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SIMPLE D-MODULE COMPONENTS OF LOCAL COHOMOLOGY MODULES

ROBIN HARTSHORNE AND CLAUDIA POLINI

ABSTRACT. For a projective variety/ C P} over a field of characteristic zero, with homogenous
ideall in A=K[xo, ..., Xn], we consider the local cohomology moduléSA). These have a structure

of holonomicD-module overA, and we investigate their filtration by simglz-modules. In cas¥
is nonsingular, we can describe completely the siniplmodule components dfl| (A) for all i, in
terms of the Betti numbers df.

1. INTRODUCTION

The local cohomology groups\i((x,"f) of an Abelian sheaf on a topological spac¥, with
support in a closed subs¥t were introduced by Grothendieck in 1961 in his Harvard aadsP
seminars|[0],[[10]. I{X is the spectrum of a ring, andY is the closed subset associated to an ideal
I, andJ is the sheaf of sections of almoduleM, these groups are denotélﬂ(M). The latter
can be computed algebraically as the derived functors dithetorl", (e) that to eachA-moduleM
associates the submodule of elements with suppdtttimat is, that are annihilated by some power
of I. In the 50 years since their introduction, these groups ardutes have found wide application
in algebraic geometry and in commutative algebra.

Even when the rind\ is Noetherian and the modul finitely generated, the local cohomology
modulesH,‘(M) are rarely finitely generated. K is a local ring with maximal ideain, then at
least the modulesi! (M) are cofinite meaning that they satisfy the descending chain condition,
or equivalently, that Hom(k,H! (M)) is a finite dimensionak-vector space, wherk = A/m is
the residue field oA. Grothendieck asked whether for any ideéathe modulesH, (M) might be
I-cofinite in the sense that HogA/1,H/(M)) is finitely generated. This turns out not to be so in
generall[5], though an analogous property does hold in theetkecategory.

Another finiteness property was discovered more recentlyyiopeznik [12], who showed that
if Ais a polynomial ring or a power series over a fikldf characteristic zero, then for any finitely
generatedA-module M and any ideal in A, the local cohomology moduldslli(M) are finitely
generated a®-modules, wheré is the (non-commutative) ring of differential operatorsom.
Moreover, they ardolonomicD-modules, in particular they are of finite length®asmodules, and
have a finite composition series whose factors are sifbpteodules.
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Our basic questions in this paper isVifC P} is an algebraic variety, with homogeneous ideal
| in the polynomial ringA = K[xo, . ..,Xs|, what are the simpl®-module components of the local
cohomology modulelsili (A), and what can we learn about the geometry dfom them?

To approach this question, we review some old work of Oguj j&Ho found conditions for the
vanishing of some of these groups, in terms of the algebmiRltam cohomology groups of the
subvarietyV. Using a similar technique, we compute the de Rham cohomcgugjpsH[j)R(M) for
the D-moduleM = Hli(A), for eachi and j, in terms of the algebraic de Rham cohomologyof
This allows us to recover the result of Ogus on the vanishirg) @ofiniteness oH](A) for i >r,
wherer is the codimension.

Similar results to ours have been obtained in recent yearadry authors using various tech-
niques (see Remark 4.9). What is new in our method is that seeaitain information about the
D-module structure of the critical conomology modtiE(A).

To interpret this information, we prove a technical reshtiging that for a holonomi®-module
M over a power series rinfg= Kk[[x1, . .., %], the dimension of the top de Rham cohomology module
HJr(M) is equal to the largest number of copies of the injective lepeE of k overRwhose direct
sumE™ can appear as a quotieftmodule ofM. This result, while apparently dual in some way
to the elementary statement thﬁgR(M) gives the rank of the largest fréa-moduleR™ that can
appear as a submoduleMf is not at all easy to prove. We use an extension of methodtogatbby
van den Essein [19, 20,121] to show that the de Rham cohomologjalﬂsz[j)R(M) of a holonomic
D-module are all finite dimensional.

Our main application is to show that\ifis a nonsingular subvariety &, of codimensiorr, then
its nontrivial local cohomology modull (A) has a simple su®-module with support alony,
with quotient a direct surt™ of copies ofE, wherem s determined by the Betti numbers\éfin
the sense of algebraic de Rham cohomology. In particul&t,isfa nonsingular curve of gengs
thenm= 2g, so that for a rational curv¢ C P}, theD-moduIeHlnfl(A) is simple. The only other
result we know giving the simpl®-module composition off{ (A) for a projective variety is the
theorem of Raicu[[15], which shows that férthe d-uple embedding of another projective space
in P}, the correspondin@-module is simple. His result, proved by an entirely différmethod, is
recovered by ours.

One further comment about this paper. Our methods are palgdypraic, working over an alge-
braically closed fieldk of characteristic zero. Over the complex numb€rghere is an extensive
theory of analyticD-modules using intersection cohomology and perverse skeand there is a
Riemann-Hilbert correspondence comparing the algebhaiory of D-modules with regular sin-
gularities to the analytic theory. Readers familiar witlogl theories will probably see how to
obtain results analogous to ours in the analytic categoypegrhaps even recover our result via the
Riemann-Hilbert correspondence. Nevertheless our gaabkan to present the entire argument
algebraically, without reference to the analytic theory.
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2. THE LANGUAGE OF ALGEBRAIC D-MODULES

Letk be a field of characteristic zero, and Rbe either the polynomial rinf[xs, ..., x,] or the
formal power series ring[[x1, ..., X]. LetD be the ring of differential operatoR < d1,...,0, >,
whered; is the partial derivative/dx;.. This is a non-commutative ring with the relatiods; =
x0; + 1 for eachi. An R-moduleM, together with a left action ob on M, will be called aD-
module. We will use the books of Bjorkl[2] and Hotta et al. §ig]our basic references.

One can define thdimensionof a finitely generated-module. It is an integer betweenand
2n. The D-modules with minimal dimension are callecholonomicD-modules. They are of finite
length asD-modules and therefore have a filtration whose quotientsiargle D-modules. (For the
polynomial ring case, segl[2, 1.5.3], where these modukeslap called modules in th&ernstein
class For the power series case, see [2, 2.7.13 and the remathefose 3.3.1]).

Let Qr/k be the module of differentials ové®, generated bylx, ..., dx,, and IetQiR/k be its
exterior power. IfM is a D-module, the actions of; on M give rise to a compleM ®r Q* of
R-modules andc-linear maps, called thde Rham complegf M. Its cohomology groups will be
denoted byHL(M). If M is a holonomicD-module, therH)z(M) are finite-dimensionak-vector
spaces. (In the polynomial ring case, the proof is not diffif2) 1.6.1]. In the power series case,
however the question is difficult, and was left as an openlprobin Bjork’s book. It was proved
later by van de Essen [21, 2.2] as a consequence of his imduesult that ifM is holonomic, then
for a suitable choice of coordinate/0,M will also be holonomic over the power series ring in
n— 1 variables.)

Our interest inD-modules comes from the following theorem of Lyubeznik.

Theorem 2.1. If M is a holonomicD-module over the polynomial ring or the power series ring R
as above and if | is an ideal of R, then the local cohomologyutescH (M) have natural structures
of holonomicD-modules.

Proof. [12, 2.2]. One first shows that §1 is holonomic overR and f € R, then the localized
moduleM; is also holonomic. (For the polynomial ring case, see fotamse [3, 3.4.1]. For the
power series case, se€ [2, 3.4.1]. Theriif..., fs is a set of generators ¢f we can compute
the local cohomology moduldsli(M) from theCech complex formed of the localizations df at
products of thefi. Since kernels, images, and quotients of holonomic modadeiolonomic, it
follows that theH] (M) are holonomic. O

Examples 2.2. (1) The ringRitself is a holonomicD-module and is in fact simple. To see this,
we note that any element BfgeneratefR as aD-module. Indeed, just differentiate enough
times so that the element becomes a unit, then multiply bytier elements dr.

(2) Another important example & = H2(R), wherem = (x1,...,%n). This is an injective
hull of k overR, and is also a simpl®-module. As in (1) above, any element generates the
whole module. Just multiply by enoughto arrive at the soch&[l ---x71, then differentiate
to get any other monomial iB.
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(3) The de Rham cohomology of tie-moduleR is equal tok in degree 0 and 0 otherwise.
This is a consequence of the algebraic Poincaré lernma, [B.1].

(4) The de Rham cohomology of tHe-moduleE is k in degreen, and 0 otherwise. Look first
at the case = 1, whenE = A;/Ais thek-vector space generated by the negative powers of
x. Consider the magp : R= k[x] — E defined by (x’) = £!x~‘~L. This is an isomorphism
of k vector spaces (where we use the convention that @). Note that by construction
06 = —ox. Thusd gives an isomorphism from the complaxi Rto the complexe %E.
Taking the tensor product (ov&) of this isomorphism of complexes ovkjx;|, we obtain
an isomorphism of the Koszul complex fB= K|[x,...,Xn] with respect tox,...,x, and
the Rham complex foE. HenceHJz(E) =k, and the others are zero. For the case wRen
iS a power series ring, notice that the comple® Q° is the same as in the polynomial ring
case.

(5) If M is a holonomicD-module whose support, as &module, is at the maximal ideal
m = (Xg,...,%), thenM is the direct sums of a finite number of copiestofThis follows
for example from Kashiwara’s equivalen¢e [7, 1.6.1, 1,6ofJone can prove it directly as
in [12, 2.4.a].

(6) For any holonomic-moduleM, its zeroth de Rham cohomology3,(M) has dimension
equal to the rankof the largest trivial sut-moduleMo = R of M. Indeed, ifme H3z(M),
then the natural maR — M defined bya+— amis an injectiveD-module homomorphism.
One of our main results, Theorémb.1, is a non-trivial analisgstatement about the last de
Rham cohomology groubjg(M).

3. ALGEBRAIC DE RHAM COHOMOLOGY AND HOMOLOGY

In this section we recall the basic definitions and propgrtitalgebraic de Rham cohomology
and homology that we will use in this paper. Our basic refegsnwill be Grothendieck [8] and
Hartshornel[B].

LetY be a closed subscheme of a schetnemooth and of finite type of dimensionover an
algebraically closed fiel# of characteristic zero. Leﬁz;(/k be the de Rham complex witklinear
maps

d
Ox = QF 5 Q% —--- = Qf.

We define the algebraic de Rhdaramologyof Y to be

HPR(Y) = (X, Q%)

namely the local hyper-cohomology with supportfiof the complexQy [6, I1.3].
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We define the algebraic de Rhammhomologyof Y by passing to the formal completid of X
alongY and taking hyper-cohomology

Hb(Y) = H'(%,Q%).

of the formal completion 0of2% alongY [6, 11.1]. The main properties of these groups are summa-
rized in the following theorem:

Theorem 3.1.Let Y be a scheme of finite type over k, embeddable in a schemedthsover k.

(1) The groups HR(Y) and Hy5(Y) are independent of the embedding of Y in a smooth scheme
X.

(2) The groups HR(Y) and H)x(Y) are finite-dimensional k-vector spaces.

(3) The groups HR(Y) and Hyx(Y) are all zero for i< 0 and i > 2d, where d= dimY .

(4) IfY is proper over k, then PR(Y) = HL(Y)', where denotes the dual k-vector space.

(5) IfY is smooth over k, then®R(Y) = H2%-1(y).

(6) If Z is a closed subset of Y, then there is a long exact seguef homology

... — HPR(z) — HPR(Y) — HPR(Y = 2) — HPR(Zz) — -

(7) If k = C, then Hyz(Y) = H(Y3",C), the usual complex cohomology of the associated
complex-analytic space??, and HPR(Y) calculates the Borel-Moore homology ofY

Proof. These are all in[6]. Item (1) is 1.1.4 and 11.3.2; item (2)i$.1; item (3) is 1.7.2.; item (4)
is [1.5.1; item (5) is 11.3.4; item (6) is 11.3.3; and finalljtem (7) is IV.1.1 and 1.2. O

Example 3.2. (1) IfY = A, the affinen-space, then by definitioH,‘DR(Y) is just the de Rham
cohomologyH\s(R) of the polynomial ringR = K[y, .. ., X,] as aD-module, which isk in
degree 0 and 0 otherwise (see Exaniplé 2.2 (3)). Sthismooth ovek its homology
HPR(Y) iskin degree & and 0 otherwise (see Theorémi3.1 (5)).

(2) If Y =7, we can show inductively th&ﬂ,‘DR(Y) = k for eachi even, 0<i < 2n, and that
HLR(Y) = O for eachi odd. The same is true for homology. Just start Wigh= A2, which
hask in degree 0, and use the long exact sequence of Théorém @itli6] = ]P’E‘1 cY=
Py andY — Z = A to find first the homology, and then use Theoifen 3.1(4) to phits
cohomology ofP}.

Proposition 3.3. ( Lichtenbaum theorem for algebraic de Rham cohomaglogy

(1) Let Y be a scheme of dimension d over k. Thgh(¥) # 0 if and only if at least one
irreducible component of Y is proper over k.

(2) ForY any scheme, #(Y) # 0if and only if Y has at least one connected component that
is proper over K.

Proof. This is a straightforward consequence of the result of Téve@.1, together with the Mayer-
Vietoris sequences and the exact sequences of a biratiarphiem [6, 4.1, 4.2, 4.4, 4.5]. O
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Proposition 3.4. Let C be a nonsingular projective curve of genus g over k. Thenitherksion of
the de Rham cohomology groups af(C) = h3z(C) = 1and hhx(€) = 2g. The homology groups
are the same.

Proof. In this case, the de Rham complex is j@@tg Qé.
There is a spectral sequence

EP?=H9C,QP) = E"=HJR(€).
The firstd;-map isH%(0e) — HO(QY), which is zero, because the only global sectiong)efare
constants, and their derivative is zero. Hehigy(C) = k. By duality, see Theorem 3.1(4) and (5),
we see also thatgz(C) = k. Hence the othed;-mapH?1(Oe) — H(Q}) must also be zero and so

H3r(€) 2 HY(0e) @ HO(QY), which has dimensiong? The result for homology then follows from
Theoreni 3.1(5). O

Proposition 3.5. Let C be an integral projective curve over k. For each singularmd? € C, let np
be the number of branches @fat P, that is, the number of points of the normalizatfnf € lying
over P. Then §(C) = h3z(C) = 1 and KHx(C) = 29+ S pce(Np — 1), where g is the genus of the
normalizationC. The homology groups are the same.

Proof. We use the exact sequence of homology for a proper biratiangbhism [[6, 11,4.5] applied
to the projectionmt: € — C. LetZ be the singular locus df, and letZ' be its inverse image ifi.
Then we have

o — HPR(Z)) — HPR(Z) @ HPR(E) — HPR(@) — HPR(Z) — -

SinceC is smooth and projective, its homology (Proposifion 3.4 d'mnensiomiDR(é) =129,1
for i = 0,1, 2 respectively. The homology @ andZ' is in degree 0 only, and is just the number of
points in each. Thus

hPR(@) = hPR(@) +#Z —#z,
which gives the result. The same holds for the cohomolody lof Theorent 3.11(4). O

Remark 3.6. Of course Proposition_3.4 and Proposition] 3.5 could have Ipeeved by using the
comparison theorem (see Theorem] 3.1(7)) and the well-kn@sults about the cohomology of
compact Riemann surfaces, but we wished to keep our exgogitirely algebraic.

4. LOCAL COHOMOLOGY OF A PROJECTIVE VARIETY

Now we come to the main subject of our investigation. Ldie a closed subscheme of the pro-
jective spacé?} over an algebraically closed fiekdof characteristic zero. L&t have codimension
r. LetA=Kxo, ..., %n] be the homogeneous coordinate ring?pfand letl be the homogenous ideal
of V in A. We propose to investigate the local cohomology modH\kﬁA). We keep these notations
throughout this section.
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Proposition 4.1. Let V be an equidimensional closed subscheni®] @if codimension r. Let | be
the homogenous ideal of V inAk[xo,...,Xa].
(1) H(A)=0forr <i<n+1.
(2) ItV is a set-theoretic complete intersectiornPify then H(A) =0fori>r.
(3) IfV is a local complete intersection scheme, then for atli < n+1, H/(A) has support
at the irrelevant maximal ideah = (X, ...,%n) Of A.

Proof. SinceV has codimension, the ideall has height and hence contains a regular sequence
of lengthr for A. The first part of assertion (1) now follows from the chareetgion of I-depth

in terms of local cohomology and the second part holds bectesdimension of the ring is+ 1.

For (2), notice that in this case there is an iddal . .., f;) generated by elements having the same
radical ad, so computing local cohomology using tBech complex we obtaiHli (A)=0 fori>r.
Assertion (3) is a result of Ogus [14, 4.1, 4.3] proved usitggcal version of (2). O

Next we will make use of thé-module structure on the local cohomology moduHE6A).

Proposition 4.2. Let X= A" beSped, let | be an ideal of A, and let ¥ SpeqA/I). Then there
is a spectral sequence

EDY = HB(HY(A)) = HER, , o(Y)
relating the de Rham cohomology of themodules I{i(A) to the algebraic de Rham homology of
the scheme Y.

Proof. We compute the algebraic de Rham homologyraising its embedding iX, so that by
definition (see Sectidd 3)
HPR(Y) = HF27(X,0%).
(Note the shift by B+ 2 sinceX has dimensiom+ 1). Then we use the spectral sequence of local
hyper-cohomology 0§, which is
EP?=HY(X,Qf) = EP*9=H{™(X,Q%).
SinceQy, is a freeOx-module, for eacly we can write
EPY=H(A)®Qf.

Thus forg fixed, the rowE? with differentialsdf becomes the de Rham complex of themodule
H/'(A), and its homology th&}" terms, become the de Rham cohomolétfs(H(A)). Thus the
spectral sequence of the proposition is the same speafyatsee, but starting with tHe, page. O

And now, we will see that whel is a local complete intersection, the spectral sequence of
Proposition 4.2 degenerates.

Theorem 4.3. LetV be a local complete intersectionliij, equidimensional of codimension r, and
let Y ¢ X = A™? be defined by the homogenous ideal | of V. Then

(1) Hir(H[(A)) =HER, ; (Y)for0<j<n+1, and
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) Hggl(Hli (M) = Hr?flﬂ(Y) forr<i<n+1

All other values of IﬂgR(H,i (A)) are zero, as are all other values of(Y).

Proof. First of all,H(A) = 0 fori < r by Propositio 411(1). Next, far> r we know that/ (A) has
support at the maximal ideal by Propositionl4.1(3), and Bémisomorphic to a direct sum of copies
of E by Exampld Z.2(5). In that casleléR(H,i (A)) = 0 except forj = n+1, by Examplé 2]2(4).
Thus the only possible non-zero initial terms of the spécteguence of Propositidn 4.2 are for
g=rand0<p<n+1 orforp=n+1and anyr <g<n+1. This gives a curio-shaped
spectral sequence.

q

n+1

n+1 P

There are no non-triviad, maps so the spectral sequence degenerates and gives tloegkm
of the theorem. O

Corollary 4.4. LetV,1,Y be as in Theorem 4.3. Thelﬂ)lR-(H{ (A))=0for j<r.

Proof. This is becaus®’, being a scheme of dimension—r + 1, has no homology in degrees
> 2n—2r + 2, by Theorem 311(3). O

Corollary 4.5. LetV,1,Y be as in Theorem 2.3. Fori r the D-module H(A) is isomorphic to

E™ where m= dimiH2R_;(Y).

Proof. We have seen in the proof of Theorém|4.3 thatiforr we haveH, (A) = E™ for somem.

SinceHéR(E) =0for j #n+1andkfor j = n+ 1, this numbeny is the dimension oH55 (H/(A)),
which is equal to the dimension &f2%_;(Y), according to the theorem. O

Our next task is to relate the algebraic de Rham homologytofthat ofV.

Proposition 4.6. With the hypotheses of Theoreml 4.3, assume furthermor® tlsatonnected, of
dimension d> 1. Then

(1) HZR(Y) =HPR(Y) =0,

(2) HPR(Y) = HPR(V),



SIMPLE D-MODULE COMPONENTS OF LOCAL COHOMOLOGY MODULES 9

(3) HER(Y) =HER(V), and
(4) for3<i < 2d+1the homology of Y is determined by the exact sequence

h h
0=HZR (V) = HRR1(V) = HRR1(Y) = HRR(V) — ... = HER(Y) = HPR(V) & HPR(V) — 0
where h denotes cap-product with the hyperplane class.

Proof. We use a method of proof similar tol [6, 1I,3.2] but with homgyoinstead of cohomology.
The first step is to compare the homologyYofto that of Y — P, whereP corresponds tan =
(Xo0,---,%n) in A. SinceP only has homology in degree zero, the exact sequence of &imedrl (6)
gives an exact sequence

0— HPR(Y) = HPR(Y —P) — HPR(P) — HPR(Y) — HFR(Y —P) — 0,
and isomorphisms
HPR(Y) = HPR(Y —P) for i>2
Next we note tha¥ — P is isomorphic to the geometric vector bundéOy (—1)) minus its zero
section, so we can apply the Thom-Gysin sequenice [6, IBJt®.obtain a long exact sequence

. = HPROV) B HPR (V) 5 HPR(Y — P) - HPR(V) — ...

whereh is the cap-product in homology![6, IlI, 7.4]. From the lastrerof this sequence it follows
that HPR(Y — P) = 0 andHPR(Y — P) =2 HPR(V) = k, sinceV is connected (see also Proposi-
tion[3.3). SinceHPR(P) = k andHPR(Y) = 0 by Propositioi 313, the earlier sequence now implies
thatHPR(Y) = 0. SinceV has dimension> 1, it follows that the cap produtt: HPR(V) — HPR(V)

is surjective, and seIPR(Y) = HPR(Y — P) =2 HPR(V). (To see thah is surjective, note that it is
dual to the cup-produdtSg(V) — H3g(V), and the image of the generatorgf(V) is the hyper-
plane class im-ISR(V), which, having self-intersection equal to the degre¥ ofiust be non-zero.)
Now usingHPR(Y) = HPR(Y — P) for i > 3 gives the desired assertions (3) and (4). O

Corollary 4.7. [Ogus,[14, 4.4] LetV be a local complete intersection i}, equidimensional of
codimension r, connected, of dimensiorrdl., with homogenous ideal | in A. Then the groups
H| (A) are zero for all i> r if and only if the restriction maps

HoR(E") — HiR(V)
are isomorphisms for all g n—r.

Proof. By Theoren(4.B it follows that théi/(A) = 0 for all i > r is equivalent toHPR(Y) = 0
for all j <n+1—r. This in turn, by Propositioh 4.6, is equivalent to sayingttthe cap-product
h:HPR(V) — HPR(V) is an isomorphism for al] < n—r and surjective foij = n—r. By duality
(see Theorerh 3.1(4)) this is equivalent to saying that trpepmductHEj);f(V) — HEj,R(V) is an
isomorphism for all < n—r and injective forj = n—r. Beginning WithH,gF%(V) =0 andHBR(V) =

k, and using the fact that the cohomology of projective spade in odd degrees aridin even
degrees generated by the hyperplane chassH3(P") (see Exampl€-312(2)), our calculation is
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equivalent to saying that the restriction mHéR(]P’”) — HéR(V) is an isomorphism for alj <
n—r. O

As an illustration of these results, we gather together oaclisions for a nonsingular variety.

Theorem 4.8. Let V be a nonsingular irreducible variety %} of codimension r and dimension
d =n—r > 1, with homogenous ideal | in A. Then writing= dimHPR(V) for the Betti numbers
of V, we have
(1) H/(A) =E™ withm =bn_j —by_j_» forr <i <nandH(A) =0fori>n.
2 HEj)R(HI’(A)) =0 for j <r, and has dimensionRq—j — bnyg—j2 forr < j<n,and ly —
byg_o for j=n+1

Proof. SinceV is nonsingular of dimensiod, the hard Lefschetz theorem tell us that capping with
the hyperplane clagsgives a map

h: HPR(V) — HPB(V)

that is surjective for < d+ 1 and injective foi > d + 1. Therefore by Propositidn 4.6, we find that

0 for i=0,1
b1 for i=2
bi_> — b for d+1<i<2d
bog_1 for i=2d+1
bog for i=2d+2.
Substituting these values in the statement of Thedrem ¥e% ghe desired assertions. O

Remark 4.9. Many of the results of this section concerning the ciaser are not new. What
is new are the results concerning themodule structure of the nontrivial cas¥ (A), especially
Theoreni 4.3(1) and Theordm ¥.8(2).

The understanding of the relationship between cofiniteaadssanishing of the local cohomol-
ogy moduIeSJH,i (A) for i > r and the algebraic de Rham cohomology of the projective tya¥ie
goes back to Ogus [14]. This connection is acknowledgeddnast paragraph of Lyubeznik’s pa-
per [12], just after he has defined some new numerical inveriaf a local ring, commonly called
Lyubeznik numberdThe study of these numbers has led to several results anedg ours.

Garcia-Lopez and Sabbdh [11] give a result similar to canolary[4.5 for an isolated singularity
of a complex analytic space, in terms of local topologicahimants.

Blickle and Bondul[l] give a similar result for a poiBtin a complex analytic spacéunder the
condition thatY — P is an intersection homology manifold. This condition islpably equivalent
to Ogus’s condition on thBR-depth [14, 4.1], which is in facquivalentto the local cohomology
modulesH, (X) being cofinite fori > r.
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Lyubeznik, Singh, and Walther [13, 3.1] give another anaéogf our Corollary 4J5 ovet,
taking ashypothesighat these local cohomology groups have suppori,adnd computing then
in terms of the complex singular cohomology@ft\ Y.

Switala [16] in a recent paper about Lyubeznik numbers rexowmdependently our Theorém#.8(1)
for the vertex of the cone over a nonsingular projectiveetgriHis argument is similar to ours, but
uses cohomology instead of homology.

5. D-MODULES OVER THE POWER SERIES RING

Theorem 5.1. Let A be the power series rindk, ..., X,], let E be an injective hull of k over A, and
let M be a holonomic®-module. If m= dimyHjg(M), then there is a surjective homomorphism of
D-modules

M—E™—0.

Proof. Recall thatH]z(M) is a finite dimensionat-vector space (see Section 2). Observe that since
HBr(M) is the homology of the last term of the de Rham complex, itrigply M/(01,...,0n)M.
Choose a linear map fromdl /(01,...,0,)M to k and compose it with the canonical epimorphism
from M to M/(d4,...,0,)M to obtain a mapy from M to k. Because of Propositidn 5]13 below,
Y is a continuous map in the sense of Definition 5.3. TherefoyePropositio 54, the mayp
corresponds to aA-linear mapd from M to E. The correspondence in Proposition|5.4 depends on
the choice of &-linear projectionm of E to its soclek. We now chooset to be the projection o

to E/(01,...,0n)E, which is isomorphic to the socle & Then we have a diagram

M ¢ E

| &

which shows thad maps the kernel a to the kernel oft Hence
$((01,...,0n)M) C (01,...,0n)E.

Now according to Propositidn 5.5 the m@yis not onlyA-linear, but is also a map @-modules.
Further, observe that sinéeis a simpleD-module andp is not zero$ is surjective. Applying the
same reasoning to a basis for the space of linear mapsh\tofd, ... ,0,)M to k we obtainm maps
from M to E and therefore a single surjective map friMrto E™. This completes our proof, subject
to Propositions 514, 5.6, 5.13 below. O

Corollary 5.2. Let A be the power series rindX, ..., %], let E be an injective hull of k over A,
and let M be a holonomi®-module. Then

dimgHBR(M) = dimgHomy (ML E).
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Proof. By the theorem we have
dimgHER(M) < dimgHomy (ML E).

Conversely, if dimHomy (M, E) = s, then there is a surjective map frokh to ES. Apply the de
Rham cohomology functor. Then

HERr(M) — Hpg(E®) — 0
SinceHpR(E) = k, we have

O
Now we are ready to prove the three propositions that are tie mgredients in the proof of
Theoreni 5.1,

Definition 5.3. Let (A, m,k) be a local ring that contains its residue figld_et M be anA-module.
A k-linear homomorphisny of M tok is calledcontinuousf for every finitely generated submodule
N of M there is an integes such thatp(m°N) = 0. We denote thé-module of continuous linear
homomorphisms by Homcaitv, k).

The following proposition appears in [10,/18] but we give greof for convenience.

Proposition 5.4. [10, IV, Remarque 5.5l et (A, m,k) be a local ring that contains its residue field
k, and E an injective hull of k. For any A-module M, the MatlimbtHoma(M, E) is isomorphic as
a k-vector space to the modutomcong(M, k).

Proof. Choose &-linear projectiormtof E to its soclek. Then for anyp € Homa(M, E), composing
with 11, we obtain &-linear homomorphisnd) from M to k. Let us show thatp is continuous. For
any finitely generated submodule of M the imaged(N) is a finitely generated submodule Bf
and therefore is aA-module of finite length. Thus there exists an integguch thaims$(N) = 0. It
follows thatd (mSN) = 0 and thusp(m>N) = 0. Hencay is continuous in the sense of Definition5.3.
We have thus constructedkdinear mapA from Homa (M, E) to Homcong(M, k). Now we show
that A is an isomorphism. IM =k, it is obvious. For arA-module of finite length, the statement
follows by induction on the length of the module and shortoesgquences

oO—M —>M-—M'—0

and the fact that Hog{M, E) and HomcongM, k) are contravariant exact functors. NextMfis a
finitely generated\-module, then every homomorphisms of either HgM, E) or Homcong(M, k)
factors throughM /m‘M for some?, hence we have

Homa(M, E) = lim Homa(M/m‘M, E) = lim Homconk(M /m‘M, k) = Homconk(M. k).
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For M an arbitraryA-module, think ofM as the direct limit of its finitely generated submodules,
M= Ian> M,. Thus we have

HomA(M,E) = Hom,/_\(liLﬂ> MZ,E) :MHomA(Mg,E)
~ I@ Homconk(My, k) = Homcon];(liLn> M, k) = Homconk(M,K) .
(|

Proposition 5.5. Let A be the power series rindX, ..., %], let E be an injective hull of k over A,
let M be aD-module, and leb : M — E be an A-linear map such that

$(0M) C OE,
whered = (01,...,0n). Thend is alsoD-linear.
Proof. We must show thad;¢(m) = ¢(dim) for all i and for allm € M. Observe that both sides
are elements dE. The left hand side because it i®jaof something, the right hand side because

of our hypothesis thap(0M) C 0E. Next we note that the magE — E", sendinge € 0E to
(x1€,...,X:€) € E", is injective. Therefore it sufficient to prove that for eygr

Xj0ip(m) =x;¢(0im) Vme M. (%)

We claim that statemenk) is equivalent to showing
0id(x;m) = ¢(di(xjm)) Vme M.
If i # j the claim is clear becausg andd; commute and is A-linear. Ifi = j, then we use the
equationx;d; = 0ix; — 1 in the ring of differential operators. Indeed, notice ttet left hand side of
(x) is
%0 (6(m)) = 0 (xm) — d(m)
while the right hand side ok is
% (0im) = ¢(x0im) = ¢(0i (xm) —m) = $(d; (xm) — d(m).

Now after canceling (m) we obtain the desired claim. We have thus replaced the atighoblem
for mec M by the same problem fo;m. Repeating the same procedure it is sufficient to show

di¢(am) = ¢(0i(am)) VYmeM

for all monomialsa € A of any high degree we like. To conclude notice that both sidesero for
degree ofu sufficiently large. Indeed, the left hand side is clearlyozgince¢ (am) = ad(m) and
¢(m) € E. The right hand side is zero because using the product ruleawe

¢ (0i(am)) = ¢(ai(a)m) + ¢ (adim) = i (o) (m) + ad(dim)
and botho; (o) anda have sufficiently high degree. O

Remark 5.6. The statement and the proof of Proposifiod 5.5 also hold ayelynomial ring or its
localization at the maximal ideal.
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Theorem 5.7. [[2, 3.3.19][19, Prop. 1] Let A be the power series ring,...,xy] and let M be
a holonomicD-module over A. Then there exists a nonzero elemenfgsuch that Mg~1] is a
holonomicD-module that is finitely generated as afgAl]-module. Furthermore, after a linear
change of variables, we may assume that ), ...,0) # 0, and in that case we can take g to be a
Weierstral3 polynomial

X +ax L ta,
with & € K[[x2,...,%n]]. In this situation we say that M is xegular

Theorem 5.8. [20, Thm 1] Let A be the power series ring[¥,...,%,] and let M be a holo-
nomic D-module over A that isjxregular. Then M0;1(M) is a holonomicD-module over the

ring K[[Xo, ..., Xn].

Remark 5.9. Van den Essen showed by an example [19] that for an arbit@onbmic D-module
M, the quotientM /01(M) need not to be a holonomid-module over the ring[xz, ..., %n]]. How-
ever, with the extra condition th¥ is x;-regular, this holds.

Lemma 5.10. Let A be the power series rindX, . .., X[, let M be a holonomi@®-module that is
xp-regular, and let e be any element of M. Then there existsferdiftial operator of the form

P=ag+a0:+...+a0d;, €A
where @ has a pure power ofyxand such that
P(b)-ec d1(M) VbeA.
Proof. While not given exactly in this form, our statement and praxaf based on a careful reading
of [20]. According to Theoreri 517 there is an elememtgich thatV[g—1] is finitely generated as
anA[g~1]-module, and furthermorg can be taken to be a Weierstra? polynomiakinLet x = x;

andd = ;. Letebe an element dfl. Thene,de d0%,...,d'e, ... are linearly dependent ovéfg1].
Therefore, there exists an integeand elements; € A[g~1] such that

r-1
oe= % cia'e.
Clearing denominators we can write
r—1 )
g°0'e= Z did'e,

whered; € A. So we can consider the differential operator

Q:idiaia

using thed; above for 0<i <r—1 andd, = —g® By constructionQ(e) =0 in M andd; is a
Weierstral3 polynomial im. There existy; € A such that the differential operat@ can be written
as

Q=a—-0a+...+(-1)0"a .
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Let P be the differential operator
P=ag+a0+...+ad" .
Then for everyb € A we claim there is an equality of differential operators
bQ=P(b) +0R, (1)

whereR is another differential operator aft{b) meansP acting onb € A. Then, if we apply the
two operators defined inl(1) ®we have,

0=bQ(e) = P(b)e+ IR(e).

This implies that for alb € A, P(b)e € (M), thus establishing the desired conclusion.

To complete the proof we need to prove the equality of difféed operators in{1). By linearity
it suffices to show the claim fa@@ = (—1)'d'a; andP = a,0'. We need to show th&ilQ — P(b) = R
for some operatdRr;. To prove the claim we show by induction ba stronger claim, more precisely,
that for allf,ge A

(-1)'fo'g=gd'(f)+0R,
for some operatoR,. If i = 0, we can také&y = 0 becausdg = gf. If i = 1 we have
fo+o(f)=0f.

Sinced(f) € A we havegd(f) =0d(f)g. Thus takeR; = —0fg. Leti > 2 and assume that the
statement holds far— 1. We have

(-1)'fo'g=(~1)'fa(0"'g) = (~1)'[of —a()](0"g) = (~1)'0fd'*g+ (~1)'*a(f)0"'g
By induction hypothesis we have
(—1)'*o(f)0" rg=g0" *(a(f)) +0R 1
thus substituting in the previous equation we obtain
(—1)'fo'g=gd'" 1(a(f)) +0R_1+ (~1)'afo"'g=gd'(f) + OR
whereR = R _1 + (—1)' fa'~1g, which proves the claim.

The following lemma is our key technical result.

Proposition 5.11. Let A be the power series rind, ..., X, let B=K[Xo, ..., %], let x=x;, and
let 0 = d1. Let P be a differential operator of the form

r .
P=%Yad acA,
%

where @ has a pure power of X. Then there exist integers s @slich that every £ A can be

written in the form
s—1
f=Sex+ S bPx)
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where ¢ by € B. Furthermore, if fe AX™ for some n> s then

aemf™ vo<i<s—1,
wherep is a function that tends to infinity with m.

Proof. We first show that there exist integefsandt such that for al¥ > /g

00

P(X) =Y ciX
2,5
wherec,; € B satisfy the following conditions
(i) c,i=0 fori<{—r
(i) coj emp fori—r<i</l—r+t

(i) c,iisaunitinB  fori=/¢—r+t.
(There is no restriction ooy for i > ¢ —r +t. ) Condition (i) is clear becausé has degreé and
0" is the highest differential if?. To prove (ii) and (iii), write for¢ > r

P(X') = aox’ +€a1%1+2<§> apxX 2. 4 (f)a,x“ .

Lett be the least power of whose coefficient is a unit in B among all the power series

r—1

{apX ;X ... & }.

Notice thatt exists because by hypothesishas a pure power of. LetA; € k be the constant term
of the coefficient of¢ in ax'~'. By construction, at least one of theis non zero. The constant
term of the coefficient ok~ in P(x’) is

14
a(¥) :)\0+€)\1+...+r!<r>)\r.

Sinceg(¢) is a non zero polynomial if, it has at most finitely many zeros. Chodgesuch that
g(¢) # 0 for all £ > 9. Now for any/ > /o write P(x') = zi“‘;oc@.ixi, wherecy; € B. Then by
construction thec,; will satisfy the condition (ii) and (iii), namely, the firstne that is a unit is

Ce0—r+t-
To continue ses= ¢y —r +t. Then we show that everfy € A can be written in the form

f :ze.xi +[;ObgP(xZ)

whereg, b, € B. We claim, by induction ok, that
s—1
f=fk=Sa+ S bkP(X) modm 2)

for suitableg x andby x in B and furthermore x = € x.1 andby k = by k41 moduIOm‘é. First observe
that for all¢ > /g

P(X) = axX " modmg, (3)
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whereay is a unit inA. Here we use that,; € mg for all 0 <i < ¢—r +t. If the original power

seriesf is
f=7S Bix
2,

with B; € B, then we definef; usinge ; =B for 0<i <s—1andb,; = Br_ryt(0p) "L for £ > 4.
Thusf = f; modmg and the claim follows fok = 1. For thek+ 1 step, we considefr— fi. Notice
that the coefficienty; x of f — fyx as a power series kare all inm'é. Therefore when we uge(x)
to adjust the —r +t coefficient of f — fy, we have by[(B)

Yer+tkP(X') = Yort0x T modmgtt.

Define fy 1 = fk+ zgzgoyg,rth’k(Gg)_lP(Xé). Thenf = f modm‘é*l. Writing fx,1 in the form
(@) we obtain the coefficients x; 1 andby 1 and observe that, by construction, they are congruent
to the coefficientss x andb,x modulo m'g. Now the desired assertion follows by passing to the
limit: namelyg = lim g x andb, = lim b, x ask goes to infinity.

To explain the 'Furthermore’ statement, suppose thatAX". Then f, as a power series in
X, begins in degree= m. We claim thatfy starts in degree>= m— kt and the coefficients ofl for
m—pt<j<m-(p—1tare inmg. Recall thaP(x’) as a power series ibegins in degreg ¢ —r
but its first unit coefficient is in degree—r +t. We prove the claim by induction da Fork =1
recall thatb, ; = Bg_rﬂ(ag)*l and the firs3; that can be different from zero &,, hence the first
P(x’) we are using is fof = m-+r —t and that can only start in degrée r = (m+r—t) —r = m—t.
Furthermore, the coefficients &f for m—t < j < m of P(x™T-) as power series ir are inmp
by condition (ii) on thec,; above, or, by the fact thefy = f modmg. By the construction used
to build fx from f,_; we see thaffy satisfies our claim. Now the coefficients bfare obtained by
taking the limits of the coefficients of th. Sincesis fixed andm can be taken as large as we
like, we have thag for 0 <i < s— 1 are contained ilmg(m) wherep(m) is a function that tends to
infinity to m, approximately equal ttm— s) /t. O

Remark 5.12. A result similar to this was proved by van den Essen [20] bdtevit the “Further-
more” statement, which is crucial to our proof.

Proposition 5.13. Let A be the power series rind¥, ..., X[, let M be a holonomi¢-module,
and let N be a finitely generated submodule of M. Then thestsean integer r such that

m'N C (3y,...,0n)M.

Proof. We may assume thaM is generated by one elemesat By Theoren 5]7 we can make a
change of variables so thit is x;-regular. Letx = x; andd = d;. By Lemmad5.1D there exists a
differential operator of the form given in the lemma such fh@)e C oM for all a € A. We apply
Proposition 5.111 to this differential operator. By Propiosi[5.11 there exists an integesuch that
for all f € AX" with m> swe have

f.ec md™E+oMm, (4)
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whereB = k[[x2,..., %] andE = B(e xe,..., x> 1e), becaus®(x‘)e C aM for all £ by Lemmd5.1D.
We show the statement by induction on the number of variabléisn = 1 thenB = k and thus
mg = 0. Therefore, byl {4) for alf € AX™ with m> swe have

f-ecoM,

hence we obtain

m°N C oM,
which is the desired assertion for= 1. If n > 2, we apply Theorem 5.8, which says= M /oM
is a holonomicD-module overB. Let E be the image of in M, thenE is a finitely generated
submodule oM. By the induction hypothesis there exists an inteaggrch that

This implies that

mhE C (01,...,0n0)M. (5)
By Proposition 5.11 we can tak®ey large enough so thathy > s and p(mp) >t. Taker to be
r =mo+ p(Mp). We claim that

muN =mpeC (d1,...,0n)M.

Write any monomiabt € mj asx'y. Notice that either > mg ory € mé with j > p(mp) >t. In the
first casen € X™A, hence by[(4) (notice [4) applies becange> )

aec mA™E+OM C (3y,...,00)M

where the last inclusion hold b¥](5) and because we chesi such a wayp(mg) >t. In the
second case, the claim follows directly by (5).
O

6. APPLICATIONS.

We want to apply the results of Section 5 to study the locaboutiogy moduleH| (A), whereV
is a variety inP} of codimensiorr, with homogenous idealC A =K[xo, ..., X,]. Unfortunately the
result of Theorerh 5]1 is not true f@-modules over a polynomial ring (see Exanipld 6.1). So we
need to pass to the completion.

If M is aD-module over the polynomial ring = K[xo, . ..,X,], we can consider the completion
M @A whereA = K[xo, ..., X]. It has a natural structure @-module overA. Furthermore, there
is a natural map on the de Rham cohomology grotis;(M) — HLo(M). Unfortunately, even
for a holonomicD-module overA, the map on de Rham cohomology may fail to be an isomor-
phism (see Example_ 6.1). It would be nice to have generalitons under which these maps are
isomorphisms. For instance,M is also a graded-module, and thé; act as grade#-linear maps
of degree—1, then are the completion magpsisomorphisms? We do not know, so we will settle
for a more limited criterion.
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Example 6.1. Let A =k[x] and letM be a freeA-module of rank one. We denote its generator
by e € M, so that the elements & are writtenae for a € A. To giveM a structure ofD-module
we can takede to be anything we like. So for example, & = x?e. Then for any power ok,
d(x"e) = x"de+ nx"~te = (x"2 4 nX"1)e, and we can extend to all ®fl by linearity. Now it is
clear that the map : M — M is injective, so thaHBR(M) = 0. On the other hand, the image of
d is ak-vector subspace of codimension 2,l§:(M) = M/0M has dimension 2. This shows that
Theoreni 5.1 is false favl, since any nonzerh-module homomorphism d¥l to E would have to
be surjective, which is impossible sinbkis finitely generated as akrmodule.

Now let consideM = M @4 A. We claim that there is another generatomvbf call it ue with
u e Aa unit, for whichd(ue) = 0. To findu, we wantd(ue) = 0, henceude+ du-e= 0. We need
to solve the differential equatiodu = —x?u. Just takeu = e*é, which is a unit inA. ThusM is
isomorphic to the standarfi-module structure oA with H35(M) = 1 andHA;(M) = 0. So we see
that the passage to the completion does not preserve de Ritenmology.

Theorem 6.2. Let A=K[Xo, ..., %], let | C A be a homogenous ideal, and let M be any of the local
cohomology modules M Hli (A) with its D-module structure. Then the completion maps

Hbr(M) — HIJDR(M)
whereM = M @A, are isomorphisms for all j. Furthermoid is also holonomic oveA.

Proof. The last statement follows from Theoréml2.1 and the fact that

M =H|(A) @aA=H/(A).

We will pull ourselves up by our bootstrapssing the earlier results of Sectidh 4. First of all,
since the local cohomologly1|i (A) can be computed from th@ech complex of localizations &

at product of thef;, where{fy,..., fs} is a set of generators ¢f and a short exact sequence of
modules gives a long exact sequence of de Rham cohomologgduee to the case whelre= (f)

is generated by a single homogeneous polynorhialA. In this case there is only one non-zero
local cohomology, namelyyl = H}(A) = A¢/A. LetV be the corresponding hypersurfacePif
and letY C AEH be the affine cone ovéf, namely, the affine subscheme of Spatefined byf.
Then the hypotheses of Theoreml4.3 are satisfied and henbattipéorem we have that for eagh

Hpr(M) = Hazt1 (Y)
the algebraic de Rham homologyYof
The same proof as for Propositibn 4.2 and Thedrem 4.3, dastieover the formal power series
ring A= KXo, ..., %], will show that
Hor(M) = Hat 1 (Y)

whereY’ c Sped is the subscheme defined by the same polynorilA. Here we use the local
theory of algebraic de Rham cohomology and homology ([$). Mherefore we just need to show
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that the natural mapdPR(Y) — HPR(Y’) are isomorphisms for all This is a question purely in
the theory of algebraic de Rham homology, which we prove.next O

Proposition 6.3. (Strong excision for homology_et | be a homogeneous ideal in=AK[Xo, . . ., Xp]
and letY be the affine schemeSped = A"! defined by I. LeA = K[xo,. .., %], leti = 1A, and
letY' C Speo& be defined by. Then there are natural isomorphisms of de Rham homology

HPR(Y) — HPR(Y')
for each i.

Proof. LetV C P} be the projective scheme definedlbyrhen according ta [6, IIl, 3.2] there is an
exact sequence

o= Higa(Y) = Hi(V) = Hiza(V) = Hi(Y) — ...
We have established in Proposition]4.6(4) the same sequeittted;(Y) in place ofH;(Y’). Note

that this does not depend on the special hypotheses of TTh&bBand Propositidn 4.6. Since there
are compatible maps between these sequences, we conchtith(¥) — H;(Y’) for all i. O

Theorem 6.4. (Main Theorem Let V be a nonsingular variety of codimension r in the prajet
spacelP;. Let | be the homogenous ideal of V in=Ak[Xo,...,X,]. Then the local cohomology
module M= H[(A) has a simple suli>-module M with support on Y, the cone over V, and the
quotient M/Mp is a direct sum of p— by, copies of E, the injective hull of k over A, where
d = dimV, and b are the Betti numbers; b= dimHPR(V).

Proof. By Corollary[45 ,HS (H! (A)) = HPR _ (Y). On the other hand, sind¢ is nonsingular
and dimvV =d = n—r, by Theoreni_ 4)8 the dimension of this homology groupqis- by_».

Next, lettingM = H/(A), we apply Theorem 6.2 to see tHaéR(M) = HEj)R(M) for eachj.
Therefore, by Theoref 8.1 and Coroll@ryl5.2, we have a diviemapM —s E™ with m= by —
by_», and dim Hom,(M,E) = m. Composing with the natural mdg —s M we obtain a map
M — E™, which must be surjective sind¢3: (M) = H3:L(M).

On the other hand, sin¢é has only one singular point &, it follows from the general theory
[7, Section 3.4], that if we take the simplgy-module Oy on the smooth pait — P of Y, thenM
contains a simpl&-module, theminimal extensionf Oy to X in the sense of [7, 3.4.2] and that the
quotientM /Mg has support &. That quotient must be a sum of copiesofsee Example 212 (5)),

and therefore is equal to the quotidtit found above. O

Corollary 6.5. If V = Cis a nonsingular curve of genus g}, then there is just one nonzero local
cohomology group M= H,”‘l(A). It has a simple sul¥>-module My C M supported on the cone
over G, and the quotient MM is isomorphic to E9. In particular, if C is a nonsingular rational
curve, then M= H""}(A) is a simpleD-module.

Proof. Indeed, dinH;(V) =1,2g,1 fori = 0,1, 2, respectively, hencen=b; —b_; = 2g. O
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Corollary 6.6. If V is any embedding of a projective spaé®in another projective space”, then
the local cohomology group M H{“d(A) is a simpleD-module.

Proof. Indeed, the homology o¥ has dimension 1 in even degree and dimension zero in odd
degrees, so in any cabg—by_» =0. O

Remark 6.7. In the special case of the Veronese embeddin@’ﬁoilh [P, this was proved via an
entirely different method, using representation theoyyRhicu [15].

Remark 6.8. For a singular projective variety C P} of codimensiorr, think of a stratification
of V by locally closed nonsingular subvarieties. Then we expeet H{ (A) to have one simple
sub<D-module corresponding to the smooth partgfand a succession of contributions coming
from the strata of the singular locus, and finally a quotieat ts equal to dirH(?fl(Y) copies ofE
as before.

In particular, ifV = C is an integral curve, then we expect one component for thegnmpart of
G, then at each singular poi®, np — 1 copies of the injective hull of the line cone over(in the
notation of Propositioh_315), and thén(C) copies ofE.

This may be clear to readers familiar with the Riemann-Hillw®rrespondence and perverse
sheaves, but we have not worked out details of the proof iraty@braic formulation.
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