
UC Berkeley
UC Berkeley Previously Published Works

Title
Simple D-module components of local cohomology modules

Permalink
https://escholarship.org/uc/item/4nb4s45c

Authors
Polini, Claudia
Hartshorne, Robin

Publication Date
2016-06-03
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4nb4s45c
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

60
6.

01
27

8v
1 

 [m
at

h.
A

G
]  

3 
Ju

n 
20

16

SIMPLE D-MODULE COMPONENTS OF LOCAL COHOMOLOGY MODULES

ROBIN HARTSHORNE AND CLAUDIA POLINI

ABSTRACT. For a projective varietyV ⊂ Pn
k over a field of characteristic zero, with homogenous

idealI in A= k[x0, . . . ,xn], we consider the local cohomology modulesH i
I (A). These have a structure

of holonomicD-module overA, and we investigate their filtration by simpleD-modules. In caseV
is nonsingular, we can describe completely the simpleD-module components ofH i

I (A) for all i, in
terms of the Betti numbers ofV.

1. INTRODUCTION

The local cohomology groupsH i
Y(X,F) of an Abelian sheafF on a topological spaceX, with

support in a closed subsetY, were introduced by Grothendieck in 1961 in his Harvard and Paris

seminars [9], [10]. IfX is the spectrum of a ringA, andY is the closed subset associated to an ideal

I , andF is the sheaf of sections of anA-moduleM, these groups are denotedH i
I (M). The latter

can be computed algebraically as the derived functors of thefunctorΓI (•) that to eachA-moduleM

associates the submodule of elements with support inI , that is, that are annihilated by some power

of I . In the 50 years since their introduction, these groups and modules have found wide application

in algebraic geometry and in commutative algebra.

Even when the ringA is Noetherian and the moduleM finitely generated, the local cohomology

modulesH i
I (M) are rarely finitely generated. IfA is a local ring with maximal idealm, then at

least the modulesH i
m(M) are cofinite, meaning that they satisfy the descending chain condition,

or equivalently, that HomA(k,H i
m(M)) is a finite dimensionalk-vector space, wherek = A/m is

the residue field ofA. Grothendieck asked whether for any idealI , the modulesH i
I (M) might be

I-cofinite in the sense that HomA(A/I ,H i
I (M)) is finitely generated. This turns out not to be so in

general [5], though an analogous property does hold in the derived category.

Another finiteness property was discovered more recently byLyubeznik [12], who showed that

if A is a polynomial ring or a power series over a fieldk of characteristic zero, then for any finitely

generatedA-moduleM and any idealI in A, the local cohomology modulesH i
I (M) are finitely

generated asD-modules, whereD is the (non-commutative) ring of differential operators over A.

Moreover, they areholonomicD-modules, in particular they are of finite length asD-modules, and

have a finite composition series whose factors are simpleD-modules.
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2 ROBIN HARTSHORNE AND CLAUDIA POLINI

Our basic questions in this paper is, ifV ⊂ P
n
k is an algebraic variety, with homogeneous ideal

I in the polynomial ringA= k[x0, . . . ,xn], what are the simpleD-module components of the local

cohomology modulesH i
I (A), and what can we learn about the geometry ofV from them?

To approach this question, we review some old work of Ogus [14], who found conditions for the

vanishing of some of these groups, in terms of the algebraic de Rham cohomology groups of the

subvarietyV. Using a similar technique, we compute the de Rham cohomology groupsH j
DR(M) for

theD-moduleM = H i
I (A), for eachi and j, in terms of the algebraic de Rham cohomology ofV.

This allows us to recover the result of Ogus on the vanishing and cofiniteness ofH i
I (A) for i > r,

wherer is the codimension.

Similar results to ours have been obtained in recent years bymany authors using various tech-

niques (see Remark 4.9). What is new in our method is that we also obtain information about the

D-module structure of the critical cohomology moduleH r
I (A).

To interpret this information, we prove a technical result showing that for a holonomicD-module

M over a power series ringR= k[[x1, . . . ,xn]], the dimension of the top de Rham cohomology module

Hn
DR(M) is equal to the largest number of copies of the injective envelopeE of k overRwhose direct

sumEm can appear as a quotientD-module ofM. This result, while apparently dual in some way

to the elementary statement thatH0
DR(M) gives the rank of the largest freeD-moduleRm that can

appear as a submodule ofM, is not at all easy to prove. We use an extension of methods employed by

van den Essen [19, 20, 21] to show that the de Rham cohomology modulesH j
DR(M) of a holonomic

D-module are all finite dimensional.

Our main application is to show that ifV is a nonsingular subvariety ofPn
k of codimensionr, then

its nontrivial local cohomology moduleH r
I (A) has a simple sub-D-module with support alongV,

with quotient a direct sumEm of copies ofE, wherem is determined by the Betti numbers ofV in

the sense of algebraic de Rham cohomology. In particular, ifV is a nonsingular curve of genusg,

thenm= 2g, so that for a rational curveV ⊂ P
n
k, theD-moduleHn−1

I (A) is simple. The only other

result we know giving the simpleD-module composition ofH r
i (A) for a projective varietyV is the

theorem of Raicu [15], which shows that forV the d-uple embedding of another projective space

in P
n
k, the correspondingD-module is simple. His result, proved by an entirely different method, is

recovered by ours.

One further comment about this paper. Our methods are purelyalgebraic, working over an alge-

braically closed fieldk of characteristic zero. Over the complex numbersC, there is an extensive

theory of analyticD-modules using intersection cohomology and perverse sheaves, and there is a

Riemann-Hilbert correspondence comparing the algebraic theory ofD-modules with regular sin-

gularities to the analytic theory. Readers familiar with those theories will probably see how to

obtain results analogous to ours in the analytic category, and perhaps even recover our result via the

Riemann-Hilbert correspondence. Nevertheless our goal has been to present the entire argument

algebraically, without reference to the analytic theory.
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2. THE LANGUAGE OF ALGEBRAICD-MODULES

Let k be a field of characteristic zero, and letR be either the polynomial ringk[x1, . . . ,xn] or the

formal power series ringk[[x1, . . . ,xn]]. LetD be the ring of differential operatorsR< ∂1, . . . ,∂n >,

where∂i is the partial derivative∂/∂xi . This is a non-commutative ring with the relations∂ixi =

xi∂i + 1 for eachi. An R-moduleM, together with a left action ofD on M, will be called aD-

module. We will use the books of Björk [2] and Hotta et al. [7]as our basic references.

One can define thedimensionof a finitely generatedD-module. It is an integer betweenn and

2n. TheD-modules with minimal dimensionn are calledholonomicD-modules. They are of finite

length asD-modules and therefore have a filtration whose quotients aresimpleD-modules. (For the

polynomial ring case, see [2, 1.5.3], where these modules are also called modules in theBernstein

class. For the power series case, see [2, 2.7.13 and the remarks just before 3.3.1]).

Let ΩR/k be the module of differentials overR, generated bydx1, . . . ,dxn, and letΩi
R/k be its

exterior power. IfM is aD-module, the actions of∂i on M give rise to a complexM⊗R Ω• of

R-modules andk-linear maps, called thede Rham complexof M. Its cohomology groups will be

denoted byH i
DR(M). If M is a holonomicD-module, thenH i

DR(M) are finite-dimensionalk-vector

spaces. (In the polynomial ring case, the proof is not difficult [2, 1.6.1]. In the power series case,

however the question is difficult, and was left as an open problem in Björk’s book. It was proved

later by van de Essen [21, 2.2] as a consequence of his inductive result that ifM is holonomic, then

for a suitable choice of coordinates,M/∂nM will also be holonomic over the power series ring in

n−1 variables.)

Our interest inD-modules comes from the following theorem of Lyubeznik.

Theorem 2.1. If M is a holonomicD-module over the polynomial ring or the power series ring R

as above and if I is an ideal of R, then the local cohomology modules Hi
I (M) have natural structures

of holonomicD-modules.

Proof. [12, 2.2]. One first shows that ifM is holonomic overR and f ∈ R, then the localized

moduleM f is also holonomic. (For the polynomial ring case, see for instance [3, 3.4.1]. For the

power series case, see [2, 3.4.1]. Then iff1, . . . , fs is a set of generators ofI , we can compute

the local cohomology modulesH i
I (M) from theČech complex formed of the localizations ofM at

products of thefi . Since kernels, images, and quotients of holonomic modulesare holonomic, it

follows that theH i
I (M) are holonomic. �

Examples 2.2. (1) The ringR itself is a holonomicD-module and is in fact simple. To see this,

we note that any element ofRgeneratesRas aD-module. Indeed, just differentiate enough

times so that the element becomes a unit, then multiply by theother elements ofR.

(2) Another important example isE = Hn
m(R), wherem = (x1, . . . ,xn). This is an injective

hull of k overR, and is also a simpleD-module. As in (1) above, any element generates the

whole module. Just multiply by enoughxi to arrive at the soclex−1
1 · · ·x

−1
n , then differentiate

to get any other monomial inE.
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(3) The de Rham cohomology of theD-moduleR is equal tok in degree 0 and 0 otherwise.

This is a consequence of the algebraic Poincaré lemma [6, II, 7.1].

(4) The de Rham cohomology of theD-moduleE is k in degreen, and 0 otherwise. Look first

at the casen= 1, whenE = Ax/A is thek-vector space generated by the negative powers of

x. Consider the mapϕ : R= k[x]−→ E defined byϕ(xℓ) = ℓ!x−ℓ−1. This is an isomorphism

of k vector spaces (where we use the convention that 0!= 1). Note that by construction

∂ϕ =−ϕx. Thusϕ gives an isomorphism from the complexR
x
−→ R to the complexE

∂
−→ E.

Taking the tensor product (overk) of this isomorphism of complexes overk[xi ], we obtain

an isomorphism of the Koszul complex forR= k[x1, . . . ,xn] with respect tox1, . . . ,xn and

the Rham complex forE. HenceHn
DR(E) = k, and the others are zero. For the case whenR

is a power series ring, notice that the complexE⊗Ω• is the same as in the polynomial ring

case.

(5) If M is a holonomicD-module whose support, as anR-module, is at the maximal ideal

m = (x1, . . . ,xn), thenM is the direct sums of a finite number of copies ofE. This follows

for example from Kashiwara’s equivalence [7, 1.6.1, 1.6.4], or one can prove it directly as

in [12, 2.4.a].

(6) For any holonomicD-moduleM, its zeroth de Rham cohomologyH0
DR(M) has dimension

equal to the rankt of the largest trivial sub-D-moduleM0 =Rt of M. Indeed, ifm∈H0
DR(M),

then the natural mapR→M defined bya 7→ am is an injectiveD-module homomorphism.

One of our main results, Theorem 5.1, is a non-trivial analogous statement about the last de

Rham cohomology groupHn
DR(M).

3. ALGEBRAIC DE RHAM COHOMOLOGY AND HOMOLOGY

In this section we recall the basic definitions and properties of algebraic de Rham cohomology

and homology that we will use in this paper. Our basic references will be Grothendieck [8] and

Hartshorne [6].

Let Y be a closed subscheme of a schemeX smooth and of finite type of dimensionn over an

algebraically closed fieldk of characteristic zero. LetΩ•X/k be the de Rham complex withk-linear

maps

OX →Ω1
X

d
−→Ω2

X→ ··· →Ωn
X .

We define the algebraic de Rhamhomologyof Y to be

HDR
i (Y) = H2n−i

Y (X,Ω•X) ,

namely the local hyper-cohomology with support inY of the complexΩ•X [6, II.3].
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We define the algebraic de Rhamcohomologyof Y by passing to the formal completionX of X

alongY and taking hyper-cohomology

H i
DR(Y) = Hi(X,Ω̂•X) ,

of the formal completion ofΩ•X alongY [6, II.1]. The main properties of these groups are summa-

rized in the following theorem:

Theorem 3.1. Let Y be a scheme of finite type over k, embeddable in a scheme X smooth over k.

(1) The groups HDR
i (Y) and Hi

DR(Y) are independent of the embedding of Y in a smooth scheme

X.

(2) The groups HDR
i (Y) and Hi

DR(Y) are finite-dimensional k-vector spaces.

(3) The groups HDR
i (Y) and Hi

DR(Y) are all zero for i< 0 and i> 2d, where d= dimY.

(4) If Y is proper over k, then HDR
i (Y)∼= H i

DR(Y)
′
, where

′
denotes the dual k-vector space.

(5) If Y is smooth over k, then HDR
i (Y)∼= H2d−i

DR (Y).

(6) If Z is a closed subset of Y , then there is a long exact sequence of homology

· · · −→ HDR
i (Z)−→ HDR

i (Y)−→ HDR
i (Y−Z)−→ HDR

i−1(Z)−→ ·· ·

(7) If k = C, then Hi
DR(Y)

∼= H i(Yan,C), the usual complex cohomology of the associated

complex-analytic space Yan, and HDR
i (Y) calculates the Borel-Moore homology of Yan.

Proof. These are all in [6]. Item (1) is II.1.4 and II.3.2; item (2) isII.6.1; item (3) is II.7.2.; item (4)

is II.5.1; item (5) is II.3.4; item (6) is II.3.3; and finally,item (7) is IV.1.1 and 1.2. �

Example 3.2. (1) If Y = A
n
k, the affinen-space, then by definitionH i

DR(Y) is just the de Rham

cohomologyH i
DR(R) of the polynomial ringR= k[x1, . . . ,xn] as aD-module, which isk in

degree 0 and 0 otherwise (see Example 2.2 (3)). SinceY is smooth overk its homology

HDR
i (Y) is k in degree 2n and 0 otherwise (see Theorem 3.1 (5)).

(2) If Y = P
n
k, we can show inductively thatH i

DR(Y) = k for eachi even, 0≤ i ≤ 2n, and that

H i
DR(Y) = 0 for eachi odd. The same is true for homology. Just start withP

0
k = A

0
k, which

hask in degree 0, and use the long exact sequence of Theorem 3.1(6)with Z = P
n−1
k ⊂Y =

P
n
k andY−Z = A

n
k to find first the homology, and then use Theorem 3.1(4) to obtain the

cohomology ofPn
k.

Proposition 3.3. ( Lichtenbaum theorem for algebraic de Rham cohomology)

(1) Let Y be a scheme of dimension d over k. Then H2d
DR(Y) 6= 0 if and only if at least one

irreducible component of Y is proper over k.

(2) For Y any scheme, HDR
0 (Y) 6= 0 if and only if Y has at least one connected component that

is proper over k.

Proof. This is a straightforward consequence of the result of Theorem 3.1, together with the Mayer-

Vietoris sequences and the exact sequences of a birational morphism [6, 4.1, 4.2, 4.4, 4.5]. �
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Proposition 3.4. LetC be a nonsingular projective curve of genus g over k. Then the dimension of

the de Rham cohomology groups are h0
DR(C) = h2

DR(C) = 1 and h1
DR(C) = 2g. The homology groups

are the same.

Proof. In this case, the de Rham complex is justOC

d
−→Ω1

C
.

There is a spectral sequence

Epq
1 = Hq(C,Ωp) =⇒ En = Hn

DR(C) .

The firstd1-map isH0(OC)→ H0(Ω1
C
), which is zero, because the only global sections ofOC are

constants, and their derivative is zero. HenceH0
DR(C) = k. By duality, see Theorem 3.1(4) and (5),

we see also thatH2
DR(C) = k. Hence the otherd1-mapH1(OC)→ H1(Ω1

C
) must also be zero and so

H1
DR(C)

∼= H1(OC)⊗H0(Ω1
C
), which has dimension 2g. The result for homology then follows from

Theorem 3.1(5). �

Proposition 3.5. LetC be an integral projective curve over k. For each singular point P∈ C, let nP

be the number of branches ofC at P, that is, the number of points of the normalizationC̃ of C lying

over P. Then h0DR(C) = h2
DR(C) = 1 and h1

DR(C) = 2g+∑P∈C(nP−1), where g is the genus of the

normalizationC̃. The homology groups are the same.

Proof. We use the exact sequence of homology for a proper birationalmorphism [6, II,4.5] applied

to the projectionπ : C̃→ C. Let Z be the singular locus ofC, and letZ
′
be its inverse image iñC.

Then we have

· · · −→ HDR
i (Z

′
)−→ HDR

i (Z)⊕HDR
i (C̃)−→ HDR

i (C)−→ HDR
i−1(Z

′
)−→ ·· ·

SinceC̃ is smooth and projective, its homology (Proposition 3.4) has dimensionhDR
i (C̃) = 1,2g,1

for i = 0,1,2 respectively. The homology ofZ andZ
′
is in degree 0 only, and is just the number of

points in each. Thus

hDR
1 (C) = hDR

1 (C̃)+#Z
′
−#Z ,

which gives the result. The same holds for the cohomology ofC by Theorem 3.1(4). �

Remark 3.6. Of course Proposition 3.4 and Proposition 3.5 could have been proved by using the

comparison theorem (see Theorem 3.1(7)) and the well-knownresults about the cohomology of

compact Riemann surfaces, but we wished to keep our exposition purely algebraic.

4. LOCAL COHOMOLOGY OF A PROJECTIVE VARIETY

Now we come to the main subject of our investigation. LetV be a closed subscheme of the pro-

jective spacePn
k over an algebraically closed fieldk of characteristic zero. LetV have codimension

r. LetA= k[x0, . . . ,xn] be the homogeneous coordinate ring ofP
n
k and letI be the homogenous ideal

of V in A. We propose to investigate the local cohomology modulesH i
I (A). We keep these notations

throughout this section.
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Proposition 4.1. Let V be an equidimensional closed subscheme ofP
n
k of codimension r. Let I be

the homogenous ideal of V in A= k[x0, . . . ,xn].

(1) Hi
I (A) = 0 for r < i < n+1.

(2) If V is a set-theoretic complete intersection inP
n
k, then Hi

I (A) = 0 for i > r.

(3) If V is a local complete intersection scheme, then for allr < i ≤ n+1, H i
I (A) has support

at the irrelevant maximal idealm= (x0, . . . ,xn) of A.

Proof. SinceV has codimensionr, the idealI has heightr and hence contains a regular sequence

of length r for A. The first part of assertion (1) now follows from the characterization of I -depth

in terms of local cohomology and the second part holds because the dimension of the ring isn+1.

For (2), notice that in this case there is an ideal( f1, . . . , fr) generated byr elements having the same

radical asI , so computing local cohomology using theČech complex we obtainH i
I (A) = 0 for i > r.

Assertion (3) is a result of Ogus [14, 4.1, 4.3] proved using alocal version of (2). �

Next we will make use of theD-module structure on the local cohomology modulesH i
i (A).

Proposition 4.2. Let X=A
n+1 beSpecA, let I be an ideal of A, and let Y= Spec(A/I). Then there

is a spectral sequence

Epq
2 = H p

DR(H
q
I (A)) =⇒ HDR

2n+2−p−q(Y)

relating the de Rham cohomology of theD-modules Hi
I (A) to the algebraic de Rham homology of

the scheme Y.

Proof. We compute the algebraic de Rham homology ofY using its embedding inX, so that by

definition (see Section 3)

HDR
i (Y) = H2n+2−i

Y (X,Ω•X) .

(Note the shift by 2n+2 sinceX has dimensionn+1). Then we use the spectral sequence of local

hyper-cohomology ofΩ•X, which is

Epq
1 = Hq

Y(X,Ωp
X) =⇒ Ep+q = Hp+q

Y (X,Ω•X) .

SinceΩp
X is a freeOX-module, for eachq we can write

Epq
1 = Hq

I (A)⊗Ωp
X .

Thus forq fixed, the rowEpq
1 with differentialsdpq

1 becomes the de Rham complex of theD-module

Hq
I (A), and its homology theEpq

2 terms, become the de Rham cohomologyH p
DR(H

q
I (A)). Thus the

spectral sequence of the proposition is the same spectral sequence, but starting with theE2 page. �

And now, we will see that whenV is a local complete intersection, the spectral sequence of

Proposition 4.2 degenerates.

Theorem 4.3. Let V be a local complete intersection inPn
k, equidimensional of codimension r, and

let Y⊂ X =A
n+1 be defined by the homogenous ideal I of V . Then

(1) H j
DR(H

r
I (A)) = HDR

2n+2− j−r(Y) for 0≤ j ≤ n+1, and
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(2) Hn+1
DR (H i

I (A)) = HDR
n+1−i(Y) for r ≤ i ≤ n+1.

All other values of Hj
DR(H

i
I (A)) are zero, as are all other values of HDR

i (Y).

Proof. First of all,H i
I (A) = 0 for i < r by Proposition 4.1(1). Next, fori > r we know thatH i

I (A) has

support at the maximal ideal by Proposition 4.1(3), and hence is isomorphic to a direct sum of copies

of E by Example 2.2(5). In that case,H j
DR(H

i
I (A)) = 0 except for j = n+ 1, by Example 2.2(4).

Thus the only possible non-zero initial terms of the spectral sequence of Proposition 4.2 are for

q = r and 0≤ p≤ n+ 1, or for p = n+ 1 and anyr ≤ q≤ n+ 1. This gives a curiosL-shaped

spectral sequence.

q

n+1

r

pn+1

• • • • • • • • •

•

•

•

•

There are no non-triviald2 maps so the spectral sequence degenerates and gives the isomorphism

of the theorem. �

Corollary 4.4. Let V, I ,Y be as in Theorem 4.3. Then Hj
DR(H

r
I (A)) = 0 for j < r.

Proof. This is becauseY, being a scheme of dimensionn− r + 1, has no homology in degrees

> 2n−2r +2, by Theorem 3.1(3). �

Corollary 4.5. Let V, I ,Y be as in Theorem 4.3. For i> r the D-module Hi
I (A) is isomorphic to

Emi where mi = dimk HDR
n+1−i(Y).

Proof. We have seen in the proof of Theorem 4.3 that fori > r we haveH i
I (A) ∼= Emi for somemi.

SinceH j
DR(E)= 0 for j 6= n+1 andk for j = n+1, this numbermi is the dimension ofHn+1

DR (H i
I (A)),

which is equal to the dimension ofHDR
n+1−i(Y), according to the theorem. �

Our next task is to relate the algebraic de Rham homology ofY to that ofV.

Proposition 4.6. With the hypotheses of Theorem 4.3, assume furthermore thatV is connected, of

dimension d≥ 1. Then

(1) HDR
0 (Y) = HDR

1 (Y) = 0,

(2) HDR
2 (Y)∼= HDR

1 (V),
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(3) HDR
2d+2(Y)

∼= HDR
2d (V), and

(4) for 3≤ i ≤ 2d+1 the homology of Y is determined by the exact sequence

0= HDR
2d+1(V)

h
−→ HDR

2d−1(V)→ HDR
2d+1(Y)→ HDR

2d (V)→ . . .→ HDR
3 (Y)→ HDR

2 (V)
h
−→ HDR

0 (V)→ 0

where h denotes cap-product with the hyperplane class.

Proof. We use a method of proof similar to [6, II,3.2] but with homology instead of cohomology.

The first step is to compare the homology ofY to that ofY−P, whereP corresponds tom =

(x0, . . . ,xn) in A. SinceP only has homology in degree zero, the exact sequence of Theorem 3.1(6)

gives an exact sequence

0→ HDR
1 (Y)→ HDR

1 (Y−P)→ HDR
0 (P)→ HDR

0 (Y)→ HDR
0 (Y−P)→ 0,

and isomorphisms

HDR
i (Y)∼= HDR

i (Y−P) for i ≥ 2

Next we note thatY−P is isomorphic to the geometric vector bundleV(OV(−1)) minus its zero

section, so we can apply the Thom-Gysin sequence [6, II,7.9.3] to obtain a long exact sequence

. . .→ HDR
i (V)

h
−→ HDR

i−2(V)→ HDR
i (Y−P)→ HDR

i−1(V)→ . . .

whereh is the cap-product in homology [6, II, 7.4]. From the last terms of this sequence it follows

that HDR
0 (Y−P) = 0 andHDR

1 (Y−P) ∼= HDR
0 (V) = k, sinceV is connected (see also Proposi-

tion 3.3). SinceHDR
0 (P) = k andHDR

0 (Y) = 0 by Proposition 3.3, the earlier sequence now implies

thatHDR
1 (Y) = 0. SinceV has dimension≥ 1, it follows that the cap producth : HDR

2 (V)→HDR
0 (V)

is surjective, and soHDR
2 (Y) ∼= HDR

2 (Y−P) ∼= HDR
1 (V). (To see thath is surjective, note that it is

dual to the cup-productH0
DR(V)→H2

DR(V), and the image of the generator ofH0
DR(V) is the hyper-

plane class inH2
DR(V), which, having self-intersection equal to the degree ofV must be non-zero.)

Now usingHDR
i (Y)∼= HDR

i (Y−P) for i ≥ 3 gives the desired assertions (3) and (4). �

Corollary 4.7. [Ogus,[14, 4.4]] Let V be a local complete intersection inPn
k, equidimensional of

codimension r, connected, of dimension d≥ 1, with homogenous ideal I in A. Then the groups

H i
I (A) are zero for all i> r if and only if the restriction maps

H j
DR(P

n)−→ H j
DR(V)

are isomorphisms for all j< n− r.

Proof. By Theorem 4.3 it follows that theH i
I (A) = 0 for all i > r is equivalent toHDR

j (Y) = 0

for all j < n+1− r. This in turn, by Proposition 4.6, is equivalent to saying that the cap-product

h : HDR
j (V)→ HDR

j−2(V) is an isomorphism for allj < n− r and surjective forj = n− r. By duality

(see Theorem 3.1(4)) this is equivalent to saying that the cup-productH j−2
DR (V)→ H j

DR(V) is an

isomorphism for allj < n− r and injective forj = n− r. Beginning withH−1
DR(V) = 0 andH0

DR(V) =

k, and using the fact that the cohomology of projective space is 0 in odd degrees andk in even

degrees generated by the hyperplane classh ∈ H2
DR(P

n) (see Example 3.2(2)), our calculation is
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equivalent to saying that the restriction mapH j
DR(P

n)→ H j
DR(V) is an isomorphism for allj <

n− r. �

As an illustration of these results, we gather together our conclusions for a nonsingular variety.

Theorem 4.8. Let V be a nonsingular irreducible variety inPn
k of codimension r and dimension

d = n− r ≥ 1, with homogenous ideal I in A. Then writing bi = dimHDR
i (V) for the Betti numbers

of V , we have

(1) Hi
I (A) = Emi with mi = bn−i −bn−i−2 for r < i < n and Hi

I (A) = 0 for i ≥ n.

(2) H j
DR(H

r
I (A)) = 0 for j < r, and has dimension bn+d− j −bn+d− j+2 for r ≤ j ≤ n, and bd−

bd−2 for j = n+1.

Proof. SinceV is nonsingular of dimensiond, the hard Lefschetz theorem tell us that capping with

the hyperplane classh gives a map

h : HDR
i (V)−→ HDR

i−2(V)

that is surjective fori ≤ d+1 and injective fori ≥ d+1. Therefore by Proposition 4.6, we find that

hDR
i (Y) =







































0 for i = 0,1

b1 for i = 2

bi−1−bi−3 for 3≤ i ≤ d+1

bi−2−bi for d+1< i ≤ 2d

b2d−1 for i = 2d+1

b2d for i = 2d+2.

Substituting these values in the statement of Theorem 4.3 gives the desired assertions. �

Remark 4.9. Many of the results of this section concerning the casei > r are not new. What

is new are the results concerning theD-module structure of the nontrivial caseH r
I (A), especially

Theorem 4.3(1) and Theorem 4.8(2).

The understanding of the relationship between cofinitenessand vanishing of the local cohomol-

ogy modulesH i
I (A) for i > r and the algebraic de Rham cohomology of the projective variety V

goes back to Ogus [14]. This connection is acknowledged in the last paragraph of Lyubeznik’s pa-

per [12], just after he has defined some new numerical invariants of a local ring, commonly called

Lyubeznik numbers. The study of these numbers has led to several results analogous to ours.

Garcià-López and Sabbah [11] give a result similar to our Corollary 4.5 for an isolated singularity

of a complex analytic space, in terms of local topological invariants.

Blickle and Bondu [1] give a similar result for a pointP in a complex analytic spaceY under the

condition thatY−P is an intersection homology manifold. This condition is probably equivalent

to Ogus’s condition on theDR-depth [14, 4.1], which is in factequivalentto the local cohomology

modulesH i
I (X) being cofinite fori > r.
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Lyubeznik, Singh, and Walther [13, 3.1] give another analogue of our Corollary 4.5 overC,

taking ashypothesisthat these local cohomology groups have support atm, and computing themi

in terms of the complex singular cohomology ofC
n\Y.

Switala [16] in a recent paper about Lyubeznik numbers recovers independently our Theorem 4.8(1)

for the vertex of the cone over a nonsingular projective variety. His argument is similar to ours, but

uses cohomology instead of homology.

5. D-MODULES OVER THE POWER SERIES RING

Theorem 5.1.Let A be the power series ring k[[x1, . . . ,xn]], let E be an injective hull of k over A, and

let M be a holonomicD-module. If m= dimk Hn
DR(M), then there is a surjective homomorphism of

D-modules

M −→ Em−→ 0.

Proof. Recall thatHn
DR(M) is a finite dimensionalk-vector space (see Section 2). Observe that since

Hn
DR(M) is the homology of the last term of the de Rham complex, it is simply M/(∂1, . . . ,∂n)M.

Choose a linear map fromM/(∂1, . . . ,∂n)M to k and compose it with the canonical epimorphism

from M to M/(∂1, . . . ,∂n)M to obtain a mapψ from M to k. Because of Proposition 5.13 below,

ψ is a continuous map in the sense of Definition 5.3. Therefore,by Proposition 5.4, the mapψ
corresponds to anA-linear mapϕ from M to E. The correspondence in Proposition 5.4 depends on

the choice of ak-linear projectionπ of E to its soclek. We now chooseπ to be the projection ofE

to E/(∂1, . . . ,∂n)E, which is isomorphic to the socle ofE. Then we have a diagram

M

��

ϕ
// E

π
��

M/(∂1, . . . ,∂n)M // k= E/(∂1, . . . ,∂n)E

which shows thatϕ maps the kernel ofψ to the kernel ofπ. Hence

ϕ((∂1, . . . ,∂n)M)⊂ (∂1, . . . ,∂n)E .

Now according to Proposition 5.5 the mapϕ is not onlyA-linear, but is also a map ofD-modules.

Further, observe that sinceE is a simpleD-module andϕ is not zero,ϕ is surjective. Applying the

same reasoning to a basis for the space of linear maps fromM/(∂1, . . . ,∂n)M to k we obtainmmaps

from M to E and therefore a single surjective map fromM to Em. This completes our proof, subject

to Propositions 5.4, 5.5, 5.13 below.

Corollary 5.2. Let A be the power series ring k[[x1, . . . ,xn]], let E be an injective hull of k over A,

and let M be a holonomicD-module. Then

dimk Hn
DR(M) = dimk HomD(M,E) .
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Proof. By the theorem we have

dimk Hn
DR(M)≤ dimk HomD(M,E) .

Conversely, if dimk HomD(M,E) = s, then there is a surjective map fromM to Es. Apply the de

Rham cohomology functor. Then

Hn
DR(M)−→ Hn

DR(E
s)−→ 0

SinceHn
DR(E) = k, we have

dimk Hn
DR(M)≥ dimk Hn

DR(E
s) = s.

Now we are ready to prove the three propositions that are the main ingredients in the proof of

Theorem 5.1.

Definition 5.3. Let (A,m,k) be a local ring that contains its residue fieldk. Let M be anA-module.

A k-linear homomorphismψ of M to k is calledcontinuousif for every finitely generated submodule

N of M there is an integers such thatψ(msN) = 0. We denote theA-module of continuous linear

homomorphisms by Homcontk(M,k).

The following proposition appears in [10, 18] but we give theproof for convenience.

Proposition 5.4. [10, IV, Remarque 5.5]Let (A,m,k) be a local ring that contains its residue field

k, and E an injective hull of k. For any A-module M, the Matlis dual HomA(M,E) is isomorphic as

a k-vector space to the moduleHomcontk(M,k).

Proof. Choose ak-linear projectionπ of E to its soclek. Then for anyϕ∈HomA(M,E), composing

with π, we obtain ak-linear homomorphismψ from M to k. Let us show thatψ is continuous. For

any finitely generated submoduleN of M the imageϕ(N) is a finitely generated submodule ofE

and therefore is anA-module of finite length. Thus there exists an integerssuch thatmsϕ(N) = 0. It

follows thatϕ(msN)= 0 and thusψ(msN)= 0. Henceψ is continuous in the sense of Definition 5.3.

We have thus constructed ak-linear mapΛ from HomA(M,E) to Homcontk(M,k). Now we show

that Λ is an isomorphism. IfM = k, it is obvious. For anA-module of finite length, the statement

follows by induction on the length of the module and short exact sequences

0−→M′ −→M −→M′′ −→ 0

and the fact that HomA(M,E) and Homcontk(M,k) are contravariant exact functors. Next, ifM is a

finitely generatedA-module, then every homomorphisms of either HomA(M,E) or Homcontk(M,k)

factors throughM/mℓM for someℓ, hence we have

HomA(M,E) = lim
−→

HomA(M/mℓM,E)≃ lim
−→

Homcontk(M/mℓM,k) = Homcontk(M,k) .
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For M an arbitraryA-module, think ofM as the direct limit of its finitely generated submodules,

M = lim
−→

Mℓ. Thus we have

HomA(M,E) = HomA(lim−→Mℓ,E) = lim
←−

HomA(Mℓ,E)

≃ lim
←−

Homcontk(Mℓ,k) = Homcontk(lim−→Mℓ,k) = Homcontk(M,k) .

Proposition 5.5. Let A be the power series ring k[[x1, . . . ,xn]], let E be an injective hull of k over A,

let M be aD-module, and letϕ : M −→ E be an A-linear map such that

ϕ(∂M)⊂ ∂E ,

where∂ = (∂1, . . . ,∂n). Thenϕ is alsoD-linear.

Proof. We must show that∂iϕ(m) = ϕ(∂im) for all i and for allm∈ M. Observe that both sides

are elements of∂E. The left hand side because it is a∂i of something, the right hand side because

of our hypothesis thatϕ(∂M) ⊂ ∂E. Next we note that the map∂E −→ En, sendinge∈ ∂E to

(x1e, . . . ,xne) ∈ En, is injective. Therefore it sufficient to prove that for every j,

x j∂iϕ(m) = x jϕ(∂im) ∀m∈M . (∗)

We claim that statement (∗) is equivalent to showing

∂iϕ(x jm) = ϕ(∂i(x jm)) ∀m∈M .

If i 6= j the claim is clear becausex j and∂i commute andϕ is A-linear. If i = j, then we use the

equationxi∂i = ∂ixi −1 in the ring of differential operators. Indeed, notice thatthe left hand side of

(∗) is

xi∂i(ϕ(m)) = ∂iϕ(xim)−ϕ(m)

while the right hand side of (∗) is

xiϕ(∂im) = ϕ(xi∂im) = ϕ(∂i(xim)−m) = ϕ(∂i(xim)−ϕ(m) .

Now after cancelingϕ(m) we obtain the desired claim. We have thus replaced the original problem

for m∈M by the same problem forx jm. Repeating the same procedure it is sufficient to show

∂iϕ(αm) = ϕ(∂i(αm)) ∀m∈M

for all monomialsα ∈ A of any high degree we like. To conclude notice that both sidesare zero for

degree ofα sufficiently large. Indeed, the left hand side is clearly zero sinceϕ(αm) = αϕ(m) and

ϕ(m) ∈ E. The right hand side is zero because using the product rule wehave

ϕ(∂i(αm)) = ϕ(∂i(α)m)+ϕ(α∂im) = ∂i(α)ϕ(m)+αϕ(∂im)

and both∂i(α) andα have sufficiently high degree.

Remark 5.6. The statement and the proof of Proposition 5.5 also hold overa polynomial ring or its

localization at the maximal ideal.
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Theorem 5.7. [[2, 3.3.19],[19, Prop. 1]] Let A be the power series ring k[[x1, . . . ,xn]] and let M be

a holonomicD-module over A. Then there exists a nonzero element g∈ A such that M[g−1] is a

holonomicD-module that is finitely generated as an A[g−1]-module. Furthermore, after a linear

change of variables, we may assume that g(x1,0, . . . ,0) 6= 0, and in that case we can take g to be a

Weierstraß polynomial

xr
1+a1xr−1

1 + . . .+ar ,

with ai ∈ k[[x2, . . . ,xn]]. In this situation we say that M is x1-regular.

Theorem 5.8. [20, Thm I] Let A be the power series ring k[[x1, . . . ,xn]] and let M be a holo-

nomicD-module over A that is x1-regular. Then M/∂1(M) is a holonomicD-module over the

ring k[[x2, . . . ,xn]].

Remark 5.9. Van den Essen showed by an example [19] that for an arbitrary holonomicD-module

M, the quotientM/∂1(M) need not to be a holonomicD-module over the ringk[[x2, . . . ,xn]]. How-

ever, with the extra condition thatM is x1-regular, this holds.

Lemma 5.10. Let A be the power series ring k[[x1, . . . ,xn]], let M be a holonomicD-module that is

x1-regular, and let e be any element of M. Then there exists a differential operator of the form

P= a0+a1∂1+ . . .+ar∂r
1 ai ∈ A

where ar has a pure power of x1, and such that

P(b) ·e⊂ ∂1(M) ∀b∈ A.

Proof. While not given exactly in this form, our statement and proofare based on a careful reading

of [20]. According to Theorem 5.7 there is an elementsg such thatM[g−1] is finitely generated as

anA[g−1]-module, and furthermoreg can be taken to be a Weierstraß polynomial inx1. Let x= x1

and∂ = ∂1. Letebe an element ofM. Thene,∂e,∂2e, . . . ,∂ie, . . . are linearly dependent overA[g−1].

Therefore, there exists an integerr and elementsci ∈ A[g−1] such that

∂re=
r−1

∑
0

ci∂ie.

Clearing denominators we can write

gs∂re=
r−1

∑
0

di∂ie,

wheredi ∈ A. So we can consider the differential operator

Q=
r

∑
0

di∂i ,

using thedi above for 0≤ i ≤ r − 1 anddr = −gs. By constructionQ(e) = 0 in M and dr is a

Weierstraß polynomial inx. There existai ∈ A such that the differential operatorQ can be written

as

Q= a0−∂a1+ . . .+(−1)r∂rar .
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Let P be the differential operator

P= a0+a1∂+ . . .+ar∂r .

Then for everyb∈ A we claim there is an equality of differential operators

bQ= P(b)+∂R, (1)

whereR is another differential operator andP(b) meansP acting onb∈ A. Then, if we apply the

two operators defined in (1) toewe have,

0= bQ(e) = P(b)e+∂R(e) .

This implies that for allb∈ A, P(b)e⊂ ∂(M), thus establishing the desired conclusion.

To complete the proof we need to prove the equality of differential operators in (1). By linearity

it suffices to show the claim forQ= (−1)i∂iai andP= ai∂i . We need to show thatbQ−P(b) = ∂Ri

for some operatorRi. To prove the claim we show by induction oni a stronger claim, more precisely,

that for all f ,g∈ A

(−1)i f ∂ig= g∂i( f )+∂Ri ,

for some operatorRi. If i = 0, we can takeR0 = 0 becausef g= g f . If i = 1 we have

f ∂+∂( f ) = ∂ f .

Since∂( f ) ∈ A we haveg∂( f ) = ∂( f )g. Thus takeR1 = −∂ f g. Let i ≥ 2 and assume that the

statement holds fori−1. We have

(−1)i f ∂ig= (−1)i f ∂(∂i−1g) = (−1)i [∂ f −∂( f )](∂i−1g) = (−1)i∂ f ∂i−1g+(−1)i−1∂( f )∂i−1g

By induction hypothesis we have

(−1)i−1∂( f )∂i−1g= g∂i−1(∂( f ))+∂Ri−1

thus substituting in the previous equation we obtain

(−1)i f ∂ig= g∂i−1(∂( f ))+∂Ri−1+(−1)i∂ f ∂i−1g= g∂i( f )+∂Ri

whereRi = Ri−1+(−1)i f ∂i−1g, which proves the claim.

The following lemma is our key technical result.

Proposition 5.11. Let A be the power series ring k[[x1, . . . ,xn]], let B= k[[x2, . . . ,xn]], let x= x1, and

let ∂ = ∂1. Let P be a differential operator of the form

P=
r

∑
i=0

ai∂i ai ∈ A,

where ar has a pure power of x. Then there exist integers s andℓ0 such that every f∈ A can be

written in the form

f =
s−1

∑
i=0

eix
i + ∑

ℓ≥ℓ0

bℓP(x
ℓ)
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where ei ,bℓ ∈ B. Furthermore, if f∈ Axm for some m≥ s then

ei ∈m
ρ(m)
B ∀ 0≤ i ≤ s−1,

whereρ is a function that tends to infinity with m.

Proof. We first show that there exist integersℓ0 andt such that for allℓ≥ ℓ0

P(xℓ) =
∞

∑
i=0

cℓ,ix
i

wherecℓ,i ∈ B satisfy the following conditions

(i) cℓ,i = 0 for i < ℓ− r

(ii) cℓ,i ∈mB for ℓ− r ≤ i < ℓ− r + t

(iii) cℓ,i is a unit inB for i = ℓ− r + t.

(There is no restriction oncℓ,i for i > ℓ− r + t. ) Condition (i) is clear becausexℓ has degreeℓ and

∂r is the highest differential inP. To prove (ii) and (iii), write forℓ≥ r

P(xℓ) = a0xℓ+ ℓa1x
ℓ−1+2

(

ℓ

2

)

a2xℓ−2+ . . .+ r!

(

ℓ

r

)

arx
ℓ−r .

Let t be the least power ofx whose coefficient is a unit in B among all the power series

{a0xr ,a1xr−1, . . . ,ar} .

Notice thatt exists because by hypothesisar has a pure power ofx. Let λi ∈ k be the constant term

of the coefficient ofxt in aixr−i. By construction, at least one of theλi is non zero. The constant

term of the coefficient ofxℓ+t−r in P(xℓ) is

g(ℓ) = λ0+ ℓλ1+ . . .+ r!

(

ℓ

r

)

λr .

Sinceg(ℓ) is a non zero polynomial inℓ, it has at most finitely many zeros. Chooseℓ0 such that

g(ℓ) 6= 0 for all ℓ ≥ ℓ0. Now for any ℓ ≥ ℓ0 write P(xℓ) = ∑∞
i=0 cℓ,ixi , wherecℓ,i ∈ B. Then by

construction thecℓ,i will satisfy the condition (ii) and (iii), namely, the first one that is a unit is

cℓ,ℓ−r+t.

To continue sets= ℓ0− r + t. Then we show that everyf ∈ A can be written in the form

f =
s−1

∑
i=0

eix
i + ∑

ℓ≥ℓ0

bℓP(x
ℓ)

whereei ,bℓ ∈ B. We claim, by induction onk, that

f ≡ fk =
s−1

∑
i=0

ei,kx
i + ∑

ℓ≥ℓ0

bℓ,kP(x
ℓ) modmk

B (2)

for suitableei,k andbℓ,k in B and furthermoreei,k≡ ei,k+1 andbℓ,k≡ bℓ,k+1 modulomk
B. First observe

that for allℓ≥ ℓ0

P(xℓ)≡ αℓx
ℓ−r+t modmB , (3)
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whereαℓ is a unit inA. Here we use thatcℓ,i ∈ mB for all 0≤ i < ℓ− r + t. If the original power

seriesf is

f =
∞

∑
i=0

βix
i

with βi ∈ B, then we definef1 usingei,1 = βi for 0≤ i ≤ s−1 andbℓ,1 = βℓ−r+t(αℓ)
−1 for ℓ ≥ ℓ0.

Thus f ≡ f1 modmB and the claim follows fork= 1. For thek+1 step, we considerf − fk. Notice

that the coefficientsγi,k of f − fk as a power series inx are all inmk
B. Therefore when we useP(xℓ)

to adjust theℓ− r + t coefficient of f − fk, we have by (3)

γℓ−r+t,kP(x
ℓ)≡ γℓ−r+tαℓx

ℓ−r+t modmk+1
B .

Define fk+1 = fk+∑ℓ≥ℓ0
γℓ−r+t,k(αℓ)

−1P(xℓ). Then f ≡ fk+1 modmk+1
B . Writing fk+1 in the form

(2) we obtain the coefficientsei,k+1 andbℓ,k+1 and observe that, by construction, they are congruent

to the coefficientsei,k andbℓ,k modulom
k
B. Now the desired assertion follows by passing to the

limit: namelyei = lim ei,k andbℓ = lim bℓ,k ask goes to infinity.

To explain the ’Furthermore’ statement, suppose thatf ∈ Axm. Then f , as a power series in

x, begins in degree≥ m. We claim thatfk starts in degree≥ m− kt and the coefficients ofx j for

m− pt≤ j <m−(p−1)t are inmp
B. Recall thatP(xℓ) as a power series inx begins in degree≥ ℓ− r

but its first unit coefficient is in degreeℓ− r + t. We prove the claim by induction onk. Fork = 1

recall thatbℓ,1 = βℓ−r+t(αℓ)
−1 and the firstβi that can be different from zero isβm, hence the first

P(xℓ) we are using is forℓ=m+ r−t and that can only start in degreeℓ− r = (m+ r−t)− r =m−t.

Furthermore, the coefficients ofx j for m− t ≤ j < m of P(xm+r−t) as power series inx are inmB

by condition (ii) on thecℓ,i above, or, by the fact thatf1 ≡ f modmB. By the construction used

to build fk from fk−1 we see thatfk satisfies our claim. Now the coefficients off are obtained by

taking the limits of the coefficients of thefk. Sinces is fixed andm can be taken as large as we

like, we have thatei for 0≤ i ≤ s−1 are contained inmρ(m)
B whereρ(m) is a function that tends to

infinity to m, approximately equal to(m−s)/t.

Remark 5.12. A result similar to this was proved by van den Essen [20] but without the “Further-

more” statement, which is crucial to our proof.

Proposition 5.13. Let A be the power series ring k[[x1, . . . ,xn]], let M be a holonomicD-module,

and let N be a finitely generated submodule of M. Then there exists an integer r such that

m
rN⊂ (∂1, . . . ,∂n)M .

Proof. We may assume thatN is generated by one elemente. By Theorem 5.7 we can make a

change of variables so thatM is x1-regular. Letx= x1 and∂ = ∂1. By Lemma 5.10 there exists a

differential operator of the form given in the lemma such that P(a)e⊂ ∂M for all a∈ A. We apply

Proposition 5.11 to this differential operator. By Proposition 5.11 there exists an integerssuch that

for all f ∈ Axm with m≥ swe have

f ·e⊂m
ρ(m)
B E+∂M , (4)
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whereB= k[[x2, . . . ,xn]] andE = B(e,xe, . . . ,xs−1e), becauseP(xℓ)e⊂ ∂M for all ℓ by Lemma 5.10.

We show the statement by induction on the number of variablesn. If n= 1 thenB= k and thus

mB = 0. Therefore, by (4) for allf ∈ Axm with m≥ swe have

f ·e⊂ ∂M ,

hence we obtain

m
sN⊂ ∂M ,

which is the desired assertion forn= 1. If n≥ 2, we apply Theorem 5.8, which saysM = M/∂M

is a holonomicD-module overB. Let E be the image ofE in M, thenE is a finitely generated

submodule ofM. By the induction hypothesis there exists an integert such that

m
t
BE ⊂ (∂2, . . . ,∂n)M .

This implies that

m
t
BE ⊂ (∂1, . . . ,∂n)M . (5)

By Proposition 5.11 we can takem0 large enough so thatm0 ≥ s and ρ(m0) ≥ t. Take r to be

r = m0+ρ(m0). We claim that

m
r
AN =m

r
Ae⊂ (∂1, . . . ,∂n)M .

Write any monomialα ∈m
r
A asxiγ. Notice that eitheri ≥m0 or γ ∈m

j
B with j ≥ ρ(m0)≥ t. In the

first caseα ∈ xm0A, hence by (4) (notice (4) applies becausem0≥ s)

αe⊂m
ρ(m0)
B E+∂M ⊂ (∂1, . . . ,∂n)M

where the last inclusion hold by (5) and because we chosem0 in such a wayρ(m0) ≥ t. In the

second case, the claim follows directly by (5).

6. APPLICATIONS.

We want to apply the results of Section 5 to study the local cohomology moduleH r
I (A), whereV

is a variety inPn
k of codimensionr, with homogenous idealI ⊂ A= k[x0, . . . ,xn]. Unfortunately the

result of Theorem 5.1 is not true forD-modules over a polynomial ring (see Example 6.1). So we

need to pass to the completion.

If M is aD-module over the polynomial ringA= k[x0, . . . ,xn], we can consider the completion

M⊗A Â whereÂ= k[[x0, . . . ,xn]]. It has a natural structure ofD-module overÂ. Furthermore, there

is a natural map on the de Rham cohomology groups:H i
DR(M) −→ H i

DR(M̂). Unfortunately, even

for a holonomicD-module overA, the map on de Rham cohomology may fail to be an isomor-

phism (see Example 6.1). It would be nice to have general conditions under which these maps are

isomorphisms. For instance, ifM is also a gradedA-module, and the∂i act as gradedk-linear maps

of degree−1, then are the completion mapsϕi isomorphisms? We do not know, so we will settle

for a more limited criterion.
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Example 6.1. Let A = k[x] and letM be a freeA-module of rank one. We denote its generator

by e∈M, so that the elements ofM are writtenae for a∈ A. To giveM a structure ofD-module

we can take∂e to be anything we like. So for example, let∂e= x2e. Then for any power ofx,

∂(xne) = xn∂e+ nxn−1e= (xn+2 + nxn−1)e, and we can extend to all ofM by linearity. Now it is

clear that the map∂ : M −→ M is injective, so thatH0
DR(M) = 0. On the other hand, the image of

∂ is ak-vector subspace of codimension 2, soH1
DR(M) = M/∂M has dimension 2. This shows that

Theorem 5.1 is false forM, since any nonzeroD-module homomorphism ofM to E would have to

be surjective, which is impossible sinceM is finitely generated as anA-module.

Now let considerM̂ = M⊗A Â. We claim that there is another generator ofM̂, call it ue, with

u∈ Â a unit, for which∂(ue) = 0. To findu, we want∂(ue) = 0, henceu∂e+ ∂u ·e= 0. We need

to solve the differential equation∂u= −x2u. Just takeu = e−
x3
3 , which is a unit inÂ. ThusM̂ is

isomorphic to the standardD-module structure on̂A with H0
DR(M̂) = 1 andH1

DR(M̂) = 0. So we see

that the passage to the completion does not preserve de Rham cohomology.

Theorem 6.2. Let A= k[[x0, . . . ,xn]], let I⊂ A be a homogenous ideal, and let M be any of the local

cohomology modules M= H i
I (A) with itsD-module structure. Then the completion maps

H j
DR(M)−→ H j

DR(M̂)

whereM̂ = M⊗A Â, are isomorphisms for all j. FurthermorêM is also holonomic over̂A.

Proof. The last statement follows from Theorem 2.1 and the fact that

M̂ = H i
I (A)⊗A Â= H i

Î (Â) .

We will pull ourselves up by our bootstrapsusing the earlier results of Section 4. First of all,

since the local cohomologyH i
I (A) can be computed from thěCech complex of localizations ofA

at product of thefi , where{ f1, . . . , fs} is a set of generators ofI , and a short exact sequence of

modules gives a long exact sequence of de Rham cohomology, wereduce to the case whereI = ( f )

is generated by a single homogeneous polynomialf ∈ A. In this case there is only one non-zero

local cohomology, namely,M = H1
f (A) = Af/A. Let V be the corresponding hypersurface inP

n
k,

and letY ⊂ A
n+1
k be the affine cone overV, namely, the affine subscheme of SpecA defined byf .

Then the hypotheses of Theorem 4.3 are satisfied and hence by that theorem we have that for eachj

H j
DR(M) = HDR

2n+1− j(Y)

the algebraic de Rham homology ofY.

The same proof as for Proposition 4.2 and Theorem 4.3, carried out over the formal power series

ring Â= k[[x0, . . . ,xn]], will show that

H j
DR(M̂) = HDR

2n+1− j(Y
′)

whereY′ ⊂ SpecÂ is the subscheme defined by the same polynomialf ∈ Â. Here we use the local

theory of algebraic de Rham cohomology and homology ([6, III]). Therefore we just need to show
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that the natural mapsHDR
i (Y) −→ HDR

i (Y′) are isomorphisms for alli. This is a question purely in

the theory of algebraic de Rham homology, which we prove next. �

Proposition 6.3. (Strong excision for homology) Let I be a homogeneous ideal in A= k[x0, . . . ,xn]

and let Y be the affine scheme inSpecA= A
n+1
k defined by I. Let̂A= k[[x0, . . . ,xn]], let Î = I Â, and

let Y′ ⊂ SpecÂ be defined bŷI. Then there are natural isomorphisms of de Rham homology

HDR
i (Y)−→ HDR

i (Y′)

for each i.

Proof. LetV ⊂ P
n
k be the projective scheme defined byI . Then according to [6, III, 3.2] there is an

exact sequence

. . .→ Hi+1(Y
′)→ Hi(V)−→ Hi−2(V)→ Hi(Y

′)→ . . .

We have established in Proposition 4.6(4) the same sequencewith Hi(Y) in place ofHi(Y′). Note

that this does not depend on the special hypotheses of Theorem 4.3 and Proposition 4.6. Since there

are compatible maps between these sequences, we conclude that Hi(Y)
∼
−→ Hi(Y′) for all i. �

Theorem 6.4. (Main Theorem) Let V be a nonsingular variety of codimension r in the projective

spacePn
k. Let I be the homogenous ideal of V in A= k[x0, . . . ,xn]. Then the local cohomology

module M= H r
I (A) has a simple sub-D-module M0 with support on Y, the cone over V , and the

quotient M/M0 is a direct sum of bd − bd−2 copies of E, the injective hull of k over A, where

d = dimV, and bi are the Betti numbers bi = dimHDR
i (V).

Proof. By Corollary 4.5 ,Hn+1
DR (H r

I (A)) = HDR
n+1−r(Y). On the other hand, sinceV is nonsingular

and dimV = d = n− r, by Theorem 4.8 the dimension of this homology group isbd−bd−2.

Next, letting M = H r
I (A), we apply Theorem 6.2 to see thatH j

DR(M) = H j
DR(M̂) for each j.

Therefore, by Theorem 5.1 and Corollary 5.2, we have a surjective mapM̂ −→ Em with m= bd−

bd−2, and dim HomD(M̂,E) = m. Composing with the natural mapM −→ M̂ we obtain a map

M −→ Em, which must be surjective sinceHn+1
DR (M)∼= Hn+1

DR (M̂).

On the other hand, sinceY has only one singular point atP, it follows from the general theory

[7, Section 3.4], that if we take the simpleDY-moduleOY on the smooth partY−P of Y, thenM

contains a simpleD-module, theminimal extensionof OY to X in the sense of [7, 3.4.2] and that the

quotientM/M0 has support atP. That quotient must be a sum of copies ofE (see Example 2.2 (5)),

and therefore is equal to the quotientEm found above. �

Corollary 6.5. If V = C is a nonsingular curve of genus g inPn
k, then there is just one nonzero local

cohomology group M= Hn−1
I (A). It has a simple sub-D-module M0 ⊂ M supported on the cone

overC, and the quotient M/M0 is isomorphic to E2g. In particular, if C is a nonsingular rational

curve, then M= Hn−1
I (A) is a simpleD-module.

Proof. Indeed, dimHi(V) = 1,2g,1 for i = 0,1,2, respectively, hence,m= b1−b−1 = 2g. �
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Corollary 6.6. If V is any embedding of a projective spaceP
d in another projective spacePn, then

the local cohomology group M= Hn−d
I (A) is a simpleD-module.

Proof. Indeed, the homology ofV has dimension 1 in even degree and dimension zero in odd

degrees, so in any casebd−bd−2 = 0. �

Remark 6.7. In the special case of the Veronese embedding ofP
d
k in P

n
k, this was proved via an

entirely different method, using representation theory, by Raicu [15].

Remark 6.8. For a singular projective varietyV ⊂ P
n
k of codimensionr, think of a stratification

of V by locally closed nonsingular subvarieties. Then we expectM = H r
I (A) to have one simple

sub-D-module corresponding to the smooth part ofV, and a succession of contributions coming

from the strata of the singular locus, and finally a quotient that is equal to dimHDR
d+1(Y) copies ofE

as before.

In particular, ifV = C is an integral curve, then we expect one component for the smooth part of

C, then at each singular pointP, nP−1 copies of the injective hull of the line cone overP (in the

notation of Proposition 3.5), and thenh1(C) copies ofE.

This may be clear to readers familiar with the Riemann-Hilbert correspondence and perverse

sheaves, but we have not worked out details of the proof in ouralgebraic formulation.

Acknolwedgment.Part of this paper was written at the Centre International deRencontres Mathémati-
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very appreciative of the hospitality offered by the Société Mathématique de France. In addition, we
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