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EPIGRAPH 

 
 
 
 
 
 
 
 
 
 
 
 

Love your life, perfect your life, beautify all things in your life. 
Prepare a noble death song for the day when you go over the great divide. 

When it comes your time to die,  
be not like those whose hearts are filled with the fear of death, 

so that when their time comes they weep and pray for a little more time to live their 
lives over again in a different way. 

Sing your death song and die like a hero going home. 
 

Chief Tecumseh (Poem from Act of Valor) 
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ABSTRACT OF THE DISSERTATION 
 
 

Developing a Pervasive Brain-Computer Interface System  

for Naturalistic Brain Dynamics  
 

by 
 
 

Yu-Te Wang 
 
 

Doctor of Philosophy in Computer Science (Computer Engineering) 
 
 

University of California, San Diego, 2015 
 

Professor Chung-Kuan Cheng, Chair 
Professor Tzyy-ping Jung, Co-Chair 

 
This work develops and tests two Brain-Computer Interface (BCI) systems.  

The first one is a Steady-state visual evoked potential (SSVEP)-based BCI system. 

This thesis explores every component of an SSVEP-based BCI system from the front-

end to back-end, including the visual stimuli, electroencephalogram (EEG) data 

acquisition, signal processing and a modularized platform. This thesis also discusses 

how to move an SSVEP-based BCI system from a laboratory demonstration to a real-

life application. Our neurological results show that: (1) it is feasible to precisely render 

visual stimuli on mobile devices; (2) the signal quality of the SSVEPs measured from 
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non-hair-bearing areas was comparable with, if not better than, that measured from 

hair-covered occipital areas; (3) it is practical to build a truly portable and wearable 

SSVEP-based BCI system integrating dry EEG sensors, miniature electronics, wireless 

telemetry, online signal-processing pipeline, and visual stimuli presentation on a 

smartphone. This work may significantly improve the practicality of an SSVEP-based 

BCI system for either real-life or clinical research. 

The second one is an On-line Closed-loop Lapse Detection and Mitigation 

(OCLDM) System for detecting and mitigating driving fatigue. In this thesis we 

translate the above-mentioned BCI platform to develop and test an OCLDM System 

that mitigate transient fatigue during a sustained attention task in a simulated driving 

environment. This system features a mobile wireless dry-sensor EEG headgear and a 

smartphone-based real-time EEG processing platform. The on-line testing results of 

the OCLDM System demontrated the efficacy of the arousing signals in improving 

subjects' response times to the subsequent lane-departure events. This study may lead 

to a practical on-line lapse detection and mitigation system in real-world 

environments.   
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Chapter 1 

 
Introduction 
 
 

Brain-computer interface (BCI) systems acquire Electroencephalography (EEG) 

signals from the brain and translate them into digital commands that can be recognized 

and processed on computers using advanced algorithms [1]-[3]. More precisely, one 

can measure the voltage fluctuations from ionic current flows within the neurons of the 

brain as they are projected onto the scalp. This discovery opens the possibility of 

directly giving output commands from the brain to external devices and bypassing the 

traditional control path, i.e., from the central nervous system to the peripheral nervous 

system (the muscular and sensory organs). 

Steady-state visual evoked potentials (SSVEPs) are the electrical responses of 

the brain to the flickering visual stimulus at a repetition rate higher than 6 Hz [4]. 

SSVEP-based BCI systems have advantage of easy-to-use and almost no user training 

thus becomes one of the popular paradigms in many applications. For instance, we 

proposed an SSVEP-based BCI system in which a user can make a phone call by 

gazing at the virtual keypad on a mobile device [5]. SSVEPs have also been used for 

clinical research and practice, e.g. migraine detection and/or prediction or seizure 

detection and monitoring [6][7]. Predicting or monitoring migraine attacks requires a 

user-acceptable, non-tethered, continuous and home-based SSVEP BCI system. Thus, 
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it is crucial to develop an SSVEP-based BCI system that is capable of delivering 

steady-state visual stimuli and continuously collecting and analyzing EEG data at the 

same time for either daily life or clinical research and practice. 

Figure 1.1 shows the basic design and operation of an SSVEP-based BCI 

system in many applications. Depends on the applications and purposes, in general, we 

can divide the entire system into three basic components:  

(A) Visual stimulus.  

A good visual stimulus in a portable SSVEP-based BCI system relies on the 

mobility and the accuracy [8][9]. Several approaches have been carried out to elicit 

SSVEPs from the subjects. For instance, CRT based visual stimulators have been 

widely used in previous studies [10][11]. Gao et al. [12] used light-emitting diodes 

 
 
Figure 1.1 The basic design and operation of an SSVEP-based BCI system. (a) Visual 
stimulus. The visual stimulus could be rendered on a smartphone, a laptop or an LCD monitor. 
Each black square represents a target (commend) that is flickering at coded frequency or a 
pattern. For instance, one can specify each target as a number, a character, or a direction. (b) 
EEG measurement. The subject wore a 256 channels EEG cap and a 32 channels neckband to 
record the EEGs from the scalp and neck. When the subject was gazing at one target of the 
visual stimuli, the elicited SSVEPs can be collected, in general, from the occipital site over 
visual cortex. (c) Feature extraction and applications.  The elicited SSVEPs can be converted 
to digital commends by feature extraction algorithms running in a device, such as a 
smartphone.  
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(LEDs) to deliver visual stimuli in a BCI-based environmental controller. Shyu et al. 

[13] also designed a LED stimulation panel to display visual stimuli. Recently, liquid 

crystal display (LCD) based stimulators have become popular in SSVEP-based BCI 

systems [14].  

Although different methods have been proposed in the design of visual 

stimulator for eliciting SSVEPs, the current visual stimulators are still very 

inconvenient and bulky. Users have to equip a computer monitor or an isolated visual 

stimulator (e.g. LEDs). The bulky SSVEP stimulator reduces the practicability of the 

BCI system, hindering the BCI applications. In short, although the SSVEP-based BCI 

has been well studied in the past decades, no one has implemented and integrated the 

visual stimuli and the near real-time EEG processing system in a single mobile device 

for ubiquity and portability.  

(B) EEG measurement.   

As SSVEPs are pre-dominantly originated from the visual cortex, it seems 

natural to collect the signals by placing electrodes over the occipital regions. Some 

studies even performed an off-line pilot experiment to obtain the optimal electrode 

locations prior to on-line BCI practices. However, no matter how people perform the 

EEG recording from hair-covered areas, they suffered from the complications of 

recording such as long preparation time and insufficient skin-electrode contact area 

due to hair. These complications make BCI impractical for routine use in daily life. To 

overcome these problems, dry contact- and non-contact-type EEG sensors have been 
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developed to enable user-friendly EEG measurements to improve the usability of BCI 

[15]-[19].   

However, a major concern over the use of dry electrodes for EEG 

measurement is that the SNR of the acquired signals might not be as good as that from 

the gel based electrodes [15][16][18]. Furthermore, for some BCI users such as 

quadriparetic patients lying face up during ventilation, assessing the occipital sites 

would be undoubtedly more difficult either by wet or dry electrodes. Therefore, an 

alternative approach to easily extract high quality SSVEPs becomes a crucial issue in 

BCI community. The topography of SSVEP often shows a widespread scalp 

distribution because the SSVEP mainly projected from the visual cortex to the 

occipital areas, neck, forehead or even the face areas. Therefore, it’s reasonable to 

believe that one could measure the SSVEP over non-hair-bearing areas. To our best 

knowledge, no study has yet systematically and quantitatively compared SSVEPs from 

different scalp and face locations using high-density EEG data. 

(C) Signal processing platforms.  

In real-life applications, BCI systems should not use bulky, expensive, wired 

EEG acquisition device and signal processing platforms [20]. Using these devices will 

not only cause discomfort and inconvenience for the users, but also affect their ability 

to perform routine tasks in real life. Recently, with advances in the biomedical 

sciences and electronic technologies, the development of a mobile and online BCI has 

been put on the agenda [19]. Several studies have demonstrated the use of portable 

devices for BCIs [13][19][20]. Lin et al. [20] proposed a portable BCI system that can 
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acquire and analyze EEG signals with a custom DSP module for real-time cognitive-

state monitoring. Shyu et al. [13] proposed a system to combine an EEG acquisition 

circuit with an FPGA-based real-time signal processer. Recently, with the advances in 

integrated circuit technology, smartphones combined with DSP [21] and built-in 

Bluetooth function have become very popular in the consumer market. Compared with 

the PC-based or customized platforms, the ubiquity, mobility, and processing power of 

smartphones make them a potentially vital tool in creating on-line and portable BCIs 

that need real-time data transmission, signal processing, and feedback presentation in 

real-world environments.  

Although the EEG-based BCI technology using PCs and the Bluetooth 

transmission of bio-signals have been well established in previous studies, the 

feasibility of a portable smartphone based BCI, which supports biomedical signal 

acquisition and on-line signal processing, has never been explored. This portable 

system emphasizes usability "on-the-go", and the freedom that smartphones enable. If 

a smartphone based BCI proves to be feasible, many current BCI demonstrations (e.g. 

gaming, text messaging, etc.) can be realized on smartphones in practice and 

numerous new applications might emerge. 

In sum, three scientific and technical barriers need to be addressed when we 

would like to move an SSVEP-based BCI system from a laboratory demonstration to a 

real-life application: (1) the lack of precise visual stimulus presentation on mobile 

platforms; (2) the difficulty of assessing SSVEPs from easily accessible locations; (3) 
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the lack of a truly portable, user-acceptable (e.g. comfortable and wearable), and 

robust system for monitoring and processing EEG data from unconstrained users. 

 This thesis details and explores each component of an SSVEP-based BCI 

system from the front-end to back-end. We organize this thesis in the following way.  

Chapter 2 describes state-of-art approaches of designing visual stimuli. We 

also propose a new way to render a frame rate-based visual stimulus without losing the 

accuracy and the portability. This approach was implemented on three different 

mobile devices, i.e. a smartphone, a Tablet, and a laptop to elicit SSVEPs. The 

feasibility of using a mobile stimulus presentation was suggested by the accuracy and 

stability of flickering frequencies and the elicited SSVEP signal in three subjects who 

participated in on-line SSVEP experiments. 

Chapter 3 addresses a key issue of easy-of-use in real-world SSVEP-based BCI 

applications. More precisely, as SSVEPs are pre-dominantly originated from the 

visual cortex, it seems natural to collect the signals by electrodes placed over the 

occipital regions. Some studies even performed an off-line pilot experiment to obtain 

the optimal electrode locations prior to on-line BCI practices. However, no matter how 

people collect the EEG signals from hair-covered areas, they suffered from the 

complications of recording such as long preparation time and insufficient skin-

electrode contact area due to the hair. These complications make BCIs impractical for 

routine use in daily life. Furthermore, for some BCI users such as quadriparetic 

patients lying face up during ventilation, assessing the occipital sites would be 

undoubtedly more difficult either by wet or dry electrodes. Therefore, an alternative 
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approach to easily extract high-quality SSVEPs becomes a crucial issue in the BCI 

community.   

Chapter 4 proposes an approach to integrate a mobile and wireless EEG system 

and a real-time signal-processing platform based on a smartphone into a truly 

wearable and wireless online BCI. Its practicality and implications in routine use are 

demonstrated through the realization and testing of an SSVEP-based BCI.  

Chapter 5 is a study that translates previous laboratory-oriented 

neurophysiological research to design, develop, and test an On-line Closed-loop Lapse 

Detection and Mitigation System featuring a mobile wireless dry-sensor EEG 

headgear and a smartphone based real-time EEG processing platform. Eleven subjects 

participated in an event-related lane-keeping task, in which they were instructed to 

manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. The 

driving task was simulated in a 1st person view within an 8-screen and 8-projector 

immersive virtual-realty environment. When the subjects experienced lapses or failed 

to respond to lane-drift events during the experiments, auditory warning was delivered 

to mitigate the performance decrements. 

Chatper 6 summaries the main contributions of this dissertation and discuss 

some future research directions.  
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Chapter 2 
 
Developing Stimulus Presentation on 
Mobile Devices for a Truly Portable 
SSVEP-based BCI 
 
 

In this chapter, we integrate visual stimulus presentation and near real-time 

data processing on a mobile device (e.g. a Tablet or a smartphone) to implement a 

steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI). 

The goal of this study is to increase the practicability, portability and ubiquity of an 

SSVEP-based BCI for daily use. The accuracy of flickering frequencies on the mobile 

platforms was tested against that on a laptop/desktop used in our previous studies 

[5][8]. This study then analyzed the power spectrum density of the 

electroencephalogram signals elicited by the visual stimuli rendered on the mobile 

platforms. Finally, this study performed an online test with the Tablet-based BCI 

system and obtained an averaged information transfer rate of 33.87 bits/min in three 

subjects. The current integration leads to a truly practical and ubiquitous SSVEP-

based BCI system on mobile devices for real-life applications. 
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2.1 BACKGROUND 

In the past two decades, electroencephalogram (EEG)-based brain-computer 

interfaces (BCIs) have gained increasing attention in fields of neuroscience and neural 

engineering. While researchers have made significant progress in their efforts to design 

and demonstrate BCI systems, moving a BCI system from a laboratory demonstration 

to real-life applications still poses great challenges to the BCI community [22][23].  

Steady state visually evoked potential (SSVEP) [4] is a natural response to 

visual stimulation flickering at specific frequencies. It has been used for clinical 

research and practice, e.g. e.g. migraine, over 10% of the population (including 

children) suffers from migraine and it costs US more than $20 billion each year. [6][7]. 

Predicting or monitoring migraine attacks requires a user-acceptable, non-tethered, 

continuous and home-based SSVEP BCI system. Thus, a mobile device that can deliver 

steady-state visual stimuli and continuously collect and analyze EEG data at the same 

time is crucial for clinical applications such as migraine and seizure detection and 

monitoring.  

Our recent study [5] demonstrated a smartphone based BCI that took advantage 

of the robust SSVEP. The entire system consisted of three parts: (1) a near real-time 

data processing platform (e.g., a Bluetooth-enabled smartphone or a Tablet), (2) a 

mobile and wireless EEG device (e.g., a customized EEG headband featuring 

Bluetooth module, amplifier circuits, and a microprocessor), and (3) a computer screen 

(e.g., a cathode ray tube (CRT) monitor). Though the smartphone based EEG 

acquisition and near real-time data processing significantly increased the portability of 
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an EEG system in the BCIs, the SSVEP-based BCI system was still not completely 

portable or ubiquitous because subjects have to equip a bulky screen for stimulus 

presentation. 

Several approaches have been carried out to elicit SSVEPs from the subjects. 

For instance, CRT based visual stimulators have been widely used in previous studies 

[10][11]. Gao et al. [12] used light-emitting diodes (LEDs) to deliver visual stimuli in a 

BCI-based environmental controller. Shyu et al. [13] also designed a LED stimulation 

panel to display visual stimuli. Recently, liquid crystal display (LCD) based stimulators 

have become popular in SSVEP BCIs [14]. Although different methods have been 

proposed in the design of visual stimulator for eliciting SSVEPs, the current visual 

stimulators are still very inconvenient and bulky. Users have to equip a computer 

monitor or an isolated visual stimulator (e.g. LEDs). The bulky SSVEP stimulator 

reduces the practicability of the BCI system, hindering the BCI applications.  

In short, although the SSVEP-based BCI has been well studied in the past 

decades, no one has implemented and integrated the visual stimuli and the near real-

time EEG processing system in a single mobile device for ubiquity and portability.  

This study proposes to implement the display of visual stimulus together with 

near real-time data processing in a single mobile and wireless device, such as a laptop, 

a Tablet, or even a smartphone. Since the smartphone or Tablet based online EEG 

processing has been reported in detail in our previous study [5], this study then focuses 

on the implementation, integration, and validation of the SSVEP stimulus presentation 

on a portable device. This study first examines the accuracy and stability of visual 
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stimulus rendered on each device, and then evaluates the all-in-one SSVEP BCI by 

analyzing the power spectrum density (PSD) of the EEG recorded from three healthy 

subjects performing the SSVEP experiments. Finally, this study performs an online test 

with three subjects to evaluate the performance of a Tablet-based BCI. The goal of this 

study is to demonstrate the feasibility of eliciting reliable SSVEPs and processing the 

wirelessly acquired EEG data on a single mobile device. The results of this study may 

lead to a truly practical and ubiquitous SSVEP BCI for daily use. 

2.2 METHOD  

 In this Section, we first describe three common paradigms to deliver the visual 

stimuli for the SSVEP-based BCI systems. According to the purposes or the domains 

of use, each paradigm has its advantage and disadvantages over others. A frame-rate 

based approach to render the visual stimuli is also covered. Second, we systematically 

and quantitatively compare the accuracy of frame rate-based visual stimuli on different 

mobile platforms. Finally, we collected EEG data from three subjects who participated 

in the on-line experiments to test the accuracy of elicited SSVEPs. 

2.2.1 THE DESIGN OF VISUAL STIMULI 

The visual stimulus is one of the main components in the SSVEP-based BCI 

systems. Several factors, such as the flickering accuracy, portability, and re-

configurability, need be concerned when designing visual stimuli in the system. In this 

section, we first address the background of VEPs and SSVEPs, and diversities of 

stimulators. Then, we address three basic visual stimuli paradigm: time-modulated 
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visual evoked potentials (tVEPs), frequency-modulated visual evoked potentials 

(fVEPs), and code-modulated visual evoked potentials (cVEPs). Finally, we present a 

new approach for rendering fVEPs-based visual stimuli on three portable platforms.  

(A)  VEPs, SSVEPs, and Stimulators 

VEPs are the positive and negative voltage oscillation responses to visual 

stimuli such as light, appearance of an image or abrupt change of color or pattern [4]. 

Steady-state VEPs are created by the stable VEPs oscillation that is elicited by rapid 

repetitive stimulation. The visual stimulus plays a very important role in the success of 

an SSVEP-based BCI system.  

Visual stimuli can be presented using flashing lights or LEDs [12], or flickering 

targets on a computer screen [5]. Cheng et al. [24] proposed an SSVEP-based BCI 

system by applying 4 flickering LEDs ranging from 6Hz to 9 Hz at each corner of a 

screen. When subjects fixated on one of the blocks, their SSVEPs would include the 

harmonic components of the corresponding flash frequency. The block could then be 

chosen by analysis of the EEG data. According to the analysis results, the cursor and 

the blocks would be moved together in corresponding directions. Wang et al [5] 

proposed a smartphone-based SSVEP system that used CRT to render visual stimuli to 

elicit SSVEPs. When subjects selected ten digits by gazing each flickering target, the 

smartphone dials the number automatically. Wu et al. [25] showed the comparison of 

visual stimuli rendered by LEDs, CRT, and LCD and the elicited SSVEPs. A 

remarkable result was that the elicited SSVEPs by CRT had higher harmonic. In 

general, the amplitude ranking of elicited SSVEPs is LEDs > CRT~=LCD with 10.8Hz 
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visual stimuli, and almost the same for the other two frequencies (4.6Hz and 16.1Hz). 

This result suggests that LEDs are the best stimulator to elicit SSVEPs. However, if 

considering stimulation parameters such as size, color and position, presenting flickers 

on a computer monitor is a more flexible approach than using stand-alone dedicated 

lights or LEDs. For instance, one can easily reconfigure the shape, color, and number 

of targets rendering on the monitor while LEDs might take longer setup time. 

(B)  Visual Stimuli Paradigms 

The visual stimuli have three basic paradigms to render on the screen: time-

modulated, code-modulated, and frequency-modulated [26]. In t-VEPs paradigm, the 

different stimuli have mutual flickering sequences; in the c-VEPs paradigm, each 

stimulus uses pseudorandom sequences; in the f-VEPs paradigm, each stimulus is 

coded and flickering at specific frequency. Figure 2.1 shows three paradigms of visual 

stimuli. In t-VEPs, as shown in Figure 2.1(a), we can see that the “stimuli on” (trace 

high) among all targets are mutually exclusive across time. In f-VEPs, as shown in 

Figure 2.1(b), the “stimuli on” on each target presents at specific frequency. Note that 

the elicited SSVEPs are consisted of the fundamental (~10Hz) and harmonic (~20Hz, 

~30Hz, etc.) frequencies in this paradigm. Figure 2.1(c) shows the pseudorandom 

sequence rotating 4 bits to the right for each target such that each target is near 

orthogonal. Bin et al. [26] compared the information transfer rates (ITRs) [1] when 

three different paradigms were presented. The results showed that the c-VEPs 

paradigm performed best, followed by the f-VEPs paradigm, and then t-VEPs paradigm. 

Although the f-VEP paradigm couldn’t produce the best ITRs, the advantage of not 
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requiring time- or phase- locked recording is very appealing in real-life environments. 

Over the past 12 years, standard (f-VEPs) SSVEP-based BCI systems have gained a lot 

of attention due to less training and high ITR [27].  In f-VEPs paradigm, most studies 

use screen refresh rate to render the visual stimuli [27]-[30]. When using this approach 

to ensure a flicker’s frequency stability, the number of stimuli is always limited by the 

refresh rate of a monitor. For example, on a monitor with a 60 Hz refresh rate, the 

usable stimulus frequencies within the EEG alpha band (8-13 Hz) can only be at 8.57 

Hz (7 frames per period), 10 Hz (6 frames per period) and 12 Hz (5 frames per period), 

where 1 frame is 1/60 second. In other words, multiple targets (more than three) can’t 

be achieved by this method. For instance, We proposed a phone dialing system requires 

at least 12 targets (10 digits, backspace, and confirm) to function [5]. In an SSVEP-

based BCI system the performance is highly affected by the number of targets. The ITR 

can be improved with an increased number of targets. Currently, the visual stimulator 

design is one of the limiting factors of SSVEP-based BCI systems. An alternative 

approach is to program stimulus presentation using high-resolution timers such as the 

Windows Multimedia Timer [31], i.e. acquiring the system clock to render the stimuli. 

However, when using a timer, the frequency resolution is limited by the timer’s error 

affected by other active Windows processes. 

(C)  Approximated Visual Stimuli Design 

In conventional refresh-rate-based stimulus designs, the number of frames in 

each cycle is constant. For instance, to produce a 10 Hz flicker with a 60 Hz refresh 

rate, the stimulus pattern reverses between black and white every three frames, 
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asshown in Figure 2.1 (a). In this regime, it is impractical to generate an 11 Hz 

stimulus because mathematically the stimulus presentation should reverse every 2.73 

frames, as shown in Figure 2.1 (c). Wang et al [8] proposed to approximate this 

presentation rate using a varying number of frames in each cycle (five or six, 

corresponding to 12 and 10 Hz, respectively). Figure 2.2(d) shows a sequence for an 

11 Hz stimulus. Generally, the stimulus signal at frequency f can be calculated as 

follows:  

                                                                            𝑠𝑡𝑖𝑚 𝑓, 𝑖 = 𝑠𝑞𝑢𝑎𝑟𝑒 2𝑝𝑓 !
!"#$"%!!"#$

      (2.1)  

where square(2pft) generates a square wave with frequency f, and i is the frame index. 

As shown in Figure 2.2(d), in a 0.2 second stimulus sequence, the black/white 

reversing interval for the 11 Hz stimulus is: [2 2 3 3 3 2 2 2 3 3], which includes 10 

cycles with a varying length of two or three frames. Based on this approach, a 

stimulus at any frequency up to half of the refresh rate can be realized. 

	
  

2.2.2 THE PLATFORMS OF RENDERING VISUAL STIMULI  

Three portable platforms were selected to deliver the visual stimuli of an 

SSVEP-based BCI system: a laptop (Lenovo X200S), a Tablet (Motorola XOOM), and 

a smartphone (Samsung Galaxy S). Table 2.1 lists the specifications of three devices. 

The flickering visual stimulation displayed on a laptop running Microsoft Windows 

operation system has been implemented and demonstrated in our previous study [5]. 

This section therefore only describes the details of the design and implementation of 

stimulus presentation on Android based mobile devices. For presenting SSVEP visual  



	
   	
  

	
  

16	
  

	
    

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 2.1 The three common visual stimuli paradigms. Note that, T1-T6 represent target 
1 to target 6. (a) t-VEPs. The high trace for each target indicates the stimulus being turned 
on, while low trace indicates the stimulus turns off. Right panel represents the elicited 
VEPs consisted of positive (~100ms) and negative (~250ms) voltage deflections. (b) f-
VEPs. The stimulus on/off frequency of each target is different. Right panel indicates the 
power spectrum density of elicited VEPs when the subject was gazing at a target 
flickering at 10Hz. This example also shows its harmonic frequencies (20Hz). (c) c-VEPs. 
A pseudorandom sequence (top left) was shifted 4bits right for each target. Right panel 
indicates an example of the elicited VEPs when the subject was gazing at one target. This 
figure is reprinted with permission from [26]. 
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stimuli on a portable device, the stability of screen refresh rate is very important. This 

study first tests the screen refresh rate with a silicon NPN phototransistor (PNA1605F). 

The three devices have different refresh rates: 60.375Hz for the laptop, 59.975Hz for 

the Tablet, and 55.575Hz for the smartphone.  

2.2.3 SOFTWARE ARCHITECTURE 

The application of visual stimulation was written in Java under Eclipse integrate 

development environment. An Android Development Tools plugin to Eclipse facilitates 

the development and deployment of Android applications across different platforms. 

Figure 2.3 shows the flowchart of the program delivering flickering visual stimulus. 

The OpenGL ES (OpenGL for embedded system, version 1.0) technology was used to 

realize a frame-based display. The stimulation application can display one or multiple 

Table 2.1 The specifications of visual stimulators. 
	
   Lenovo 

X200s 
Motorola 
XOOM 

Samsung 
Galaxy S 

OS Windows 
XP SP3 Android 3.0 Android 2.1 

CPU 
Intel  

Core 2 Duo 
1.4GHz 

NVIDIA 
Tegra 2 

Dual-Core 
1GHz 

ARM 
Cortex-A8  

1 GHz 

Software Direct X OpenGL ES OpenGL ES 

Screen 
refresh 

rate (Hz) 
60.375 59.975 55.575 

Screen 
size 

(inch) 
13 10.1 4 

Screen 
resolution 

(pixels) 
800 × 1280 800 × 1280 400 × 800 
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flickering 3.5cm × 3.5cm squares on the screen over a black background according the 

screen resolution, accomplished by sequential rendering of black and white colors at a 

specific frequency [8].  

The application of visual stimulus consists of two major threads, as shown in 

Figure 2.3. The Main Program is responsible for creating graphic user interfaces and 

calculating the stimulation sequence under a specific screen refresh rate. According to 

the approach proposed in [8], the stimulation sequence may vary due to the screen 

refresh rate. For instance, displaying an 11Hz flickering square on the screen refreshed 

at 60 Hz can be realized with 11-cycle black/white alternating patterns lasting [3 3 3 2 

3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2] frames in a second. On the other hand, the Display 

Program is responsible for rendering the flickering animation. GLSurfaceView, a class 

	
  
	
  
Figure 2.2 The flowchart of visual stimulus program. The stimulation software consists of 
two saperate threads: Main Program and Display Program. Main Program goes to sleep 
mode and the screen starts to render the visual stimuli after Create GUIs is done.  
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of Android.opengl makes it possible to draw flickering animation frame-by-frame by 

creating and managing a separate thread. In general, multiple flickers flickering at 

different frequencies can be implemented at the same time.  

2.2.4 PLATFORM TESTING AND EEG EXPERIMENT  

In order to test the stability of the flicker on each platform, the silicon NPN 

phototransistor was directly attached to the center of the flickering animation on the 

screen to examine the quality of the flickering stimulation. For each platform, 11Hz 

flickering stimuli (one minute long) were recorded using an EEG amplifier. The EEG 

amplifier is a 16-channel bio-signal acquisition unit. Signals within the frequency band 

of 0-250 Hz were amplified and digitized by analog-to-digital converters (ADC) with a 

24-bit resolution at a sampling rate of 1000 Hz.  

To further validate the usability of each platform for eliciting SSVEPs, an EEG 

experiment was conducted on three subjects. Two of them were naive subjects to the 

SSVEP experiment (subjects 2 and 3), while subject 1 has experience in using an 

SSVEP-based BCI. Each subject repeated this task on each of the three platforms. The 

goal of this testing is to verify the presence of the 11Hz brain activity induced by the 

visual stimulus. During the SSVEP experiments, the subjects gazed at a single flicker 

animation flashing at 11Hz for one minute with no feedback. EEG signals were 

recorded from two electrodes placed over the occipital region, referenced to the 

forehead. The channel with higher signal-to-noise ratio (SNR) was selected for further 

analysis. 
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2.2.5 DATA ANALYSIS 

 The flickering animation signals rendered on the three different platforms were 

recorded and filtered with a (8-20 Hz) band-pass filter. Secondly, one-minute 

recording was partitioned into fifteen 4-sec trials. Fast Fourier Transform (FFT) was 

then applied to the averaged waveforms of the segmented data and the resultant PSDs 

were plotted to evaluate the flickering frequencies on different platforms and elicited 

SSVEPs. 

2.2.6 ON-LINE TESTING 

A Tablet-based system integrating visual stimulus presentation and data 

processing was tested on an online BCI experiment. Three subjects performed a phone-

dialing task, in which they need to dial 10-digit numbers using their brain activities as 

described in [5]. An EEG headband, which features miniature amplifier, Bluetooth 

module, and a microprocessor [5], was used for data collection. A virtual keypad 

comprised 12 targets on the screen of the Tablet. Each target was a 3.5cm × 3.5 cm 

square. The frequencies ranged from 9-11.5Hz with a 0.25Hz interval. Each subject sat 

in a comfortable chair in a dim room. The Tablet was placed ~60cm in front of them. 

They were asked to gaze at the targets sequentially with the following sequence: #, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 0, #. The SSVEP frequencies in the 4-channel EEG from the 

headband were detected by the canonical correlation analysis (CCA) algorithm [14]. 

The target stimulus on the screen would change to a red background (as visual 

feedback) for about 200ms once the target had been identified. The subject was 
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instructed to switch to the next target immediately following the feedback. Each subject 

repeated the task five times and the averaged ITR was used to evaluate the BCI 

performance. 

2.3 RESULTS 

 In this Section, we first verified the accuracy of the visual stimuli by attaching 

a phototransistor on the screen of mobile devices. Second, we collected EEG data 

from three subjects while they were performing the on-line experiments to test the 

accuracy of elicited SSVEPs. 

2.3.1 ACCURACY AND STABILITY OF FLICKERING SIGNALS 

Figure 2.3 shows the averaged time series and PSDs of the acquired flickering 

animations from three different platforms. The stimulus signals (Figure 2.3 (a)) on the 

laptop and the Tablet are more stable than those rendered on the smartphone. More 

precisely, the signal waveforms flashed from the laptop and the Tablet had almost 

same phases in each second, while the phase of 11Hz stimulus signals on the 

smartphone shifted back and forth slightly. The normalized PSD (Figure 2.3 (b)) 

shows that the stimulus signal on all platforms contained the correct fundamental 

frequency (11Hz).  The normalized amplitude of the stimulation frequency on the 

smartphone is smaller than that of other platforms due to the phase jitter of the screen 



	
   	
  

	
  

22	
  

refresh rate. Although the flickering signal on the smartphone is not as stable as other 

platforms, the stimulation frequency is still accurate. 

 

	
  
Figure 2.3 The waveforms and power spectra of the flickering signals. (a) 
Time series of averaged flickering signals from the laptop, the Tablet and the 
smartphone. (b) The normalized power spectral density of the flickering signal 
on each platform. 
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2.3.2 SSVEP SIGNALS 

Figure 2.4 shows the averaged SSVEPs and their PSDs elicited by the 

flickering stimuli on the three platforms for all the subjects. Figure 2.4 (a) exhibits 

characteristic sinusoidal SSVEPs. Because the stimulus signal and the EEG signal 

were not synchronized, SSVEPs of the three subjects had different initial phases. 

Figure 2.4 (b) plots the PSDs of SSVEPs elicited by the flickering stimuli, all showing 

very consistent and accurate 11Hz peaks. For all subjects, the amplitudes of the 11Hz 

SSVEPs elicited by the laptop and Tablet screens were higher than those elicited by 

the smartphone. 

2.3.3 ON-LINE RESULTS 

The ITR in bits/minute was calculated as follows [1]: 

                             ITR = 𝑙𝑜𝑔!𝑁  + 𝐴  𝑙𝑜𝑔!𝐴 + (1− 𝐴)𝑙𝑜𝑔!
!!!
!!!

 (2.2) 

Table 2.2    On-line ITR testing results among three subjects. 

Experiment run Subject 1 Subject 2 Subject 3 

1 49.64 28.13 31.15 

2 45.66 35.76 22.54 

3 41.64 25.17 33.26 

4 50.74 29.89 25.05 

5 49.64 20.99 18.74 

Average 47.46 27.99 26.15 
Standard 
deviation ±3.39 ±4.92 ±5.38 
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 where N is the number of targets, and A is the accuracy of frequency detection. Table 

2.2 shows the ITR in bits/minute for all subjects. All subjects fulfilled the tasks. The 

averaged ITR is 33.87 bits/min, which is comparable to previous studies using a 

separate stimulating device [5][10]. 

	
  

Figure 2.4 EEG signal acquired and averaged during visual stimulation 
presenting with a frequency of 11 Hz and its power spectrum. (a)  Sample 
SSVEP signal obtained from the three subjects on different platforms. (b) The 
frequency spectrum corresponding to the signal in left. The SSVEP manifests 
itself in oscillations at 11 Hz.  
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2.4 CONCLUSION 

This study implemented and demonstrated a practical and ubiquitous SSVEP-

based BCI system for real-world applications. The feasibility of using a mobile 

stimulus presentation was suggested by the accuracy and stability of flickering 

frequencies and the elicited SSVEP signals. As the feasibility of using a mobile device 

(a smartphone or a Tablet) to acquire and process EEG signals from unconstrained 

individuals in real-world environments has been demonstrated in our previous studies 

[5][8], the integration of stimulus presentation and real-time data analysis on a single 

mobile device leads to a truly practical, online SSVEP-based BCI for real-life 

applications that require continuous and ubiquitous monitoring of the brain. 
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Chapter 3 
 
Measuring Stead-State Visual Evoked 
Potentials from Non-hair-bearing 
Areas 
 
 

Steady-State Visual Evoked Potential (SSVEP)-based Brain-Computer 

Interface (BCI) applications have been widely applied in laboratories around the world 

in the recent years. Many studies have shown that the best locations to acquire 

SSVEPs were from the occipital areas of the scalp. However, for some BCI users such 

as quadriparetic patients lying face up during ventilation, it is difficult to access the 

occipital sites. Even for the healthy BCI users, acquiring good-quality EEG signals 

from the hair-covered occipital sites is inevitably more difficult because it requires 

skin preparation by a skilled technician and conductive gel usage. Therefore, finding 

an alternative approach to effectively extract high-quality SSVEPs for BCI practice is 

highly desirable. Since the non-hair-bearing scalp regions are more accessible by all 

different types of EEG sensors, this study systematically and quantitatively 

investigated the feasibility of measuring SSVEPs from non-hair-bearing regions, 

compared to those measured from the occipital areas.  Empirical results showed that 

the signal quality of the SSVEPs from non-hair-bearing areas was comparable with, if 
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not better than, that measured from hair-covered occipital areas. These results may 

significantly improve the practicality of a BCI system in real-life applications; 

especially used in conjunction with newly available dry EEG sensors. 

3.1 BACKGROUND 

SSVEP is the electrical response of the brain to flickering visual stimuli. 

SSVEP-based BCI recently has been widely used in many applications due to its 

advantages such as little user training and high information transfer rate [32]. For 

example, Gao et al. [12] applied the SSVEP to the control of electric apparatus that 

featured noninvasive signal recording, little training requirement, and a high 

information transfer rate. As a result, more studies have explored applications of this 

technology.  

As SSVEPs are pre-dominantly originated from the visual cortex, it seems 

natural to collect the signals by placing electrodes over the occipital regions. Some 

studies even performed an off-line pilot experiment to obtain the optimal electrode 

locations prior to on-line BCI practices. However, no matter how people perform the 

EEG recording from hair-covered areas, they suffered from the complications of 

recording such as long preparation time and insufficient skin-electrode contact area 

due to hair. These complications make BCI impractical for routine use in daily life. To 

overcome these problems, dry contact- and non-contact-type EEG sensors have been 

developed to enable user-friendly EEG measurements to improve the usability of BCI.  

However, a major concern over the use of dry electrodes for EEG measurement is that 

the SNR of the acquired signals might not be as good as that from the gel based 
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electrodes [15][16][18][33]. Furthermore, for some BCI users such as quadriparetic 

patients lying face up during ventilation, assessing the occipital sites would be 

undoubtedly more difficult either by wet or dry electrodes. Therefore, an alternative 

approach to easily extract high quality SSVEPs becomes a crucial issue in BCI 

community.   

The topography of SSVEP often shows a widespread scalp distribution because 

the SSVEP mainly projected from the visual cortex to the occipital areas, neck, 

forehead or even the face areas. Therefore, it’s reasonable to believe that one could 

measure the SSVEP over non-hair-bearing areas. To our best knowledge, no study has 

yet systematically and quantitatively compared SSVEPs from different scalp and face 

locations using high-density EEG data.  This study aims to answer two main questions: 

(1) Can SSVEP be measured from non-hair-bearing areas? What is the quality of the 

signals compared against that from the hair-covered area? (2) How many channels of 

non-hair-bearing SSVEP data would be needed to archive the same SNR measured 

from the occipital areas in SSVEP experiments? If the proposed non-hair-bearing 

montage approves feasible, the practicality of an SSVEP BCI system can be 

significantly improved, especially used in conjunction with dry EEG sensors such as 

non-contact [18] or polymer based electrodes [15]. 

3.2 METHODS 

Brain activities can be acquired invasively or noninvasively. Invasive 

measurement involves brain surgery that is not acceptable for healthy subjects. 

Noninvasive measurement, such as PET, MRI, and MEG, are usually expensive, 
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constrained and impractical in real-life environments. Bridging the gap between 

laboratory demonstration and real-life applications remains a challenge in the BCI 

community. EEG measures the voltage fluctuations within the neurons of the brain as 

projected onto the scalp. The measurement devices are inexpensive, convenient, and 

amenable to diverse environments. There are several commercial products featuring 

portability, wireless capability and low cost for wide variety of purposes [5][34][35]. 

EEG therefore seems to be a reasonable alternative for daily use. In this section, we 

cover the basic hardware design for measuring EEG from the scalp as well as a simple 

overview of diverse electrodes. Finally we address a neurological study exploring 

different approaches to collect EEG.  

3.2.1 STIMULI AND PROCEDURE 

The visual stimulus was a 5 x 5 cm square coded and rendered at the center of 

a 21” CRT monitor with a 120Hz refresh rate. The stimulus frequencies ranged from 

9Hz to 13Hz with an interval of 1Hz. In general, this cannot be implemented with a 

fixed rate of black/white flickering pattern due to a limited refresh rate of a LCD 

screen. Wang et al. [8] developed a method that approximates target frequencies of 

SSVEP BCI with variable black/white reversing intervals. Based on this approach, any 

stimulus frequency up to half of the refresh rate of the screen can be realized. The 

stimulus program was developed in Microsoft Visual C++ using the Microsoft 

DirectX 9.0 framework and rendered on Windows XP platform.  
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Subjects were seated in a comfortable chair in front of the monitor. A chin rest 

was used to fix the head 35 cm from the screen. The experiment consisted of four 

sessions, each including five 30s-long trials for the five different stimulus frequencies, 

which were randomly presented. Subjects were asked to gaze on the flickering 

stimulus for 30 seconds and then take a ~15s rest after each trial in order to avoid 

visual fatigue caused by flickering. There was a several-minute break between two 

sessions. 

3.2.2 DATA ACQUISITION 

(A) Basic Electronic Property 

Figure 3.1 depicts the major components of an EEG recording system. The 

ground electrode is connected to the ground of differential amplifier that is isolated 

from line power. Two recording electrodes, e1 and e2, measure the potential of two 

 
 

Figure 3.1 The function blocks of an EEG recording system, adapted from [36]. Note that, 
Diff Amp stands for differential amplifier, and ADC stands for analog-to-digital 
conversion. 
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sites of scalp with respect to the common ground. The differential amplifier can 

eliminate the common-mode potential and amplifies the potential of two recording 

electrodes’ sites. The amplified signals are then filtered and substantially amplified by 

the gain amplifier. Here, the filter could be a notch filter to reject line noise, or high-

pass, log-pass filters. The gain amplifier substantially amplifies the signal (e.g., 

amplified by a factor of 10,000). Next, the ADC digitalizes the signal for further signal 

processing or storage.  

(B) Wet and Dry Electrodes 

In the most-recent BCI systems, sensors also play an important role in term of 

obtaining high quality EEG signals [16][18][33]. Ag/AgCl (silver/silver-chloride) 

electrodes (also known as wet electrodes) have been used for many years for collecting 

EEG noninvasively. During experiment preparation, skilled technicians usually abrade 

the scalp at the electrode site and apply conductive gel between scalp and electrode in 

order to degrade the impedances (usually less than 10K ohm). Another wet-like 

electrode is a sponge-saline electrode [34]. The sponge absorbs saline water and 

attaches directly on the scalp before an experiment. Although the impedance of sponge-

saline electrodes is higher than that of the conductive gel electrodes, the advantages of 

short time preparation and easily washing after an experiment makes it acceptable to 

subjects. As a result, although wet sensors have low impendence because of the 

conductive gel that is applied, it still suffers drawbacks such as non-reconfigurability, 

not easily washable, lack of ease-of-use.  
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Another type of electrodes, dry electrodes, requires no conductive material 

between scalp and electrodes [15][16][18][19]. Chou et al. [16] developed a Micro-

Electro-Mechanical Systems (MEMS)-based silicon spiked electrode array to collect 

EEGs. This sensor penetrates the stratum corneum of the skin and obtains superior 

electrically conducting characteristics without requiring conduct gel on the skin. 

However, the authors didn’t mention the endurance and fragility of the sensors in that 

study, such as whether the tip could break off [17]. An alternate dry electrode, 

g.SAHARA, developed by g.tec [35], is consisted of eight probes made of special 

golden alloy within a male snap-in button. Each probe has sufficient length to go 

through the hair to reach the scalp. Chi et al [18] developed noncontact sensors that 

operate primarily through capacitive coupling. All of these sensors prove the ability to 

collect EEGs noninvasively when connected with specific hardware. As a result, 

although dry sensors have many advantages, including little preparation time and 

washing needed, ease-of-use, and reconfigurability, the problem of reducing the high 

impendence remains. 

As SSVEPs predominantly originate in the visual cortex, it seems natural to 

collect the SSVEP signals by placing wet/dry electrodes on the occipital regions over 

visual cortex. Some studies even performed an off-line pilot experiment to obtain the 

optimal electrode locations prior to on-line BCI practices [14][30]. However, no matter 

how people perform the EEG recording from hair-covered areas, they still suffer from 

complications such as skin preparation and insufficient skin-electrode contact area due 

to hair. These complications make BCI impractical for routine use in daily life. To 
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overcome these problems, dry contact- and non-contact-type EEG sensors have been 

developed to enable user-friendly EEG measurements to improve the usability of BCIs 

[18][19].  However, a major concern over the use of dry electrodes for EEG 

measurement is that the SNR of the acquired signals might not be as good as that from 

the gel based electrodes BCIs [18][19]. Furthermore, for some BCI users such as 

quadriplegic patients lying face up during ventilation, assessing the occipital sites are 

undoubtedly more difficult either by wet or dry electrodes. Therefore, an alternative 

approach to extract high quality SSVEPs becomes a crucial issue in BCI community. 

Five healthy male subjects with normal or corrected to normal vision 

participated in this experiment. All participants were asked to read and sign an 

informed consent form approved by the UCSD Human Research Protections Program 

before participating in the study. 

EEG data were recorded using Ag/AgCl electrodes from 256 locations 

distributed over the entire head using a BioSemi ActiveTwo EEG system (Biosemi, 

Inc.). Figure 3.2 shows the 256-channel cap that covers not only the brain areas, but 

also the non-hair-bearing areas including the forehead, face, behind-the-ear, and neck 

areas. Additional bipolar horizontal and vertical EOG electrodes monitored eye 

movements. Electrode locations were measured with a 3-D digitizer system (Polhemus, 

Inc.). All signals were amplified and digitized at a sample rate of 2,048 Hz. All 

electrodes were with reference to the nasion. 
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3.2.3 EEG DATA PRE-PROCESSING  

The 256-channel EEG data were first down-sampled to 256Hz. For each trial, 

six 4s-long EEG epochs were extracted according to event codes generated by the 

stimulus-presentation program [8]. For each stimulus frequency, the epochs from the 

four sessions were concatenated to form a dataset of 24 epochs. Epochs with severe 

artifacts (such as movement artifacts and eye blinks) were manually removed from the 

dataset. To remove the spontaneous EEG activities, the remaining epochs were 

averaged to obtain the multi-channel SSVEP signals.  

3.3 SIGNAL PROCESSING ALGORITHMS  

The purpose of applying any signal-processing algorithms on the collected EEG 

signals is to extract useful information for further use. This process is also called 

feature extraction. Depending on the different applications and domain of use, one can 

select specific some algorithms to maximize the performance of their system. For 

instance, the Oddball Paradigm experiments usually average the time-domain EEGs 

across different trials to explore the positive/negative deflection after a stimulus 

delivered under a specific set of events [37]. In this section we address several useful 

methods to extract SSVEP signals. 

(A) Noise, artifact, fundamental signal, and signal to noise ratio 

The term ‘noise’ usually refers to spontaneous neurological activities found in 

the background of the EEG recording. In contrast, artifacts are the unexpected signal 
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that is unrelated to brain activity, such as eye blinks. Both of them can contaminate the 

fundamental signal. 

When we apply algorithms to extract useful information from the collected 

EEGs, we have to know what kind of signal is needed. In the most-recent SSVEP-

based BCI systems with frequency-modulation-based visual stimuli, the visual stimuli 

are likely, but not limited to, coded at range of alpha-waves (8-13Hz) due to the fact 

that one can obtain highest SNR and highest amplitude response [30]. The fundamental 

signals of interest in an SSVEP-based BCI system are the signals in the alpha band 

elicited by the visual stimuli. 

Signal to noise ration (SNR) can be interpreted the ratio of fundamental signal 

power to the noise power [38]. As mentioned in the last paragraph, one can arbitrarily 

define the frequency range of the fundamental signal and noise, and evaluate the SNR 

by squaring the amplitude after FFT. In general, a high SNR indicates the data contains 

low noise. This study used SNR to evaluate the quality of SSVEPs. Fast Fourier 

Transform (FFT) was used to calculate the amplitude spectrum of the 4s-long EEG data 

(i.e., y=|FFT(x)|). The frequency resolution of the resulting amplitude spectrum was 

0.25Hz. The SNR was defined as the ratio of the amplitude of the SSVEP (at the 

stimulating frequency) to the mean amplitude of the background noise (within the 

frequency band of 8-15Hz, which includes 28 frequency bins) 

                                                                𝑆𝑁𝑅 =    !"  ×  !(!)
! ! !!(!)!"

!!!
,  where k≠f  (3.1) 

(B) Fast Fourier Transform (FFT) 
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FFT is a very useful function to convert the signal from the time domain into its 

equivalent frequency domain representation. When we applied this approach on 

SSVEPs, the collected signals are decomposed into individual sinusoidal components 

that can be recognized and evaluated independently.  

(C) Principle component analysis (PCA) 

PCA is used to find the dominant component that consists of the linear 

combination from the original data set and the weight matrix. In other word, PCA finds 

a square weight set W that transfers the EEG data set X into a new data set Y with the 

same dimension, such that the first principal component of new data set Y is the linear 

combination of the EEG data set X with maximum amplitude variance. Note that, the 

first principal component may or may not the desired signal. For instance, the original 

data set were contaminated by strong line nose while recording, the first dominant 

decomposed signal is very likely line nose instead of SSVEPs.  

(D) Independent component analysis (ICA) 

ICA is one of the successful statistic approaches used to separate the EEG 

signals into independent neurological activities and other noises [39]. Consider an EEG 

data set X composed of independent source S in which X=AS, where A is a mixing 

matrix. After applying ICA, a recovered source U is composed of a spatial filter matrix 

W times X, i.e. U=WX. The detailed explanation of infomax ICA can be found in [39]-

[43]. In general, ICA is relatively complex algorithm and presents a significant 

challenge in real-time BCI applications [38]. 

(E) Canonical Correlation Analysis 
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Canonical Correlation Analysis (CCA) has the ability to find two basis vectors 

of different data sets, such that the projection of the original data set to the basis vectors 

is maximally correlated. For instance, consider the two data sets x and y that can be 

represented by X = wx
Tx, and Y = wy

Ty where wx
T and wy

T are linear combination 

coefficients, and X, Y are canonical variables, respectively. Now, we attempt to solve  

                                                 max𝒘!,𝒘! 𝜌 =
![!,!]
! ! ![!]

  (3.2) 

where C is covariance and V is variance. Without loss of generality we could assume a 

zero mean for both C and V. Therefore, the above expression can be written   

𝜌 =   
𝐸[𝑋𝑌]

𝐸 𝑋! 𝐸[𝑌!]
 

= 
![𝒘!!𝒙𝒚!𝒘!]

![𝒘!!𝒙𝒙!!!]![𝒘!!𝒚𝒚!𝒘!]
 

                                             = 
𝒘!!𝑪!"𝒘!

𝒘!!𝑪𝒙𝒙𝒘𝒙𝒘𝒚𝑻𝑪𝒚𝒚𝒘!
  (3.3) 

where Cxx, Cxy, and Cyy are the covariance matrices. Therefore, the maximum ρ with 

respect to wx and wy is the maximum canonical correlation.  

Assume = 𝑐𝑜𝑣(𝑥, 𝑥)!! , = 𝑐𝑜𝑣 𝑦,𝑦 ,!!  a = wx , b = wy ,  

𝜌 =   
𝑎! 𝑏!"

𝑎! 𝑎!! 𝑏! 𝑏!!
 

Now, the question is equal to maximize the 𝑎! 𝑏!"  subject to  
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𝑎! 𝑎 = 1  𝑎𝑛𝑑  𝑏! 𝑏
!!

= 1  ,
!!

 

applying Lagrange multiplier: 

max L = 𝑎! 𝑏!"  + 𝜆!  [𝑎! 𝑏]!!  + 𝜆!  [𝑎! 𝑏]!!  , 

applying partial derivative:  

→

𝜕𝐿
𝜕𝑎 =    𝑏

!"
+ 2𝜆!   𝑎 = 0

!!
𝜕𝐿
𝜕𝑏 =    𝑎

!

!"
+ 2𝜆!   𝑏 = 0

!!

 

→
𝑎! 𝑏

!"
+ 2𝜆!  𝑎! 𝑎 = 0

!!

𝑏! 𝑎
!

!"
+ 2𝜆!  𝑏! 𝑏 = 0

!!

 

→
𝑎! 𝑏

!"
= −2𝜆!  

𝑏! 𝑎
!

!"
= −2𝜆!  

 

→
𝑏

!"
= −2𝜆!   𝑎

!!

𝑎
!

!"
= −2𝜆!   𝑏

!!

 

multiply 𝑎𝑛𝑑!!
!!!"   !!

!!!"  respectively: 

→
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!"
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since 𝑎!
!" =    𝑎!" ,  

→
      

!!

!!!"
𝑏

!"
= −2𝜆!   𝑎

!

!"

      
!!

!!!"
𝑎

!"
= −2𝜆!   𝑏

!"

 

→
      

!!

!!!"
𝑏

!"
= 4𝜆!!    𝑏

!!

      
!!

!!!"
𝑎

!"
= 4𝜆!!    𝑎

!!

 

therefore, the canonical correlations can be found by solving the following eigenvalue 

equations: 

𝑏
!"

!!

!!!"

!!

!!
= 4𝜆!!   𝑏 =   𝜌

!  𝑏

𝑎
!"

!!

!!!"

!!

!!
= 4𝜆!!   𝑎 = 𝜌!  𝑎

 

More detail usage can be found in [44]. Several studies have proposed applying 

this approach in EEG data [5][14]. In the SSVEP-based BCI application, the source 

data sets (x) consisted of SSVEPs and the reference data set (y) consisted of sinusoidal 

and cosine with second harmonic signals. The reference data set used the fundamental 

stimulus frequency plus the second harmonic frequency as follows: 

                             y(t) = 

𝑠𝑖𝑛(2𝜋𝑓𝑡)
𝑐𝑜𝑠(2𝜋𝑓𝑡)
𝑠𝑖𝑛(4𝜋𝑓𝑡)
𝑐𝑜𝑠(4𝜋𝑓𝑡)

, t = !
!"
   , !
!"
   ,… !

!"
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where f is the stimulus frequency, SR is sampling rate and N is the number of data 

points. Note that, the third or higher harmonic frequency might not improve the 

performance [14]. 

Figure 3.2 also graphically shows the basic CCA usage. CCA acts similar to a 

special filter that translates the multi-dimension data into one dimension, such that the 

projected X and Y are form one dimensional dataset with maximum correlation. 

 
Figure 3.2 An graphic illustration of the CCA algorithm. Note that the x and y 
are projected vectors on specific basis that can contribute maximum 
correlation. 
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In this section, we addressed the definition of noise, artifact, fundamental 

signals, and SNR. Moreover, some useful methods of manipulating signals were also 

presented. It is not easy to find a method that can apply to every application such that 

the performance is significantly improved. One should consider the purpose and 

hardware resource to choose an optimal algorithm. 

3.3.1 SINGLE-CHANNEL EVALUATION 

Since this study aims to investigate the SNR of SSVEPs recorded from non-

hear-bearing areas, the SNR values for all electrodes were calculated, sorted, and 

categorized into four areas as indicated in Figure 3.3 In each of the four areas, the 

electrode with the highest SNR was selected for comparison. In the hair-covered area 

 
                        (a)                                                    (b) 
Figure 3.3 Electrode placement for the hair-covered and non-hair-bearing areas. (a) A 
subject wore a 256-channel electrode cap. The red line roughly delineates the boundaries 
between the hair and non-hair-bearing areas of the subject. Blue, magenta and brown 
circles represent the electrodes locate at the forehead/face, behind-the-ear, and neck 
areas, respectively. (b) Top view of the distribution of the scalp electrodes. 
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delineated by the red line, the electrode with the highest SNR was located in the 

occipital region. This procedure was applied to all stimulus frequencies. 

3.3.2 MULTI-CHANNEL EVALUATION 

The spatial filtering technique has been widely used in EEG signal processing 

to improve the SNR of the EEG signals recorded from multiple scalp locations. In 

previous studies of SSVEP-based BCIs, the CCA algorithm has proved to be very 

efficient for improving the SNR of SSVEP signal [14]. CCA can calculate the 

canonical coefficients for the two different datasets (in this case, EEG dataset and a 

reference signal set) such that the correlation between the two canonical variables was 

maximized. The reference signal set is defined as 

                                               { sin(2𝜋𝑓𝑡)cos  (2𝜋𝑓𝑡)}  (3.2) 

where f is the stimulating frequency. In practice, the coefficients for the EEG dataset 

could be used as spatial filters to compute linear combinations of EEG data from all 

electrodes. For multi-channel data, the SNR of SSVEPs was calculated using the 

projection of the multi-channel data (i.e., the canonical variable). 

The SNR of the multi-channel data was estimated by calculating the mean SNR 

of randomly selected combinations of electrodes from the 80 electrodes over the non-

hair-bearing areas. The number of selected electrodes ranged from 1 to 80. For each 

number, the SNR calculation was repeated 1,000 times with different electrode 

combinations. The SNR and electrode positions of the combination with the highest 

SNR were saved for further comparison. 
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3.4 RESULTS 

Figure 3.4 shows the SNR topography and the normalized amplitude spectrum 

on different head areas for Subject 1 and Subject 5. As expected, the occipital area has 

the highest SNR of SSVEP signals, indicating that the brain sources might locate in or 

near the visual cortex. The SNR depended on the distance between the electrode 

position and the occipital region. As shown in Figure 3.4 (a) and (b), the SNR 

decreased at other brain areas (e.g., the frontal area) and non-hair-bearing areas. 

Although the SNR of SSVEP signals recorded from the non-hair-bearing areas was 

     
                            (a)                                                                     (b) 
 

 
                            (c)                                                                      (d) 
Figure 3.4 Scalp topography of the SNR’s of SSVEPs at 10 Hz for (a) Subject 1, (b) 
Subject 5. Single-channel SNR from the occipital and non-hair-bearing areas for (c) Subject 
1, (d) Subject 5. 
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lower than that recorded from the occipital region, signals acquired from the non-hair-

bearing areas still showed a clear frequency response at the stimulating frequency (see 

Figure 3.4 (c) and (d)). This finding confirmed our hypothesis that the SSVEPs might 

be detectable from EEG signals measured from the non-hair-bearing areas on the head. 

                            
                               (a) (b) 

 
                                (c) (d) 

 
                                 (e)        
                                             
Figure 3.5 The relationship between the SNR and the number of electrodes used in 
the CCA processing. (a) - (e) correspond to Subject 1-5, respectively. The non-hair-
bearing electrodes include those from the face, neck, and behind-the-ear areas. The 
signals measured from the occipital electrodes had the highest SNR. 
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Figure 3.5 illustrates the SNRs of SSVEP signals contributed by combinations 

of data from multiple electrodes placed at the non-hair-bearing areas for all subjects. 

For a single electrode, the occipital electrode has a much higher SNR than any 

electrode from the non-hair-bearing areas. In general, the SNR increased as the number 

of electrodes involved in the CCA processing increased (as indicated by the blue solid 

line in Figure 3.5). For all the subjects, the best combination of multiple electrodes 

 
                            (a)                                       (b) 

 
                           (c)                                               (d) 

 
                          (e) 
 
Figure 3.6 The 2-D projection for the placement of 10 electrodes that result 
in the highest SNR for each of the 5 subjects. (a) - (e) correspond to Subjects 
1-5, respectively. The black dots indicate the electrode locations over the 
non-hair areas.  
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from the non-hair-bearing areas reached an SNR comparable to the occipital electrode. 

In particular, three subjects (Subjects 2, 3 and 5) had SNRs of non-hair SSVEPs even 

higher than those of the occipital electrode. All subjects reached comparable SNRs by 

using the optimal occipital electrode and a combination of 10 non-hair-bearing 

electrodes. For Subjects 2, 3, and 5, using as few as five non-hair-bearing electrodes 

could exceed the SNR of the occipital electrode.  

Next, this study explores the optimal placements of multi-channel non-hair-

bearing electrodes to realize a practical SSVEP-based BCI system. Figure 3.6 shows 

the electrode placements with the highest SNR using 10 electrodes. For all the subjects, 

the 10 optimal electrodes covered multiple non-hair-bearing areas, all contributing to 

the improvement of the SNR of SSVEPs. This individualized electrode montage has 

the potential to result in many practical BCI applications. 

3.5 CONCLUSION  

SSVEP-based BCI applications have attracted a lot of attention recently. 

However, to our best knowledge, no study has systematically compared the SNR of 

SSVEPs measured from hair-covered and non-hair-bearing areas. This study showed 

that, across the five subjects, EEG recordings from non-hair-bearing areas, including 

the face, neck, and behind the ear areas, could reliably measure SSVEPs. Generally 

speaking, the rank of the SNR was the occipital area > behind-the-ear > neck area ≈ 

face area. A lower SSVEP SNR obtained from the neck and face areas might be 

attributed to the contamination from the muscle activity to those areas.  
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The comparison between hair-covered and non-hair-bearing area showed that 

the quality of SNR depends on the electrodes selections. As shown in Figure 3.3, the 

SNR of non-hair-bearing SSVEPs of Subject 3 matched well with that of the reference 

channel by using only two electrodes. The comparable results were found in Subjects 2 

and 5. These results suggested that, if an optimal non-hair electrode combination could 

be known in advance, one could achieve comparable SNRs of SSVEP by using 

electrodes placed on the non-hair-bearing areas and the occipital area.  

Using laboratory-oriented EEG setups for real-world SSVEP BCI applications 

is known to be impractical for routine use. An alternative approach to obtain 

informative EEG signals over no-hair-bearing sites is thus highly desirable. The results 

of this study demonstrated the feasibility of using a non-hair-bearing montage for 

measuring SSVEP, which we believe might significantly improve the practicality of 

BCI systems in real-life environments. If the proposed apparatus proves feasible in 

other BCI practices, a much wider range of applications of BCI will emerge.  
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Chapter 4 
 
A Cell-Phone Based Brain-Computer 
Interface for Communication in Daily 
Life 
 
 

Moving a brain-computer interface (BCI) system from a laboratory 

demonstration to real-life applications still poses severe challenges to the BCI 

community. This study aims to integrate a mobile and wireless electroencephalogram 

(EEG) system and a signal-processing platform based on a smartphone into a truly 

wearable and wireless online BCI. Its practicality and implications in routine BCI are 

demonstrated through the realization and testing of a steady-state visual evoked 

potential (SSVEP)-based BCI. This study implemented and tested online signal 

processing methods in both time and frequency domains for detecting SSVEPs. The 

results of this study showed that the performance of the proposed smartphone based 

platform was comparable, in terms of information transfer rate (ITR), with other BCI 

systems using bulky commercial EEG systems and personal computers. To the best of 

our knowledge, this study is the first to demonstrate a truly portable, cost-effective, 

and miniature smartphone based platform for online BCIs 
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4.1 BACKGROUND 

Brain-computer interface (BCI) systems acquire electroencephalography (EEG) 

signals from the human brain and translate them into digital commands, which can be 

recognized and processed on a computer or computers using advanced algorithms [1]. 

It can also provide a new interface for the users who have motor disabilities to control 

assistive devices such as wheelchairs.  

Although EEG-based BCIs have already been studied for several decades, 

moving a BCI system from a laboratory demonstration to real-life applications still 

poses severe challenges to the BCI community [22]. To design a practical BCI system, 

the following issues need to be addressed [12][27][45]: (1) ease of use, (2) robustness 

of system performance, and (3) low-cost hardware and software. In real-life 

applications, BCI systems should not use bulky, expensive, wired EEG acquisition 

device and signal processing platforms [20]. Using these devices will not only cause 

discomfort and inconvenience for the users, but also affect their ability to perform 

routine tasks in real life. Recently, with advances in the biomedical sciences and 

electronic technologies, the development of a mobile and online BCI has been put on 

the agenda [19]. 

Several studies have demonstrated the use of portable devices for BCIs [13] 

[19][20]. Lin et al. [20] proposed a portable BCI system that can acquire and analyze 

EEG signals with a custom DSP module for real-time cognitive-state monitoring. 

Shyu et al. [13] proposed a system to combine an EEG acquisition circuit with an 

FPGA-based real-time signal processer. Recently, with the advances in integrated 
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circuit technology, smartphones combined with DSP [21] and built-in Bluetooth 

function have become very popular in the consumer market. Compared with the PC-

based or customized platforms, the ubiquity, mobility, and processing power of 

smartphones make them a potentially vital tool in creating on-line and portable BCIs 

that need real-time data transmission, signal processing, and feedback presentation in 

real-world environments.  

Although the EEG-based BCI technology using PCs and the Bluetooth 

transmission of bio-signals have been well established in previous studies, the 

feasibility of a portable smartphone based BCI, which supports biomedical signal 

acquisition and on-line signal processing, has never been explored. This portable 

system emphasizes usability "on-the-go", and the freedom that smartphones enable. If 

a smartphone based BCI proves to be feasible, many current BCI demonstrations (e.g. 

gaming, text messaging, etc.) can be realized on smartphones in practice and 

numerous new applications might emerge. This study integrates a portable, wireless, 

low-cost EEG system and a smartphone based signal processing platform into a truly 

wearable online BCI. The system consists of a four-channel bio-signal 

acquisition/amplification module, a wireless transmission module, and a Bluetooth-

enabled smartphone. The goals of this study are to demonstrate the practicality of the 

proposed system by specifically answering the following questions: (1) is the quality 

of the EEG data collected by the custom wireless data acquisition device adequate for 

the routine BCI use? (2) is it feasible to implement time- and/or frequency-domain 

signal-processing algorithms (e.g., EEG power spectrum estimation and EEG spatial 
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filtering approaches) on a regular smartphone in real time? 

To address these technical issues, a steady-state visual evoked potential 

(SSVEP)- based BCI, which has recognized advantages of ease of use, little user 

training and high information transfer rate (ITR) was employed as a test paradigm. 

SSVEP is the electrical response of the brain to the flickering visual stimulus at a 

repetition rate higher than 6 Hz [4], which is characterized by an increase in amplitude 

at the stimulus frequency. We adopted the widely used frequency-coding approach to 

build an online BCI on a smartphone. In SSVEP BCI, the attended frequency-coded 

targets of the user are recognized through detecting the dominant frequency of the 

SSVEP. To this end, several signal-processing methods have been proposed and 

demonstrated [46]. Among them, power spectrum density (PSD) estimation (e.g., Fast 

Fourier Transform (FFT)) is most widely used in online SSVEP BCIs [27][30][46]. 

Recently, a Canonical Correlation Analysis (CCA) method was proposed and 

implemented in an online multi-channel SSVEP BCI, achieving an ITR of 58 bits/min 

[14]. To explore the plausibility of an on-line smartphone based BCI platform, this 

study implemented and tested both single-channel FFT and multi-channel CCA 

methods for processing SSVEPs induced by attended targets. 

4.2 Method  

 In this Section, we address the BCI system in terms of the hardware and 

software architecture. 
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4.2.1 SYSTEM HARDWARE DIAGRAM 

A typical VEP-based BCI using frequency coding consists of three parts: a 

visual stimulator, an EEG recording device and a signal-processing unit [46]. Figure 

4.1 depicts the basic scheme of the proposed mobile and wireless BCI system. This 

study adapts a mobile and wireless EEG headband from [19] as the EEG recording 

device and a Bluetooth-enabled smartphone as a signal-processing platform.  

The visual stimulator comprises a 21-inch CRT monitor (140Hz refresh rate, 

800x600 screen resolution) with a 4 x 3 stimulus matrix constituting a virtual telephone 

keypad that includes digits 0-9, BACKSPACE and ENTER. The stimulus frequencies 

ranged from 9Hz to 11.75Hz with an interval of 0.25Hz between two consecutive 

digits. In general, this cannot be implemented with a fixed rate of black/white 

flickering pattern due to a limited refresh rate of a LCD screen. Wang et al [8] recently 

 
Figure 4.1 The system diagram of the mobile and wireless BCI system. 
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developed a new method that approximates target frequencies of SSVEP BCI with 

variable black/white reversing intervals. For example, presenting an 11Hz target 

stimulus on a screen refreshed at 60-Hz can be realized with 11-cycle black/white 

alternating patterns lasting [3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2] frames in a 

second. Based on this approach, any stimulus frequency up to half of the refresh rate of 

the screen can be realized. The stimulus program was developed in Microsoft Visual 

C++ using the Microsoft DirectX 9.0 framework. 

The EEG acquisition unit is a 4-channel, wearable bio-signal acquisition unit 

[45]. EEG signals were amplified (8,000x) by instrumentation amplifiers, Band-pass 

filtered (0.01-50 Hz), and digitized by analog-to-digital converters (ADC) with a 12-bit 

resolution. To reduce the number of wires for high-density recordings, the power, 

clocks and measured signals were daisy-chained from one node to another with bit-

serial outputs. That is, adjacent nodes (electrodes) are connected together to (1) share 

the power, reference voltage, and ADC clocks and (2) daisy chain the digital outputs. 

Next, TI MSP430 was used as a controller to digitize EEG signals using ADC via serial 

peripheral interface with a sampling rate of 128Hz. The digitized EEG signals were 

then transmitted to a data receiver such as a smartphone via a Bluetooth module. In this 

study, Bluetooth module BM0203 was used. The whole circuit was integrated into a 

light-weight headband. 

4.2.2 SYSTEM SOFTWARE DESIGN 

The signal-processing unit was realized using a Nokia N97 (Nokia Inc.) 

smartphone. A J2ME program developed in Borland JBuilder2005 and Wireless 
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Development Kit 2.2 were installed to perform online procedures including (1) 

displaying EEG signals in time-domain, frequency-domain and CCA-domain on the 

LCD screen of the smartphone, (2) band-pass filtering, (3) estimating the dominant 

frequencies of the VEP using FFT or CCA, (4) delivering auditory feedback to the user 

and (5) dialing a phone call. The resolution of the 3.5-in touch screen of the phone is 

640 x 360 pixels.  

When the program is launched, the connection to the EEG acquisition unit 

would be automatically established in just a few seconds. The EEG raw data are 

transferred, plotted and updated every second on the screen. Since the sampling rate is 

128 Hz, the screen displays about 4-second of data at any given time. Users can choose 

the format of the display between time-domain and frequency-domain. Under the 

frequency-domain display mode, the power spectral densities of 4-channel EEG will be 

plotted on the screen and updated every second. An auditory and visual feedback 

would be presented to the user once the dominant frequency of the SSVEP is detected 

by the program. For example, when number 1 is detected by the system, the digit “1” 

would be shown at the bottom of the screen and “ONE” would be said at the same time. 

Software operation and user interface include several functions. First, the 

program initiates a connection to the EEG acquisition unit. Second, four-channels of 

raw EEG data are band-pass filtered at 8-20 Hz, and then plotted on the screen every 

second. Third, the display can be switched to the power spectrum display or time-

domain display by pressing a button at any time. Figure 4. 1 includes a screen shot of 

the smartphone, which plots the EEG power across frequency bins of interest. Fourth, 
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an FFT or CCA mode can be selected. In the FFT mode, a 512-point FFT is applied to 

the EEG data using a 4-second moving window advancing at 1-second steps for each 

channel. In the CCA mode, it uses all four channels of the EEG with a 2-second 

moving window advancing at 1-second steps continuously. The maximum window 

length is 8 second. Detailed procedures and parameters of the CCA method can be 

found in [14]. To improve the reliability, a target is detected only when the same 

dominant frequency is detected in two consecutive windows (at time k, and k+1 

seconds, k≥4 in the FFT mode, and ≥2 in the CCA mode). The subjects were 

instructed to shift their gaze to the next target once they heard the auditory feedback. 

4.3 BCI EXPERIMENT DESIGN 

Ten volunteers with normal or corrected to normal vision participated in this 

experiment. All participants were asked to read and sign an informed consent form 

before participating in the study. The experiments were conducted in a typical office 

room without any electromagnetic shielding. Subjects were seated in a comfortable 

chair at a distance of about 60 cm to the screen. Four electrodes on the EEG headband 

were placed 2 cm apart, surrounding a midline occipital (Oz) site, all referred to a 

forehead midline electrode (the sensor array is shown in Figure 4. 1). 

FFT and CCA based approaches were tested separately. All subjects 

participated in the experiments during which the smartphone used FFT to detect 

frequencies of SSVEPs, and four subjects were selected to do a comparison study 

between using FFT and CCA for SSVEP detection. At the beginning of experiment, 

each subject was asked to gaze at some specific digits to confirm the wireless 
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connection between the EEG headband and the smartphone. In the FFT mode, the 

channel with the highest signal-to-noise ratio, which is based on the power spectra of 

the EEG data, was selected for online target (digit) detection. Four of 10 subjects who 

have better performance (i.e. higher ITR in the FFT mode) were selected to further test 

the CCA-based SSVEP BCI. The test session began after a couple of short practice 

sessions. The task was to input a 10-digit phone number: 123 456 7890, followed by 

an ENTER key to dial the number. Incorrect key detection could be erased by 

attending to the “BACKSPACE” key. In the CCA mode, the same task was repeated 

six times, leading to 11x6 selections for each subject. The EEG in the CCA 

experiments were saved with feedback codes for an offline comparison study between 

FFT and CCA. The percentage accuracy and ITR [1] were used to evaluate the BCI 

performance. 

4.4 RESULTS 

Tables 4.1 and 4.2 show results of SSVEP BCI using FFT and CCA, 

respectively. In the FFT mode, all subjects completed the phone-dialing task with an 

average accuracy of 95.9±7.4%, and an average time of 88.9 seconds. Seven of 10 

subjects successfully inputted 11 targets without any errors. The average ITR was  
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Table 4.1 FFT-based online test results of SSVEP BCI in 10 subjects. 
 

Subject Input 
length 

Time 
(second) 

Accuracy 
(%) 

ITR 
(bits/min) 

s1 11 72 100 32.86 

s2 11 72 100 32.86 

s3 19 164 78.9 14.67 

s4 11 73 100 32.4 

s5 17 131 82.4 17.6 

s6 11 67 100 35.31 

s7 11 72 100 32.86 

s8 13 93 92.3 20.41 

s9 11 79 100 29.95 

s10 11 66 100 35.85 

Mean 12.6 88.9 95.9 28.47 
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Table 4.2 CCA-based test results (ITR) of SSVEP BCI in four subjects. 
 

Subject Online 
CCA 

Online  
FFT 

Offline  
FFT 

Putative ITR from off-line FFT 

Ch1 Ch2 Ch3 Ch4 

1 44.79 32.86 36.68 36.68 33.58 32.48 29.77 

2 46.25 32.86 26.49 26.49 10.51 5.91 9.29 

6 49.05 35.31 19.43 19.43 3.03 3.15 1.92 

10 43.18 35.85 15.24 2.2 8.46 15.24 4.21 

Mean 45.82 34.22 24.46 21.2 13.9 14.2 11.3 

 

28.47±7.8 bits/min, which was comparable to other VEP BCIs implemented on a high-

end personal computer [27]. Table 2 shows the results of SSVEP BCI using online 

CCA on the smartphone. CCA achieved an averaged ITR of 45.82±2.49 bits/min, 

which is higher than that of the FFT-based online BCI of the four participants (34.22 

bits/min). Applying FFT to the EEG data recorded during the experiments using the 

online CCA resulted in an averaged putative ITR of 24.46 bits/min, using the channel 

with the highest accuracy for each subject (cf. right columns of Table 4.2).  

4.5 CONCLUSIONS 

This study designed, developed and evaluated a portable, cost-effective, and 

miniature smartphone based online BCI platform for communication in daily life. A 

mobile, lightweight, wireless and battery-powered EEG headband was used to acquire 

and transmit EEG data of unconstrained subjects in real-world environments. The 
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acquired EEG data were received by a regular smartphone through Bluetooth. 

Advances in mobile phone technology have allowed phones to become a convenient 

platform for real-time processing of the EEG. The smartphone based platform propels 

the mobility, convenience and usability of online BCIs.  

The practicality and implications of the proposed BCI platform were 

demonstrated through the high accuracy and ITR of an online SSVEP-based BCI. To 

explore the capacity of the smartphone platform, two experiments were carried out 

using an online single-channel FFT and a multi-channel CCA algorithm. The mean ITR 

of the CCA mode was higher than that of the FFT approach (~45 bits/min vs. 34 

bits/min) in the four participants. An off-line analysis, which applied FFT to the EEG 

data recorded during the online CCA-based BCI experiments, showed the target 

selection was less accurate using FFT than CCA, which in turn resulted in a lower ITR 

(Table 2). The decline in accuracy and ITR in offline FFT analysis could be attributed 

to a lack of sufficient data for FFT to obtain accurate results. In other words, FFT, in 

general, required more data (longer window) than CCA to accurately estimate the 

dominant frequencies in SSVEPs (6 seconds vs. 4 seconds). Further, the multi-channel 

CCA approach eliminated the need for manually selecting the ‘best’ channel prior to 

FFT analysis. 

Despite this successful demonstration of a smartphone based BCI, there is 

room for improvement. Future directions include: (1) the use of dry EEG electrodes 

over the scalp locations covered with hairs to avoid skin preparation and the use of 

conductive gels; and (2) the use of higher-density EEG signals to enhance the 
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performance of the BCI [17]. However, high-density EEG might increase the 

computational need in BCIs. With advances in smartphone technology, more powerful 

onboard processors can be expected in a foreseeable future, enabling the 

implementation of more sophisticated algorithms for online EEG processing. 

Notably, in the current study, the smartphone was programmed to assess 

wearer’s SSVEPs for making a phone call, but it can actually be programmed to realize 

other BCI applications. For example, the current system can be easily converted to 

realize a motor imagery based BCI through detecting EEG power perturbation of 

mu/beta rhythms over the sensorimotor areas. In essence, this study is just a 

demonstration of a smartphone based platform technology that can enable and/or 

facilitate numerous BCI applications in real-world environments. 
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Chapter 5 
 
Developing an EEG-based On-line 
Closed-loop Lapse Detection and 
Mitigation System 
 
 

In America, sixty percent of adults reported that they have driven a motor 

vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-

related. This study translates previous laboratory-oriented neurophysiological research 

to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation 

(OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a 

smartphone based real-time EEG processing platform. Eleven subjects participated in 

an event-related lane-keeping task, in which they were instructed to manipulate a 

randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated 

in a 1st person view with an 8-screen and 8-projector immersive virtual-realty 

environment. When the subjects experienced lapses or failed to respond to events 

during the experiment, auditory warning was delivered to rectify the performance 

decrements. However, the arousing auditory signals were not always effective. The 

EEG spectra exhibited statistically significant differences between effective and 
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ineffective arousing signals, suggesting that EEG spectra could be used as a 

countermeasure of the efficacy of arousing signals. In this on-line pilot study, the 

proposed OCLDM System was able to continuously detect EEG signatures of fatigue, 

deliver arousing warning to subjects suffering momentary cognitive lapses, and assess 

the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line 

testing results of the OCLDM System validated the efficacy of the arousing signals in 

improving subjects' response times to the subsequent lane-departure events. This study 

may lead to a practical on-line lapse detection and mitigation system in real-world 

environments. 

5.1 BACKGROUND 

Fatigue-related performance decrements such as lapses in attention and slowed 

reaction time could lead to catastrophic incidents in occupations ranging from ship 

navigators to airplane pilots, railroad engineers, truck and auto drivers, and nuclear 

plant monitors. Fatigue (or drowsiness) “concerns the inability or disinclination to 

continue an activity, generally because the activity has been going on for too long”, 

defined by European Transport Safety Council [47]. Sixty percent of American adults 

reported that they have been driving a motor vehicle when feeling drowsy [48]. 

Furthermore, studies have concluded that at least 15-20% of fatal car accidents are 

fatigue-related [47][49][50]. Therefore, an earlier detection of driving fatigue is a 

crucial issue for preventing catastrophic incidents.  
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In order to detect the driving fatigue, several approaches have been proposed in 

scientific literature. (1) Computer vision-based systems [51][52][53]. Bergasa et al. 

[51] used a real-time image-acquisition system to monitor drivers’ visual behaviors 

that revealed a drivers’ alertness level. Six parameters: percentage of eye closure, eye 

closure duration, blink frequency, nodding frequency, face position, and fixed gaze 

were included in a fuzzy classifier for identifying a driver's vigilance level. D’Orazio 

et al. [52] proposed a neural classifier to recognize the eye activities from images 

without being constrained to head rotation or partially occluded eyes. (2) Driving 

behavior counter-measurements [45][54][55]. Lin et al. [45] performed an event-

related, lane-keeping driving task in an immersive virtual-reality environment. 

Subjects were asked to steer the stimulated car back to the middle of the cruising lane 

once they perceived the randomized lane-departure events. The results showed that the 

reaction time (RT), defined as the time interval between the onset of the simulated car 

deviation and the user response, could be improved by providing arousing auditory 

warning to the subjects combating with fatigue.  

A Brain Computer Interface (BCI) translates neural activities into control 

signals to provide a direct communication pathway between the human brain and an 

external device [1]. Broadly speaking, BCIs can be grouped into three categories: 

active, passive and reactive BCIs [56]. Electroencephalogram (EEG)-based passive 

BCIs measure brain electrical activities from the scalp and enrich a human–machine 

interaction with implicit information on the actual user state without conscious effort 

from the user [56]-[59]. Given appropriate signal-processing algorithms in the passive 
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BCIs, meaningful information can be directly extracted from the EEGs. For instance, 

time-domain analysis such as averaging across different channels, moving average 

with a specific window length, standard deviation, linear correlation and so on are 

useful approaches to extract information from EEGs [60]. In a frequency-domain 

analysis, the short-time Fourier transform (STFT) is often applied to the EEG data to 

estimate the power spectral density in distinct frequency bands, including delta (1-3 

Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (31-50 Hz). Many 

studies have shown that the brain dynamics linked to fatigue and behavioral lapses can 

be assessed by EEG power spectra [45][53][61]-[68], combinations of EEG band 

power [69], alpha spindle parameters [70] and autoregressive features [71]. These 

studies provided solid evidence for the neurophysiological correlates of fatigue and 

behavioral lapses. In short, while the physical- and behavioral symptom-based 

methods indirectly measure drivers’ cognitive states, the neurophysiology-based 

methods offer a more direct path to assess the brain dynamic linked to fatigue and 

behavioral lapses with a high temporal resolution. 

Efforts have also been made to assist individuals in combating fatigue and/or 

preventing lapses in concentration. For instance, Dingus et al. [72] and Spence and 

Driver [73] proposed using warning signals to maintain drivers’ attention. The types of 

warning signals could be auditory [73], visual [74], tactile [75] or mixed [74]. 

Empirical results showed that auditory warning could reduce the number of lapses in 

sustained-attention tasks, and could help subjects to maintain driving performance [54] 

[73]. More recent studies demonstrated that arousing auditory signals presented to 
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individuals experiencing momentarily behavioral lapses could not only agitate their 

behavioral responses but also change their EEG theta and alpha power in a sustained-

attention driving task [45][55][76]. However, the studies also showed that sometimes 

subjects did not respond to the arousing signals, and more importantly the EEG 

activity of these non-responsive episodes showed little or no changes following the 

ineffective warning [45][55][76]. Lin et al. [55] later demonstrated the feasibility of 

using the post-warning EEG power spectra to predict the (in)efficacy of the arousing 

warning. A caveat of their studies was that the arousing warning was delivered to 

subjects after they behaviorally failed to respond to lane-departure events. In reality, 

the delivery of arousing warning could have been too late because the behavioral lapse 

might have led to catastrophic consequences. A truly EEG-based lapse monitoring 

system needs to continuously and noninvasively observe EEG dynamics to predict 

fatigue-related lapses, deliver arousing signal to arouse the user, and assess the 

efficacy of the arousing signal to trigger a repeated or secondary warning signal if 

necessary. Furthermore, all of the aforementioned studies were conducted with 

traditional bulky and tethered EEG systems and were performed in well-controlled 

laboratories. However, it is argued that there might be fundamentally dynamic 

differences between laboratory-based and naturalistic human behavior in the brain 

[23]. It thus remains unclear how well the current laboratory-oriented knowledge of 

EEG correlates of cognitive-state changes can be translated into the highly dynamic 

real world.  
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This study aims to extend previous studies to design, develop and test a truly 

On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System that can 

continuously monitor EEG dynamics, predict fatigue-related lapses based on EEG 

signals, arouse the fatigued users by delivering arousing signals, and assess the 

efficacy of the arousing signal based on EEG spectra. This study hypothesized that 1) 

EEG spectral values would differ under different arousal states; 2) it is feasible to 

predict lapses based on the spectral changes in the spontaneous EEG; 3) arousing 

warning delivered to cognitively challenged subjects would mitigate cognitive lapse, 

and 4) the rectified performance would be accompanied by the changes in EEG power 

spectra. This study conducted an off-line experiment to explore the neurophysiological 

correlates of lapses, which tested the abovementioned hypotheses and guided the 

development of a truly OCLDM system. The system was then validated by an on-line 

driving experiment. Furthermore, to be practical for routine use in a car or workplace 

by freely moving individuals, the EEG-based lapse monitoring system must be non-

invasive, non-intrusive, lightweight, battery-powered, and easily to put on and take off 

[20]. This study thus also investigates the feasibility of using a practical, low-density, 

lightweight dry EEG headgear and a smartphone-based EEG-processing platform to 

build a truly mobile and wireless OCLDM System for real-life applications [77].   

5.2 MATERIALS AND METHODS 

 This Section describes the design and implementation of the off-line and on-

line driving experiments. Note that this study first explored the neurological responses 
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from the off-line recording, and then applied the results to the on-line driving 

experiment.  

5.2.1 SUBJECTS 

Eleven healthy and naive subjects (ten males and one female) with normal 

hearing and aged 20-28 years old participated in this study. All of them were free of 

neurological and psychological disorders. They were introduced how to manipulate 

the stimulated car and practiced ~10 min to get acquainted before the experiment 

started. None of them worked night shifts or traveled across multiple time zones in the 

previous two months. All participants were asked to read and sign the informed 

consent form before participating in the studies. After the experiments, subjects were 

asked to complete the questionnaire for assessing their cognitive states during the 

experiments. 

5.2.2 EXPERIMENTAL EQUIPMENT 

Experiments of this study were conducted in an 8-screen and 8-projector 

immersive virtual-realty (VR) environment that simulates the 1st person view scene of 

highway driving. This study adapted an event-related lane-departure driving paradigm 

originally proposed by Huang et al. that allowed objective and quantitative measures 

of momentary event-related brain dynamics following lane-departure events and 

driving-performance fluctuations over longer periods [76]. The VR scenes simulated 

driving at a constant speed (at ~100 km/hr) on a highway with the simulated car 
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randomly drifting away from the center of the cruising lane to simulate driving on 

non-ideal road surfaces or with poor alignment [54]. The scene was updated according 

to the land-departure events and the subject’s manipulation. The vehicle trajectory, 

user’s input, and lane-departure events could be accurately logged and time-

synchronized to the EEG recordings [20]. There were no traffic or distractive objects 

other than 4-lane roads and dark sky appeared in the VR while the simulated car was 

cruising on the highway. 

Thirty-two channel EEG data were collected from participants by the NuAmp 

system (32-channels Quick-Cap, Compumedics Ltd., VIC, Australia). The electrodes 

were placed according to a modified international 10-20 system with a unipolar 

reference at the right earlobe. The EEG activities were recorded with 500 Hz sampling 

rate and 16-bit quantization level.  

5.2.3 EXPERIMENTAL PARADIGM 

 Figure 5.1(a) shows the experimental paradigm of this study. The simulated car 

starts cruising at a fixed speed (~100km/hr) on the 3rd lane and drifting to either right 

or left with equal probability within 8-10 sec. Subjects were instructed to steer the 

simulated car back to the 3rd lane as soon as they noticed the lane drift. The simulated 

car keeps cruising on the right (or left) most lane if the subjects failed to respond to 

lane drift. The baseline period of each lane-departure epoch is defined as the 3 sec 

before the onset of a lane-drifting event. The empty circle in Figure 1(a) represents the 

unexpected lane-departure events marked as the “deviation onset”. After the deviation 
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onset, subjects were instructed to steer the simulated car back to the center of the 

cruising lane immediately (double circle), and the time when the subjects started 

steering was marked as the “response onset”. The moment that the simulated car 

reached the center of the cruising lane (circle with cross) was marked as the “response 

offset”. A subject’s response time (RT) was defined as the time between the deviation 

onset and the response onset. At the first 5 min of the experiment, subjects were asked 

 
 
Figure 5.1 The off-line experiment paradigm. (a) Event-related lane-departure driving 
tasks. The solid arrows represent the driving trajectory. The empty circle represents the 
deviation onset. The double circle represents the response onset. The circle with the cross 
represents the response offset. The baseline is defined as the 3 sec period prior to 
deviation onset. The response time (RT) of a driver is the interval from the deviation 
(empty circle) to the response onset (the double circle). A trial starts at deviation onset and 
ends at response offset (circle with a cross). The next deviation begins 8-12 sec after 
response offset. (b) Criterion for delivering auditory warning during driving tasks. The 
height of an arrow represents the response time in a single trial. The warning was 
delivered to the subject when the RT in the trial exceeded three times the mean RT of 
trials in the first 5 min of the task, when the subject was presumably alert and fully 
attended to lane-departure events. This figure is adapted with permission from Fig. 1 of 
[45].	
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to be fully alert, verified by the vehicle trajectory and the video from a surveillance 

camera, to obtain an averaged alert RT (aRT) for each subject (1.51~2.54 sec), which 

is a threshold for the entire experiment. The entire experiment consisted of 5 min 

training and 85 min driving periods. 

Figure 5.1(b) shows the criterion of delivering auditory warnings in the 

experiment. When a subject failed to respond within three times the aRT, the system 

treated the trials as a behavioral lapse and triggered a 1,750 Hz tone-burst to arouse 

the subject from fatigue-related lapse in half (50%) of these drowsy trials (marked as 

the “current trial (CT)” in Figure 5.1(a)). The very next trial is defined as CT+1, and 

so on. The lapse trials that were randomly selected to receive arousing warning were 

referred to as CT with warning, whereas the remaining half of trials that did not 

receive auditory warning were referred to as CT without warning. Note that our 

previous studies showed that in some trials subjects remained non-responsive 

following the arousing warning, which was analogous to sleeping through an alarm 

clock [55][76]. If the RT of the following trial (CT+1) was shorter than the double of 

the averaged aRT, the warning signal delivered in the CT trial was defined as an 

“effective warning”. On the other hand, if the RT of the CT+1 trial was longer than 

triple of the averaged aRT, the warning was defined as an “ineffective warning”. This 

study did not include the trials with RTs between 2-3 aRT to define the alert vs. 

fatigue spectral thresholds because the cognitive states of the subjects during those 

trials were unclear. Note that, subjects didn’t know about the warning before the 

experiments. 
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5.2.4 DATA ANALYSIS 

The 32-channel EEG data were first down-sampled to 250 Hz, and a low-pass 

filter of 50 Hz and a high-pass filter of 0.5 Hz were applied. Channels or trials with 

severe artifacts (such as body movements or muscle activities) were manually 

removed (less than three channels and 20% trials per subject in general).  The 

remaining EEG data were segmented into several 115 sec trials, each of them 

consisting of 15 sec before and 100 sec after the lane-deviation onsets. Independent 

Component Analysis [40][41] implemented in EEGLAB [78] was then applied to 

decompose the ~32-channel EEG into ~32 independent components (ICs), based on 

the assumption that the collected EEG data from the scalp were a weighted linear 

mixture of electrical potentials projected instantaneously from temporally ICs 

accounting for distinct brain sources. The comparable ICs across subjects were 

grouped into component clusters based on their scalp maps, equivalent dipole 

locations and baseline power spectra of component activations [78][79]. Across 11 

subjects, there were 155 trials with warning (30 trials were ineffective and 125 trials 

were effective) and 192 trials without warning.  

Since the RT and EEG power were not normally distributed, nonparametric 

statistic tests were performed for the data analysis [78]. The Wilcoxon rank-sum test 

(Matlab statistical toolbox, Mathworks) was used to assess the effects of warning on 

RTs. Bootstrapping (EEGLAB toolbox, University of California, San Diego) was used 

to test the statistical significance of EEG power changes at specific frequency bins 

from 2 Hz to 30 Hz with a 0.25Hz resolution. To test group statistics, the intrinsic 
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inter-subject RT differences were reduced by dividing RTs by the mean RT. The EEG 

spectra were normalized by dividing the spectral power by the standard deviation of 

the spectral distribution. 

5.3 NEUROPHYSIOLOGICAL CORRELATES OF BEHAVIORAL LAPSES 

5.3.1. EFFICACY OF AROUSING AUDITORY SIGNALS FOR RECTIFYING 

LAPSES 

This study first explored the efficacy of the delivery of arousing auditory 

signals by measuring the change in subjects’ reaction time. Figure 5.2(a) shows the 

boxplots of RTs of three trial groups: Alertness, CT, and CT+1 (left to right). The 

averaged aRT of trials within the Alertness group across 11 subjects was ~676ms. The 

RTs of the CT group with arousing warning (red and light blue) were statistically 

significantly shorter than those of trials without receiving arousing warning (dark 

blue). The RTs of the CT+1 group with effective versus ineffective warning differed 

while the RTs of the preceding group (CT) were comparable. Even though the subjects 

responded to the arousing warning by immediately steering the simulated car back to 

the cruising position, they could well be totally non-responsive to the very next lane-

departure event (~10 sec later). In other words, the arousing signals reliably rectified 

human behavioral lapses, but did not guarantee that subjects were fully awake, alert, 

or attentive.  This suggests an analogous regime of snooze after an alarm is turned off. 



	
  

	
  

73	
  

	
    

	
  
Figure 5.2 The off-line experiment results. (a) The boxplot for the RT distribution of trials 
with effective warning, ineffective warning, and without warning among CTs and CTs+1. 
Note that middle horizontal line is the median of the distribution, and the top and bottom 
of the rectangle are the third and first quartile, and the dash line ends are the maximum 
and minimum after outlier removal. (b) The component spectra of the alert CTs (black 
curve), with an effective warning (red curve), with an ineffective warning (light blue 
curve) and without warning (dark blue curve). The red, light blue and blue horizontal lines 
mark the spectral differences between the alert trials and trials with an effective warning, 
with an ineffective warning, and without warning, respectively. All the spectral plots were 
calculated from the activity of the bilateral occipital components separated by ICA.	
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5.3.2 EEG DYNAMICS PRECEDING BEHAVIORAL LAPSES 

Figure 5.2(b) shows the mean scalp map of the bilateral occipital cluster 

(upper-right corner) and its component baseline power of drowsy trials without 

auditory warning (dark blue), with either effective (red) or ineffective warning (light 

blue). First, among the resultant ICA clusters, bilateral occipital components exhibited 

statistically significant spectral differences between trials with and without auditory 

warning. Second, the component power spectra exhibited tonic increases in theta (4-7 

Hz), alpha (8-12 Hz), and beta (13-30 Hz) bands in drowsy trials (red, dark blue, and 

light blue), compared to the alert trials (black). Horizontal lines mark the frequency 

bins under which the spectral differences between alert trials and drowsy trials with 

either   (in)effective warning, or without warning were statistically significant (alpha = 

0.05, Bonferroni adjusted p value of 0.05/(112 frequency bins) = 0.0004 for multiple 

comparisons). Note that the spectra shown here were calculated from the component 

activities prior to the lane-deviation onset. The nearly identical pre-lapse spectra of 

these three groups of non-responsive trials demonstrate the robustness of the 

broadband spectral augmentation preceding the behavioral lapses, suggesting the 

feasibility of using theta and alpha power from the lateral occipital areas to predict 

behavioral lapses in this sustained-attention driving task. 

5.3.3 EFFECTS OF AROUSING AUDITORY SIGNALS ON THE EEG 

Next, this study explored temporal spectral dynamics preceding, during and 

following fatigue-related behavioral lapses and following arousing warning. Figure 5.3 
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shows time courses of spectral changes in the bilateral occipital area following 

ineffective warning (light blue trace), effective warning (red trace), and without 

warning (dark blue trace), compared to those of the alert trials (black trace). Figure 5.3 

shows that both theta- an alpha-band power steadily increased prior to the lane-

departure onset (at time 0 sec). Again, the trends of steady increasing theta- and alpha-

band power leading to behavioral lapses in the three groups of drowsy trials were 

nearly identical, indicating the robustness of the theta and alpha augmentation 

preceding the behavioral lapses. 

 Figure 5.3 also shows that after the lane-departure onset (at time 0 sec), the 

alpha (top panel) and theta (bottom panel) power abruptly decreased by over 10 dB 

and 5 dB to nearly the alert (black trace) baseline, respectively. More importantly, 

following the subjects’ responses, the spectra of trials with ineffective warning (light 

blue trace) and without warning (dark blue trace) rapidly rose from the alert baseline 

to the drowsy level in 5-15 sec. The theta and alpha power of trials with effective 

warning, however, remained low for ~40 sec. The green horizontal lines mark the time 

points when the difference between the spectra of trials with effective warning and 

without warning were statistically significant (p<0.01). The spectral difference 

between the trials with effective warning and without warning was significant from 7 

to 18 sec in alpha band and from 7 to 21 sec in the theta band (p<0.01). Furthermore, 

the spectral difference between the trials with effective and ineffective warning was 

significant from 7 to 16 sec in both alpha and theta bands (brown horizontal lines). 
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 In sum, these results provided invaluable insights into the optimal electrode 

locations (lateral occipital region) and EEG features (theta- and alpha-band power) for 

a practical on-line closed-loop lapse detection and mitigation system detailed below. 

The EEG and behavioral data collected from this experiment were used to assess the 

EEG correlates of fatigue-related lapses and build a lapse prediction model for the 

second experiment.  

	
  
Figure 5.3 Average component EEG power changes in alpha (top panel) and theta (bottom 
panel) bands from the bilateral occipital components (lower right corner). All the trials are 
aligned to the lane-deviation onsets at time 0 sec (vertical solid black line). The red, light blue, 
dark blue, and black traces are the averaged spectra of trials with effective feedback, with 
ineffective feedback, without feedback, and in alertness, respectively. The green horizontal 
line indicates the statistically significant differences (p< 0.01) between trials with effective 
feedback and without feedback. The brown indicates the statistically significant differences 
(p< 0.01) between trials with effective feedback and ineffective feedback.	
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5.4 DEVELOPING A OCLDM SYSTEM 

Our previous study [77] proposed a smartphone based drowsiness monitoring 

and management system to continuously and wirelessly monitor brain dynamics using 

a lightweight, portable, and low-density EEG acquisition headgear. The system was 

designed to assess brain activities over the forehead, detect drowsiness, and deliver 

arousing warning to users experiencing momentary cognitive lapses, and assess the 

efficacy of the warning in near real-time. However, the system was not fully 

implemented nor experimentally validated in humans.  Furthermore, according to the 

neurophysiological results in Section 3, EEG signals collected over the lateral 

occipital regions were more informative for lapse detection. This study extends the 

previous work to design, develop, and test an OCLDM System. 

5.4.1 SYSTEM ARCHITECTURE 

Figure 5.4(a) shows the system diagram of the proposed OCLDM System. The 

system consists of two major components: (1) a mobile platform featuring the 

OCLDM algorithm, and (2) a mobile and wireless 4-channel headgear measuring EEG 

signals over the hair-bearing occipital regions with dry EEG sensors [80]. The 

OCLDM System was implemented as an App on an Android-based platform (e.g. 

Samsung Galaxy S3). The smartphone has a Bluetooth module, 16GB RAM, an ARM 

Cortex-A9 processor, Android (Ice Cream Sandwich) OS, and other components. 

When the App is launched, it can automatically search and connect to a nearby EEG 

headgear to receive data from the EEG acquisition headgear. In the mean time, the 
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App opened an USB port to receive the events from a four-lane highway scene to 

synchronize the EEG data and scene events. The build-in speaker (or plug-in a ear set) 

of the smartphone delivers auditory warning signal once the OCLDM System detects 

that the subject is experiencing a cognitive lapse. Both the EEG data and scene-

generated events could be logged onto either smartphone’s build-in memory or an 

external microSD card for further analysis.  

The mobile and wireless EEG acquisition headgear features a 4-channel 

lightweight portable bio-signal acquisition device powered by a 3.7v Li-ion battery 

[77]. It consists of a TI MSP430 microprocessor, a pre-amplifier, a battery-charging 

circuit, a 24bit ADC, a Bluetooth module, and dry spring-loaded EEG sensors [80]. 

The spring-loaded probes of the sensor can penetrate the hair to provide good 

electrical conductivity with the scalp. The microprocessor controls all the components 

including the amplifiers, digitizers, and transmits the digitalized EEG data to the 

Bluetooth module. The 4-channel EEG data are then transmitted to the authorized 

receiver of the OCLDM System. Depending on the applications, the system’s 

sampling rate can be programmed at 128, 256, or 512 Hz. An experienced subject can 

easily put on this EEG acquisition device within 1-3 min without any help from a 

technician. Figure 5.4(b) shows a photo of a subject wearing a 4-channel EEG 

headgear and performing the simulated driving experiment. 
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Figure 5.4 The system diagram of the proposed OCLDM System. (a) The EEG headgear 
collected 4-channel brain activities from the lateral occipital area while a subject was 
performing the lane-drifting experiment. The mobile signal-processing platform received the 
acquired EEG raw data through Bluetooth, and the event markers generated from the lane-
departure scene through an USB interface. Finally, the auditory feedback was delivered to 
the subject when the averaged EEG power across four channels was 3dB over the alert 
baseline. (b) A photo of a subject performing the on-line driving experiment while wearing a 
4-channel EEG headgear (the white small box attached on a flexible band) over the lateral 
occipital area. 	
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5.4.2 SYSTEM SOFTWARE DESIGN 

Figure 5.5 shows the program’s state diagram of the proposed OCLDM 

System. Three major states, including Baseline Collecting (BC), Driving Performance 

Monitoring (DPM), and Warning Efficacy Assessment (WEA), were implemented in 

the program. When the program is launched, one can modify the parameters in the 

SETTING page, shown as a square box in the figure. For instance, the parameters can 

be the duration of baseline data collection, or the threshold of auditory warning 

delivering for the other two states. Depending on the applications, the lapse threshold 

in the DPM state can be calculated accordingly. For example, one can use a 

combination of power of alpha, beta, theta, and delta bands to detect cognitive lapse. 

The program then enters the next (DPM) state after the Baseline (calibration) data 

collection has completed. The DPM module continuously monitors the driver’s 

neurophysiological data. The program stays in the DPM state until the lapse threshold 

is met, which depends on the neurophysiological results as shown in Section 5.3. For 

instance, when the subject’s power spectrum in alpha band is 3dB higher than the 

threshold (alert baseline collected in the BC state), the program delivers an auditory 

warning to arouse the subject and enters the FEA state. The current value is stored as 

the lapse reference in the FEA module. The system repeatedly delivers auditory 

warning until the EEG power decreases to another threshold. 
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5.4.3 ON-LINE EXPERIMENTAL PARADIGM  

Three new male subjects (who did not participated in the first experiment) with 

normal hearing and aged 25-30 years old participated in the on-line closed-loop lane-

departure driving experiments to evaluate the OCLDM System in a more naturalistic 

setting (in a regular office without any electromagnetic shielding). All of them were 

asked to read and sign the informed consent form before participating in the studies.  

 
 
Figure 5.5 The software state diagram of the OCLDM System. The program first 
goes through SETTING and Baseline collecting state. Then, the system continuously 
detects and monitors subjects’ driving performance until the EEG spectra indicate 
cognitive lapse. Note that, Lapse1 represents the averaged EEG power across four 
channels is 3dB over the alert baseline. Lapse2 represents that the averaged EEG 
power across four channels has not yet dropped 3dB from the lapse power.	
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The entire experiment consisted of a 1 min training and a ~60 min driving 

periods. During the training session, subjects were asked to stay fully alert. The 

averaged alpha power collected in the BC session was used as an alert baseline to 

determine whether a subject is experiencing cognitive lapses in the driving task. The 

subject performed the lane-departure driving experiments following the protocol 

below: 

(1) Subjects seated in an armchair and the driving scene was displayed on a 27” 

monitor, placed at ~60cm in front of the subject. 

(2) Subjects used a keyboard to control a vehicle cruising on a high way, i.e. a left 

key turns the simulated car to the left while a right key turns to the right. 

(3) Four electrodes were placed over the lateral occipital area to collect EEG data 

noninvasively. The data were transmitted to a smartphone for processing via 

Bluetooth. 

(4) When the averaged power spectra in alpha band met a certain criterion, 

arousing auditory warning (~65dB 1,750Hz tone-burst) would be delivered in 

half of these lapse episodes through an ear set to the subjects. Note that, the 

subjects didn’t know the warning before the experiments.  

(5) The arousing tone-burst would be continuously delivered to the subjects until 

the averaged power spectra in the alpha band has dropped 3dB from the lapse 

power. 

The cognitive lapses were detected when the subject’s alpha-band power, 

calculated by a moving-averaged STFT with a 256-point sliding window advanced at 
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1 sec step running on the smartphone, was 3 dB over the alert baseline power [55][81] 

and Results in Section 3). This study used the alpha power fluctuations to monitor 

cognitive lapses because (1) a recent study showed that the alpha augmentation was 

sensitive to the transition from full alertness to mediate drowsiness, while the theta 

augmentation was more sensitive to the transition from mediate to deep drowsiness; 

(2) the empirical results of this study showed that the augmentation of alpha-band 

power changes was greater than that of the theta-band power (Figure 5.2). The system 

would repeatedly deliver auditory warning until the alpha-band power amplitude has 

dropped to 3dB below the power level when the cognitive lapse was identified. 

5.4.4 RESULTS FROM THE OCLDM SYSTEM 

The numbers of detected cognitive lapses varied across subjects. Table 5.1 lists 

the numbers of trials with effective, ineffective warning and without warning, 

respectively. Here, the way we defined the effective trials was based on the RT in 

response to the lane-departure event immediately following the arousing signal (CT+1 

whose RT was shorter than two times aRT); while the ineffective trials had RT longer 

than three times aRT. 

Figure 5.6 shows the boxplot of behavioral performance (RTs) of trials with 

effective trials (red), ineffective trials (light blue), and without warning (dark blue), 

compared to the averaged aRT (black) during the on-line experiments. The effective 

trials had RTs comparable to the averaged aRT (less than 1 sec) in both CT and CT+1.  
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  Table 5.1 Number of trials collected from the on-line experiment. 
 

Subject 

With auditory warning Without 
auditory 
warning 

Effective Ineffective 

1 20 2 21 

2 17 1 24 

3 23 0 27 

	
  

 
 
Figure 5.6 The behavioral performance comparison. Note that, the trials of with effective 
feedback (red), with ineffective feedback (light blue), and without feedback (blue), compared 
to alert trials (black) after removing the outliers. 	
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Note that the RTs of CT+1 with effective versus ineffective warning differed 

largely because that was how the effective and ineffective trials were defined. 

However, the RTs of CT trials (red and light blue) of these two groups of trials were 

very comparable. That is, even though the subjects responded to the arousing warning 

by steering the simulated car immediately back to the cruising position, they could 

well be totally non-responsive to the very next lane-departure event. This finding is 

consistent to our off-line study reported in Section 3 in which the arousing warning 

was delivered to the subjects who just had a behavioral lapse. 

 Figure 5.7 showed the averaged alpha-band spectral time courses across 

subjects and trials with effective warning (red trace), with ineffective warning (light 

blue trace), and without warning (dark blue trace), compared to averaged aRT (black 

trace). All spectral time courses were aligned to the user response onset (thick vertical 

black line at time 0 sec), and the auditory warning for effective- and ineffective-trials 

were delivered ~5 sec before the user response. In the trials following effective  

auditory warning, the alpha power decreased steadily and reached the averaged aRT in 

~7 sec. The power spectra remained as low as that of the alert baseline from 7 to 20 

sec after response onset. In the trials with ineffective auditory warning, the spectral 

time series fluctuated fierously due to the small number of trials. In the trials without 

warning, the alpha power fluctuated before response onset and steadily dereased until 

~7 sec. Thereafter, the alpha power increased again from ~7 sec to 13 sec, suggesting 

the subjects might be partially arouse by the lane-departure event and their own 

bebavioral reposense temportally but returned to the fatigue state rapidly thereafter. 
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5.5 CONCLUSION 

Many studies have shown that the brain dynamics correlated with behavioral 

lapses can be assessed from EEG data. Recent studies have also shown auditory 

signals can arouse drowsy subjects and affect EEG activities [55][81]. However, in 

these studies, the arousing warning was delivered to subjects after they displayed 

behavioral lapses, which in reality may be too late because the behavioral lapse might 

Figure 5.7 The averaged alpha power time course plotting time-locked to subject response 
onset (vertical solid line at time 0 sec). Averaged alpha power of trials with effective feedback 
(red trace), with ineffective feedback (light blue), and without feedback (blue trace), compared 
to trial with aRT (black). The time course of power was estimated by short time Fourier 
transform with 256 points of time window and 224 points overlapping.	
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have already had catastrophic consequences. Therefore, a system that features real-

time lapse detection and delivers warnings to the drowsy subjects is desirable in 

preventing catastrophic incidents while driving. 

The first experiment of this study showed that EEG power changes in either 

alpha or theta band can be used as an indicator for assessing the subjects’ fatigue (cf. 

Figure 5.3), and auditory warning temporarily reduces the alpha and theta band power 

and mitigates the behavioral lapses (cf. Figure 5.2(a)). In addition, EEG changes after 

delivery of auditory warning are a good indicator of the efficacy of arousing warning. 

More importantly and interestingly, empirical results of the first study showed that 

arousing auditory signals could always reliably mitigate human behavioral lapses, but 

these immediate behavioral responses could not guarantee the subjects were fully 

awake, alert, or attentive, similar to snooze after an alarm is turned off. This finding 

may open a new research direction of how to accurately confirm a subject’s cognitive 

level for some sustained-attention tasks, such as an aircraft navigator or a long-haul 

truck driver.  In other words, further studies to explore the brain changes in this sleep 

inertia period may provide valuable insights of brain dynamics during a transitional 

state of lowered arousal occurring immediately after awakening from sleep. Based on 

previous studies [55][81] and the results of the first experiment, this study further 

developed a truly on-line closed-loop lapse detection and mitigation system to 

detect/predict cognitive lapse based on the EEG spectra, deliver arousing warning on 

the occurrence of cognitive lapse, and assess the efficacy of the arousing warning, 

again, based on the EEG spectra. Most importantly, the EEG spectra changes within 
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~10 seconds after delivering arousing warning were closely monitored, such that any 

false-awake situations could be decreased. This study then documented the design, 

development, and on-line evaluation of the proposed OCLDM System that featured a 

lightweight wireless EEG acquisition headgear and a smartphone-based signal-

processing platform. Experimental results showed that subjects’ EEG power could 

almost remain at the alert state without bouncing back to the drowsy level (cf. Figure 

5.7). These results suggest that the proposed system could prevent potential behavioral 

lapses based solely on the EEG signals, and this demonstration could lead to a real-life 

application of the dry and wireless EEG technology and smartphone-based signal-

processing platform. An interesting question is if the neural correlates of fatigue could 

be generalized across different sustained-attention tasks and different recording 

conditions. In the past few years, we have conducted several sustained-attention tasks, 

including auditory target detection tasks [63], visual compensatory tracking tasks [76], 

and simulated driving tasks [19][82] and found that performance-related EEG 

dynamics were comparable across tasks [83]. Results of these studies also showed the 

fatigue-related brain dynamics were quite consistent across different recording 

environments (within a well-controlled EEG laboratory vs. a 6-degree-of-freedom 

motion platform) and responding methods (using a button press or a steering wheel). 

Therefore, it is reasonable to believe the methods developed under this study could be 

translated from laboratory settings to real-world environments.  

In sum, this study demonstrated the feasibility of translating a laboratory-based 

passive BCI system to a neuroergonomic device that is capable of continuously 
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monitoring and mitigating operator neurocognitive fatigue using a pervasive 

smartphone in real-world environments. The passive BCI technologies might also be 

applicable to other real-world cognitive-state monitoring, such as attention, 

distraction, comprehension, confusion, and emotion. We thus believe more real-world 

passive BCI implementations will emerge in the foreseeable future. 
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Chapter 6 
 
Conclusion and Future Works 
 
 

BCI systems have been studied for more than two decades; however, moving 

this laboratory-based paradigm to real-life applications still suffers from many 

challenges. Moreover, easy-of-use without compromising reliability in home-based 

clinical applications also plays an important role in the real-world applications of BCI 

systems.  

This study details the components of SSVEP-based BCI systems. From our 

perspective, three main concerns needed to be addressed to translate this system from 

a laboratory demonstration to a real-life application: (1) the lack of precise visual 

stimulus presentation on mobile platforms; (2) the difficulty of assessing SSVEPs 

from easily accessible locations; (3) the lack of a truly portable, user-acceptable (e.g. 

comfortable and wearable), and robust system for monitoring and processing EEG 

data from unconstrained users. For the first concern, this study proposed a frame-rate 

based approach to render visual stimuli. Given the empirical results, the mobile 

devices in the current market can indeed render accurate visual stimuli and to induce 

SSVEPs. To address concern 2, this study systematically and quantitatively compared 

SSVEPs from different scalp and face locations using high-density EEG data. The 
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comparison between hair-covered and non-hair-bearing areas showed that the quality 

of SNR depends on the electrodes selection. From the empirical results, the SNR of 

combinational channels can perform better than one channel measured on the occipital 

over visual cortex in less than 4 channels for some subjects. For concern 3, this thesis 

proposed a portable, wireless, low-cost EEG system and a smartphone-based signal-

processing platform into a truly wearable online SSVEP-based BCI system.  

With a modular design, the components of the above-mentioned BCI systems 

also can be applied to other applications, such as continuous fatigue monitoring 

(Chapter 5) or routine EEG data collection (Chapter 4). More precisely, the 

smartphone-based signal-processing platform discussed in Chapter 4 can also be 

programmed to realize other BCI applications. For example, the current system can be 

easily converted into a motor-imagery-based BCI through detecting spectral changes 

of mu/beta rhythms over the sensorimotor areas. In essence, Chapters 4 and 5 are just 

two sample demonstrations of the smartphone-based platform technology that can 

enable and/or facilitate numerous BCI applications in real-world environments. My 

future work involves exploring and testing more applications of wearable BCI systems. 
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