. Again when the number of nodes is too big

and the machine runs out of memory to store the correlation matrix, we can implement the

algorithm by taking as input the data matrix and calculate correlations whenever needed.

4.6 Supplemental Materials

We report timing data for each network in Table 4.13-4.15, the row for PEF is obtained

assuming we have enough cores and paralleling the E-step. And the PEF* row is for the

case when we run the E-step sequentially.

97

Algorithm 6 Fuse all sub-networks

1: Input data matrix X and G1, ...,Gk. Run Algorithm 5 to get active edge set A.

2: Initialize G be the DAG fused by k distinct sub-networks Gk.

3: Attache (i, j) ∈ SK(G) to the end of A.

4: for all (i, j) ∈ A do

5: if i, j are connected in G then

6: Remove the edge from G.

7: end if

8: if IP (Xi;Xj|ΠGi ∪ ΠGj) then

9: Remove (i, j) from A.

10: else

11: Calculate RICmax = max (RIC(M1),RIC(M2)).

12: if RICmax < RIC(M0) then

13: if Adding edge i→ j induces a cycle then

14: βij ⇐ 0, add j → i to G.

15: else if Adding edge j → i induces a cycle then

16: βji ⇐ 0, add i→ j to G.

17: else

18: Choose the direction that leads to a smaller RIC.

19: end if

20: end if

21: end if

22: end for

23: Repeat 4 to 22 until structure of G does not change and return G.

98

Table 4.3: Comparison between the CCDr algorithm and the PEF method

PATHFINDER(5), p = 545

(s0, sb) Method P E R FP SHD JI

(975, 0) CCDr 948.8 269.6 170.8 508.4 1213.8 0.164

PEF 717.4 275.6 136.0 305.8 1005.2 0.196

(985, 10) CCDr 963.5 303.5 163.3 496.7 1178.2 0.186

PEF 734.1 302.0 135.2 296.9 979.9 0.215

(995, 20) CCDr 972.8 285.8 161.9 525.1 1234.3 0.171

PEF 728.8 288.4 132.1 308.3 1014.9 0.203

(1024, 49) CCDr 1030.2 365.0 161.8 503.4 1162.4 0.216

PEF 766.6 364.2 128.2 274.2 934.0 0.256

(1073, 98) CCDr 1090.3 376.5 169.1 544.7 1241.2 0.211

PEF 797.7 374.7 126.7 296.3 994.6 0.251

ANDES(5), p = 1115

(s0, sb) Method P E R FP SHD JI

(1690, 0) CCDr 1586.0 931.4 447.0 207.6 966.2 0.397

PEF 1517.8 1164.5 222.9 130.4 655.9 0.570

(1707, 17) CCDr 1616.1 961.8 433.4 220.9 966.1 0.408

PEF 1542.3 1193.7 213.5 135.1 648.4 0.582

(1724, 34) CCDr 1615.5 973.9 434.3 207.3 957.4 0.412

PEF 1561.7 1210.8 212.9 138.0 651.2 0.584

(1775, 85) CCDr 1709.8 1002.9 455.0 251.9 1024.0 0.404

PEF 1635.6 1253.4 218.8 163.4 685.0 0.582

(1859, 169) CCDr 1721.8 1051.6 452.1 218.1 1025.5 0.416

PEF 1693.4 1349.8 192.0 151.6 660.8 0.613

99

Table 4.4: Comparison between the CCDr algorithm and the PEF method

DIABETES(5), p = 2065

(s0, sb) Method P E R FP SHD JI

(3010, 0) CCDr 3166.3 1327.3 1067.9 771.1 2453.8 0.274

PEF 2677.5 1530.2 759.0 388.3 1868.1 0.368

(3041, 31) CCDr 3210.8 1347.8 1074.7 788.3 2481.5 0.275

PEF 2712.9 1545.2 761.5 406.2 1902.0 0.367

(3071, 61) CCDr 3235.8 1369.9 1071.1 794.8 2495.9 0.278

PEF 2755.2 1595.9 746.8 412.5 1887.6 0.377

(3161, 151) CCDr 3353.6 1470.4 1052.5 830.7 2521.3 0.292

PEF 2837.8 1694.4 715.9 427.5 1894.1 0.394

(3311, 301) CCDr 3354.7 1560.1 1033.2 761.4 2512.3 0.306

PEF 3004.0 1885.7 681.5 436.8 1862.1 0.426

PIGS(5), p = 2205

(s0, sb) Method P E R FP SHD JI

(2960, 0) CCDr 2990.2 1609.9 802.2 578.1 1928.2 0.371

PEF 2635.6 1825.2 536.6 273.8 1408.6 0.484

(2990, 30) CCDr 3029.9 1623.9 810.8 595.2 1961.3 0.369

PEF 2696.7 1866.0 536.7 294.0 1418.0 0.488

(3020, 60) CCDr 3050.5 1643.4 818.6 588.5 1965.1 0.371

PEF 2719.2 1891.9 533.2 294.1 1422.2 0.492

(3108, 148) CCDr 3139.3 1741.2 789.7 608.4 1975.2 0.386

PEF 2812.0 2010.8 497.2 304.0 1401.2 0.515

(3256, 296) CCDr 3262.5 1874.0 800.8 587.7 1969.7 0.404

PEF 2996.1 2183.2 483.2 329.7 1402.5 0.537

100

Table 4.5: Comparison between the CCDr algorithm and the PEF method

Mix(5), p = 1910

(s0, sb) Method P E R FP SHD JI

(2852, 0) CCDr 2855.4 1415.2 760.3 679.9 2116.7 0.330

PEF 2523.7 1630.0 518.9 374.8 1596.8 0.436

(2881, 29) CCDr 2803.2 1393.8 746.5 662.9 2150.1 0.325

PEF 2537.9 1633.9 498.9 405.1 1652.2 0.432

(2910, 58) CCDr 2913.5 1427.4 773.4 712.7 2195.3 0.325

PEF 2579.5 1673.3 495.3 410.9 1647.6 0.439

(2995, 143) CCDr 2964.0 1510.4 750.2 703.4 2188.0 0.340

PEF 2684.5 1784.4 475.4 424.7 1635.3 0.458

(3138, 286) CCDr 3058.8 1595.7 785.6 677.5 2219.8 0.347

PEF 2851.5 1933.6 487.0 430.9 1635.3 0.477

101

Table 4.6: Partition step summary

Network (s0, sb) k̂ ŝb Smax Smin

PATHFINDER(5) (975, 0) 5.0 3.4 110.1 108.2

(985, 10) 5.0 19.5 111.8 106.7

(995, 20) 5.0 33.7 111.4 106.6

(1024, 49) 5.0 78.9 113.8 104.1

(1073, 98) 5.0 157.2 116.6 102.1

ANDES(5) (1690, 0) 9.5 135.8 178.0 75.5

(1707, 17) 9.2 155.3 196.6 62.9

(1724, 34) 9.3 190.1 193.2 70.0

(1775, 85) 9.1 275.5 200.3 67.7

(1859, 169) 8.4 370.9 216.2 65.6

DIABETES(5) (3010, 0) 8.1 113.9 418.9 120.3

(3041, 31) 8.2 186.9 416.9 124.4

(3071, 61) 7.9 230.6 420.8 123.2

(3161, 151) 7.7 382.7 449.5 116.6

(3311, 301) 8.2 621.2 420.6 124.1

PIGS(5) (2960, 0) 5.8 84.6 472.8 242.3

(2990, 30) 5.7 133.4 489.8 235.1

(3020, 60) 5.5 173.9 585.3 228.4

(3108, 148) 5.4 307.2 497.0 288.6

(3256, 296) 6.2 518.7 496.3 222.2

Mix(5) (2852, 0) 8.6 195.9 391.5 115.0

(2881, 29) 8.4 258.8 455.6 113.7

(2910, 58) 7.9 288.3 461.3 123.9

(2995, 143) 7.7 428.9 453.4 119.8

(3138, 286) 7.2 550.4 598.5 118.7

102

Table 4.7: Comparison between the PEF method and the PE method

PATHFINDER(5), p = 545

(s0, sb) Method P E R FP SHD JI

(975, 0) PE 962.4 270.0 171.9 520.5 1225.5 0.163

PEF(%) -25 2 -21 -41 -18 20

(985, 10) PE 966.2 296.1 164.2 505.9 1194.8 0.180

PEF(%) -24 2 -18 -41 -18 19

(995, 20) PE 958.9 269.4 163.1 526.4 1252.0 0.161

PEF(%) -24- 7 -19 -41 -19 26

(1024, 49) PE 947.1 317.2 155.1 474.8 1181.6 0.192

PEF(%) -19 15 -17 -42 -21 33

(1073, 98) PE 915.6 286.8 149.7 479.1 1265.3 0.169

PEF(%) -13 31 -15 -38 -21 49

ANDES(5), p = 1115

(s0, sb) Method P E R FP SHD JI

(1690, 0) PE 1522.5 858.1 444.0 220.4 1052.3 0.365

PEF(%) 0 36 -50 -41 -38 56

(1707, 17) PE 1530.8 876.6 428.4 225.8 1056.2 0.372

PEF(%) 1 36 -50 -40 -39 56

(1724, 34) PE 1519.4 857.4 434.7 227.3 1093.9 0.359

PEF(%) 3 41 -51 -39 -40 63

(1775, 85) PE 1485.8 827.9 433.9 224.0 1171.1 0.340

PEF(%) 10 51 -50 -27 -42 71

(1859, 169) PE 1468.4 822.0 429.9 216.5 1253.5 0.328

PEF(%) 15 64 -55 -30 -47 87

103

Table 4.8: Comparison between the PEF method and the PE method

DIABETES(5), p = 2065

(s0, sb) Method P E R FP SHD JI

(3010, 0) PE 2919.1 1243.1 1008.1 667.9 2434.8 0.265

PEF(%) -8 23 -25 -42 -23 39

(3041, 31) PE 2838.7 1213.3 996.1 629.3 2457.0 0.260

PEF(%) -4 27 -24 -35 -23 41

(3071, 61) PE 2848.9 1221.4 986.5 641.0 2490.6 0.260

PEF(%) -3 31 -24 -36 -24 45

(3161, 151) PE 2726.5 1206.2 936.1 584.2 2539.0 0.258

PEF(%) 4 40 -24 -27 -25 53

(3311, 301) PE 2596.2 1172.7 911.2 512.3 2650.6 0.248

PEF(%) 16 61 -25 -15 -30 72

PIGS(5), p = 2205

(s0, sb) Method P E R FP SHD JI

(2960, 0) PE 2909.1 1544.0 794.3 570.8 1986.8 0.357

PEF(%) -9 18 -32 -52 -29 36

(2990, 30) PE 2904.8 1522.8 803.3 578.7 2045.9 0.348

PEF(%) -7 23 -33 -49 -31 40

(3020, 60) PE 2878.5 1507.7 806.6 564.2 2076.5 0.343

PEF(%) -6 25 -34 -48 -32 43

(3108, 148) PE 2836.6 1509.1 764.6 562.9 2161.8 0.340

PEF(%) -1 33 -35 -46 -35 51

(3256, 296) PE 2783.0 1477.0 769.3 536.7 2315.7 0.324

PEF(%) 8 48 -37 -39 -39 66

104

Table 4.9: Comparison between the PEF method and the PE method

Mix(5), p = 1910

(s0, sb) Method P E R FP SHD JI

(2852, 0) PE 2629.6 1288.3 734.1 607.2 2170.9 0.307

PEF(%) -4 27 -29 -38 -26 42

(2881, 29) PE 2581.5 1238.5 717.7 625.3 2267.8 0.293

PEF(%) -2 32 -30 -35 -27 47

(2910, 58) PE 2583.9 1238.5 726.1 619.3 2290.8 0.291

PEF(%) 0 35 -32 -34 -28 51

(2995, 143) PE 2545.8 1242.5 700.6 602.7 2355.2 0.289

PEF(%) 5 44 -32 -30 -31 58

(3138, 286) PE 2601.7 1263.4 735.2 603.1 2477.7 0.282

PEF(%) 10 53 -34 -29 -34 69

105

Table 4.10: Accuracy of the PEF method and the PE step when limiting kmax = 5.

ANDES(5), p = 1115

(s0, sb) Method P E R FP SHD JI

(1690, 0) PE 1586.7 909.1 450.0 227.6 1008.5 0.384

PEF 1468.7 1135.0 226.5 107.2 662.2 0.561

(1707, 17) PE 1616.6 931.9 436.6 248.1 1023.2 0.390

PEF 1510.0 1172.5 217.4 120.1 654.6 0.574

(1724, 34) PE 1575.6 912.1 434.9 228.6 1040.5 0.382

PEF 1525.1 1184.8 218.0 122.3 661.5 0.574

(1775, 85) PE 1538.1 872.4 439.2 226.5 1129.1 0.358

PEF 1591.7 1233.9 216.2 141.6 682.7 0.579

(1859, 169) PE 1511.1 867.3 429.8 214.0 1205.7 0.347

PEF 1662.5 1327.7 191.8 143.0 674.3 0.606

DIABETES(5), p = 2065

(s0, sb) Method P E R FP SHD JI

(3010, 0) PE 3033.6 1286.7 1037.2 709.7 2433.0 0.271

PEF 2680.6 1531.3 766.7 382.6 1861.3 0.368

(3041, 31) PE 2956.7 1262.0 1020.5 674.2 2453.2 0.267

PEF 2708.8 1540.7 765.4 402.7 1903.0 0.366

(3071, 61) PE 2943.5 1260.2 1008.5 674.8 2485.6 0.265

PEF 2744.6 1598.4 745.6 400.6 1873.2 0.379

(3161, 151) PE 2840.2 1245.0 964.4 630.8 2546.8 0.262

PEF 2837.1 1701.4 717.4 418.3 1877.9 0.396

(3311, 301) PE 2696.0 1230.3 921.4 544.3 2625.0 0.258

PEF 2979.4 1861.6 689.0 428.8 1878.2 0.420

106

Table 4.11: Accuracy of the PEF method and the PE step when limiting kmax = 5.

PIGS(5), p = 2205

(s0, sb) Method P E R FP SHD JI

(2960, 0) PE 2923.9 1557.9 794.0 572.0 1974.1 0.360

PEF 2628.7 1826.3 536.8 265.6 1399.3 0.486

(2990, 30) PE 2915.7 1536.1 801.8 577.8 2031.7 0.352

PEF 2686.9 1866.0 534.8 286.1 1410.1 0.490

(3020, 60) PE 2889.9 1516.1 807.3 566.5 2070.4 0.345

PEF 2719.7 1890.1 534.7 294.9 1424.8 0.491

(3108, 148) PE 2848.2 1516.0 765.6 566.6 2158.6 0.341

PEF 2812.4 2005.9 500.7 305.8 1407.9 0.513

(3256, 296) PE 2813.4 1511.6 766.0 535.8 2280.2 0.332

PEF 2991.3 2178.5 485.9 326.9 1404.4 0.536

Mix(5), p = 1910

(s0, sb) Method P E R FP SHD JI

(2852, 0) PE 2712.5 1342.6 754.4 615.5 2124.9 0.318

PEF 2462.8 1604.4 517.7 340.7 1588.3 0.433

(2881, 29) PE 2684.6 1305.7 729.5 649.4 2224.7 0.307

PEF 2509.2 1622.1 493.7 393.4 1652.3 0.431

(2910, 58) PE 2676.2 1291.7 741.4 643.1 2261.4 0.301

PEF 2539.8 1658.2 492.6 389.0 1640.8 0.438

(2995, 143) PE 2647.3 1296.6 718.1 632.6 2331.0 0.298

PEF 2652.8 1760.0 480.6 412.2 1647.2 0.453

(3138, 286) PE 2699.3 1329.5 742.7 627.1 2435.6 0.295

PEF 2819.7 1917.5 483.7 418.5 1639.0 0.475

107

Table 4.12: Running time of the PEF method when kmax = 5

ANDES(5), p = 1115 DIABETES(5), p = 2065

(s0, sb) Method T P E F (s0, sb) Method T P E F

(1690, 0) PEF 0.42 0.01 0.16 0.25 (3010, 0) PEF 1.67 0.04 0.43 1.20

PEF* 0.90 0.01 0.64 0.25 PEF* 3.10 0.04 1.86 1.20

(1707, 17) PEF 0.42 0.01 0.15 0.26 (3041, 31) PEF 1.39 0.04 0.46 0.89

PEF* 0.91 0.01 0.64 0.26 PEF* 2.77 0.04 1.84 0.89

(1724, 34) PEF 0.35 0.01 0.16 0.18 (3071, 61) PEF 1.83 0.04 0.43 1.36

PEF* 0.83 0.01 0.64 0.18 PEF* 3.18 0.04 1.78 1.36

(1775, 85) PEF 0.48 0.01 0.20 0.27 (3161, 151) PEF 2.07 0.04 0.59 1.44

PEF* 0.95 0.01 0.67 0.27 PEF* 3.35 0.04 1.87 1.44

(1859, 169) PEF 0.71 0.01 0.30 0.40 (3311, 301) PEF 2.52 0.04 0.76 1.72

PEF* 1.07 0.01 0.66 0.40 PEF* 3.64 0.04 1.88 1.72

PIGS(5), p = 2205 Mix(5), p = 1910

(s0, sb) Method T P E F (s0, sb) Method T P E F

(2960, 0) PEF 1.51 0.05 0.51 0.95 (2852, 0) PEF 1.59 0.04 1.09 0.46

PEF* 3.02 0.05 2.02 0.95 PEF* 2.52 0.04 2.02 0.46

(2990, 30) PEF 1.56 0.05 0.58 0.93 (2881, 29) PEF 1.53 0.04 0.86 0.63

PEF* 3.03 0.05 2.05 0.93 PEF* 2.65 0.04 1.98 0.63

(3020, 60) PEF 1.78 0.06 1.00 0.72 (2910, 58) PEF 1.81 0.04 0.88 0.89

PEF* 3.14 0.06 2.36 0.72 PEF* 3.00 0.04 2.07 0.89

(3108, 148) PEF 1.46 0.06 0.67 0.73 (2995, 143) PEF 2.17 0.04 0.96 1.17

PEF* 2.86 0.06 2.07 0.73 PEF* 3.32 0.04 2.11 1.17

(3256, 296) PEF 1.84 0.06 0.74 1.04 (3138, 286) PEF 3.02 0.04 2.15 0.83

PEF* 3.25 0.06 2.15 1.04 PEF* 3.94 0.04 3.07 0.83

108

Table 4.13: Time comparison wetween the CCDr algorithm and the PEF method.

PATHFINDER(5), p = 545

(s0, sb) Method T Method T P E F

(975, 0) CCDr 1.13 PEF 0.17 0.01 0.04 0.12

PEF* 0.31 0.01 0.18 0.12

(985, 10) CCDr 1.37 PEF 0.18 0.01 0.04 0.13

PEF* 0.32 0.01 0.18 0.13

(995, 20) CCDr 1.19 PEF 0.22 0.01 0.04 0.17

PEF* 0.36 0.01 0.18 0.17

(1024, 49) CCDr 1.47 PEF 0.19 0.01 0.04 0.14

PEF* 0.34 0.01 0.19 0.14

(1073, 98) CCDr 1.55 PEF 0.21 0.01 0.04 0.16

PEF* 0.35 0.01 0.18 0.16

ANDES(5), p = 1115

(s0, sb) Method T Method T P E F

(1690, 0) CCDr 5.26 PEF 0.35 0.02 0.09 0.24

PEF* 0.62 0.02 0.36 0.24

(1707, 17) CCDr 4.27 PEF 0.39 0.02 0.10 0.27

PEF* 0.67 0.02 0.38 0.27

(1724, 34) CCDr 4.74 PEF 0.43 0.02 0.10 0.31

PEF* 0.71 0.02 0.38 0.31

(1775, 85) CCDr 5.72 PEF 0.58 0.02 0.10 0.46

PEF* 0.86 0.02 0.38 0.46

(1859, 169) CCDr 5.07 PEF 0.59 0.02 0.11 0.46

PEF* 0.87 0.02 0.39 0.46

109

Table 4.14: Time comparison wetween the CCDr algorithm and the PEF method.

DIABETES(5), p = 2065

(s0, sb) Method T Method T P E F

(3010, 0) CCDr 38.32 PEF 1.08 0.06 0.39 0.63

PEF* 2.21 0.06 1.52 0.63

(3041, 31) CCDr 31.67 PEF 0.86 0.05 0.37 0.44

PEF* 1.85 0.05 1.36 0.44

(3071, 61) CCDr 34.11 PEF 1.02 0.06 0.38 0.58

PEF* 2.00 0.06 1.36 0.58

(3161, 151) CCDr 31.66 PEF 1.09 0.05 0.48 0.56

PEF* 2.00 0.05 1.39 0.56

(3311, 301) CCDr 33.12 PEF 0.97 0.05 0.40 0.52

PEF* 1.78 0.05 1.21 0.52

PIGS(5), p = 2205

(n, p, sb) Method T Method T P E F

(2960, 0) CCDr 40.31 PEF 1.14 0.07 0.51 0.56

PEF* 2.52 0.07 1.89 0.56

(2990, 30) CCDr 36.43 PEF 1.32 0.07 0.54 0.71

PEF* 2.69 0.07 1.91 0.71

(3020, 60) CCDr 35.45 PEF 1.58 0.07 1.04 0.47

PEF* 2.92 0.07 2.38 0.47

(3108, 148) CCDr 39.94 PEF 1.42 0.07 0.6 0.75

PEF* 2.82 0.07 2.00 0.75

(3256, 296) CCDr 37.39 PEF 1.45 0.07 0.59 0.79

PEF* 2.69 0.07 1.83 0.79

110

Table 4.15: mix: Time (min) for dags with no between cluster edges.

Mix(5), p = 1910

(s0, sb) Method T Method T P E F

(2852, 0) CCDr 31.12 PEF 0.80 0.06 0.32 0.42

PEF* 1.60 0.06 1.12 0.42

(2881, 29) CCDr 29.53 PEF 0.96 0.06 0.49 0.41

PEF* 1.70 0.06 1.23 0.41

(2910, 58) CCDr 27.72 PEF 0.97 0.07 0.50 0.40

PEF* 1.74 0.07 1.27 0.40

(2995, 143) CCDr 28.37 PEF 0.94 0.06 0.45 0.43

PEF* 1.79 0.06 1.30 0.43

(3138, 286) CCDr 34.22 PEF 1.98 0.06 1.07 0.85

PEF* 2.70 0.06 1.79 0.85

111

CHAPTER 5

Summary and Discussion

In this dissertation, we focused on structure learning of sparse Bayesian networks, and we

have developed two methods for this purpose. The first method is a generalization of a pre-

vious work by Fu and Zhou (2013) on continuous data to discrete case. The generalization

from continuous to discrete was nontrivial for there are more parameters and our score func-

tion for the discrete model has no closed-form solution. The coordinate descent algorithm

we developed can incorporate interventional and observational data. We have shown in

our simulation section the improvement in accuracy after incorporating interventional data.

Also, the CD algorithm works well with high-dimensional observational data, both our ex-

periments on simulation data and real data showed that our CD algorithm has a competitive

performance compared to several other structure learning algorithms. In addition, we have

developed an R package discretecdAlgorithm for the CD algorithm so other researchers

can easily access our algorithm.

The second structure learning method we proposed is a framework for massive size sparse

Bayesian networks. It is a divide-and-conquer method that first partition the full DAG into

several sub-networks, then estimate each sub-network individually, and finally fuse all sub-

networks together by adding edges between clusters. One feature of our PEF framework is

that we can plug-in any structure learning algorithm in the second E-step, so the second

E-step is like a black box, and the performance of our PEF method largely depends on the

second step. Users have the flexibility to choose a proper structure learning algorithm for

the E-step based on their experience with their data set. Our current implementation is only

for observational Gaussian data, and we plugged in the CCDr algorithm in the second step

as an example. Our simulation results showed a significant improvement in speed as well as

112

accuracy compared to the CCDr algorithm.

Future work

There are a lot of generalizations we can implement for the PEF framework. As mentioned

in the discussion part of Chapter 4, we can adapt the method so the fusion step can not only

accept a sequence of DAGs but also CPDAGs and skeletons. And therefore more structure

learning algorithms will be available to be used for the E-step, like the PC algorithm and

the MMPC algorithm.

In addition, we can further generalize the method to discrete data. For discrete data, one

can still use our clustering method for the partition step, and plug in a structure learning

algorithm for discrete data in the estimation step. As for the fusion step, the conditional

independence test is no longer testing the partial correlation, instead we can use the G2

test for discrete data. Finally we can substitute the linear regression with the multinomial

logistic regression.

Moreover, we can further adapt the framework to incorporate interventional data. Given

a data set with k blocks where for each block a set of nodes are under intervention, certain

edges will be cut off due to experimental interventions. A problem is that how can we code

this information in the partition step and the fusion step.

For the partition step, we can modify the definition of distance dB(X, Y) to only use

observational data for both X and Y . That is saying rXY = corr(XO, YO), where O is the

index set of selected rows of X and Y , ∀i ∈ O, i /∈MX , i /∈MY , andMX is the set of data

points where variable X is under intervention.

As for the fusion step, when we do the conditional independence test X ⊥ Y |Z, we can

also exclude interventional data points for X and Y . Similarly, when we do the regression

of i ∼ ΠGi , we can exclude interventional data points for node i.

Finally, our current implementation of the fusion step is implemented with an Rcpp

package Armadillo, if we can code it in pure C++, we might further improve the speed of

the fusion step.

113

Bibliography

Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample

study. The Annals of Statistics 10(4):1100–1120

Aragam B, Zhou Q (2015) Concave penalized estimation of sparse Bayesian networks. Journal

of Machine Learning Research 16:2273-2328

Aragam B, Amini AA, Zhou Q (2017a) Learning directed acyclic graphs with penalized

neighbourhood regression ArXiv preprint arXiv:1511.08963

Aragam B, Gu J, Zhou Q (2017b) Learning large-scale Bayesian networks with the sparsebn

package. Journal of Statistical Software to appear, arXiv preprint arXiv:1703.04025

Baba K, Shibata R, Sibuya M (2004) Partial correlation and conditional correlation as

measures of conditional independence. Australian & New Zealand Journal of Statistics

46(4):657–664

Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

Bates D, Maechler M (2018) Matrix: Sparse and Dense Matrix Classes and Methods. URL

https://CRAN.R-project.org/package=Matrix, r package version 1.2-14

Bielza C, Li G, Larranaga P (2011) Multi-dimensional classification with Bayesian networks.

International Journal of Approximate Reasoning 52(6):705–727

Bouckaert RR (1993) Probabilistic network construction using the minimum description

length principle. In: Symbolic and Quantitative Approaches to Reasoning and Uncer-

tainty: European Conference ECSQARU ’93, Lecture Notes in Computer Science, vol

747, Springer, pp 41–48

Buntine W (1991) Theory refinement on Bayesian networks. In: Proceedings of the Seventh

Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, pp 52–60

Butts CT (2008) network: a package for managing relational data in r. Journal of Statistical

Software 24(2), URL http://www.jstatsoft.org/v24/i02/paper

114

https://CRAN.R-project.org/package=Matrix
http://www.jstatsoft.org/v24/i02/paper

Chickering DM (2002) Optimal structure identification with greedy search. Journal of ma-

chine learning research 3(Nov):507–554

Chickering DM, Heckerman D (1997) Efficient approximations for the marginal likelihood of

Bayesian networks with hidden variables. Machine Learning 29:181–212

Colombo D, Maathuis MH, Kalisch M, Richardson TS (2012) Learning high-dimensional

directed acyclic graphs with latent and selection variables. The Annals of Statistics

40(1):294–321

Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic net-

works from data. Machine Learning 9:309–347

Cooper GF, Yoo C (1999) Causal discovery from a mixture of experimental and observational

data. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence,

Morgan Kaufmann Publishers Inc., pp 116–125

Csárdi G, Nepusz T (2006) The igraph software package for complex network research.

InterJournal Complex Systems:1695, URL http://igraph.org

Eberhardt F (2012) Almost optimal intervention sets for causal discovery. arXiv preprint

arXiv:12063250

Eberhardt F, Glymour C, Scheines R (2012) On the number of experiments sufficient and in

the worst case necessary to identify all causal relations among n variables. arXiv preprint

arXiv:12071389

Ellis B, Wong WH (2008) Learning causal Bayesian network structures from experimental

data. Journal of the American Statistical Association 103:778–789

Foster DP, George EI (1994) The risk inflation criterion for multiple regression. The Annals

of Statistics 22(4):1947–1975

Friedman J, Hastie T, Höfling H, Tibshirani R (2007) Pathwise coordinate optimization. The

Annals of Applied Statistics 1:302–332

115

http://igraph.org

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models

via coordinate descent. Journal of Statistical Software 33:1–22

Fu F, Zhou Q (2013) Learning sparse causal Gaussian networks with experimental interven-

tion: Regularization and coordinate descent. Journal of the American Statistical Associa-

tion 108:288–300

Fu W (1998) Penalized regressions: The bridge versus the lasso. Journal of Computational

and Graphical Statistics 7:397–416

Gámez JA, Mateo JL, Puerta JM (2011) Learning bayesian networks by hill climbing: ef-

ficient methods based on progressive restriction of the neighborhood. Data Mining and

Knowledge Discovery 22(1-2):106–148

van de Geer S, Bühlmann P (2013) `0-penalized maximum likelihood for sparse directed

acyclic graphs. The Annals of Statistics 41(2):536–567

Gentleman R, Whalen E, Huber W, Falcon S (2016) graph: A package to handle graph data

structures. R package version 1.50.0

Gower JC, Ross GJ (1969) Minimum spanning trees and single linkage cluster analysis.

Applied statistics 18(1):54–64

Hartigan JA (1981) Consistency of single linkage for high-density clusters. Journal of the

American Statistical Association 76(374):388–394

Hauser A, Bühlmann P (2012) Characterization and greedy learning of interventional markov

equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research

13(1):2409–2464

Hauser A, Bühlmann P (2015) Jointly interventional and observational data: estimation of

interventional markov equivalence classes of directed acyclic graphs. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 77(1):291–318

116

Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: The combina-

tion of knowledge and statistical data. Machine Learning 20:197–243

Herskovits E, Cooper G (1990) Kutató: An entropy-driven system for construction of prob-

abilistic expert systems from databases. In: Proceedings of the Sixth Annual Conference

on Uncertainty in Artificial Intelligence, pp 54–62

Kalisch M, Bühlmann P (2007) Estimating high-dimensional directed acyclic graphs with

the pc-algorithm. The Journal of Machine Learning Research 8:613–636

Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012) Causal inference

using graphical models with the r package pcalg. Journal of Statistical Software 47(11):1–

26

Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT

press

Kou S, Zhou Q, Wong WH (2006) Equi-energy sampler with applications in statistical in-

ference and statistical mechanics (with discussion). The Annals of Statistics 34:1581–1652

Lam W, Bacchus F (1994) Learning Bayesian belief networks: An approach based on the

MDL principle. Computational Intelligence 10:269–293

Lee JD, Simchowitz M, Jordan MI, Recht B (2016) Gradient descent only converges to

minimizers. vol 49, pp 1–12

Marchetti Y, Zhou Q (2016) Iterative subsampling in solution path clustering of noisy big

data. Statistics and Its Interface 9(4):415–431

Meek C (1995) Strong completeness and faithfulness in bayesian networks. In: Proceedings

of the Eleventh conference on Uncertainty in artificial intelligence, Morgan Kaufmann

Publishers Inc., pp 411–418

Meganck S, Leray P, Manderick B (2006) Learning causal bayesian networks from observa-

tions and experiments: A decision theoretic approach. In: Modeling Decisions for Artificial

Intelligence, Springer, pp 58–69

117

Meier L, van de Geer S, Bühlmann P (2008) The group Lasso for logistic regression. Journal

of the Royal Statistical Society Series B 70:53–71

Nandy P, Hauser A, Maathuis MH (2018) High-dimensional consistency in score-based

and hybrid structure learning. The Annals of Statistics to appear, arXiv preprint

arXiv:1507.02608

Niinimäki T, Parviainen P, Koivisto M (2016) Structure discovery in bayesian networks by

sampling partial orders. The Journal of Machine Learning Research 17(1):2002–2048

Pearl J (1995) Causal diagrams for empirical research. Biometrika 82(4):669–688

Pearl J (2014) Probabilistic reasoning in intelligent systems: networks of plausible inference.

Elsevier

Peér D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed ex-

pression profiles. Bioinformatics 17(suppl 1):S215–S224

Perrier E, Imoto S, Miyano S (2008) Finding optimal bayesian network given a super-

structure. Journal of Machine Learning Research 9(Oct):2251–2286

Pollard D (1991) Asymptotics for least absolute deviation regression estimators. Econometric

Theory 7:186–199

Pournara I, Wernisch L (2004) Reconstruction of gene networks using bayesian learning and

manipulation experiments. Bioinformatics 20(17):2934–2942

Renyi A, Erdos P (1959) On random graphs. Publicationes Mathematicae 6(290-297):5

Robinson RW (1977) Counting unlabeled acyclic digraphs. In: Combinatorial mathematics

V, Springer, pp 28–43

Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited

118

Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling

networks derived from multiparameter single-cell data. Science 308:523–529

Schmidt M, Niculescu-Mizil A, Murphy K, et al (2007) Learning graphical model structure

using l1-regularization paths. In: AAAI, vol 7, pp 1278–1283

Scutari M (2010) Learning bayesian networks with the bnlearn R package. Journal of Sta-

tistical Software 35(3):1–22, DOI 10.18637/jss.v035.i03

Scutari M (2016) An empirical-bayes score for discrete bayesian networks. In: Conference

on Probabilistic Graphical Models, pp 438–448

Scutari M (2017) Bayesian network constraint-based structure learning algorithms: Parallel

and optimized implementations in the bnlearn R package. Journal of Statistical Software

77(2):1–20, DOI 10.18637/jss.v077.i02

Shojaie A, Michailidis G (2010) Penalized likelihood methods for estimation of sparse high-

dimensional directed acyclic graphs. Biometrika 97(3):519–538

Spirtes P, Glymour C, Scheines R (1993) Causation, Prediction, and Search. Springer-Verlag

Suzuki J (1993) A construction of Bayesian networks from databases based on an MDL

principle. In: Proceedings of the Ninth Annual Conference on Uncertainty in Artificial

Intelligence, pp 266–273

Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing bayesian network

structure learning algorithm. Machine learning 65(1):31–78

Tseng P, Yun S (2009) A coordinate gradient descent method for nonsmooth separable

minimization. Mathematical Programming B 117:387–423

Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New

York, URL http://www.stats.ox.ac.uk/pub/MASS4, iSBN 0-387-95457-0

Verma T, Pearl J (1990) Equivalence and synthesis of causal models. In: Sixth Annual

Conference on Uncertainty in Artificial Intelligence, pp 220–227

119

http://www.stats.ox.ac.uk/pub/MASS4

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature

393:440–442

Wu T, Lange K (2008) Coordinate descent procedures for lasso penalized regression. The

Annals of Applied Statistics 2:224–244

Xiang J, Kim S (2013) A* lasso for learning a sparse bayesian network structure for contin-

uous variables. In: Advances in Neural Information Processing Systems, pp 2418–2426

Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society Series B 68:49–67

Zhang CH, et al (2010) Nearly unbiased variable selection under minimax concave penalty.

The Annals of statistics 38(2):894–942

Zhou Q (2011) Multi-domain sampling with applications to structural inference of Bayesian

networks. Journal of the American Statistical Association 106:1317–1330

Zhu J, Hastie T (2004) Classification of gene microarrays by penalized logistic regression.

Biostatistics 5:427–443

120

	Introduction
	Bayesian Networks
	Background: Some Fundamental Concepts and Theorems
	Markov equivalence
	Causal learning and interventional data

	Rescent Developments in Structure Learning Methods
	Outline and Overview

	Causal Learning with Categorical Data
	Discrete Bayesian Networks
	A multi-logit model
	Group norm penalty

	Algorithm
	Single coordinate descent step
	Blockwise coordinate descent
	Solution path

	Asymptotic Theory
	Simulation Studies
	Experimental setup
	Results for interventional data
	Results for high-dimensional observational data
	Timing comparison

	Applications to Real Networks
	Comparison with the K2 Algorithm
	Application to flow cytometry data

	Discussions

	R Packages: discretecdAlgorithm and sparsebn
	Introduction and Related Packages
	Using the sparsebn Package for Structure Learning of Discrete Bayesian Networks
	Data Structures
	Installation

	An Example of Discrete Cytometry Data
	Getting sparsebnData object
	Structure Learning
	Prior Knowledge
	Solution paths
	Parameter estimation
	Model selection

	Discussions

	Learning Massive Gaussian Bayesian Networks
	Motivation and Outline
	A Gaussian Model for Continuous Data and Assumptions
	Gaussian model for continuous data
	Features and assumptions

	A Divide-and-Conquer Framework
	Partition
	Estimation
	Fusion

	Applications to Real Networks
	Comparison with the CCDr algorithm
	Performance of the clustering step
	Recovery rate of the fusion step
	Influence of the number of clusters k

	Discussions
	Supplemental Materials

	Summary and Discussion

