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SCALAR CONFORMAL INVARIANTS OF HYPERSURFACES

JINGYANG ZHONG

Abstract

For a hypersurface in a conformal manifold, by following the idea of Fefferman and

Graham’s work, we use the conformal Gauss map and the conformal transform to

construct the associate hypersurface in the ambient space. By evaluations of scalar

Riemannian invariants of associate hypersurface, we find out a way to construct and

collect scalar conformal invariants of the given hypersurface. This method provides

chances for searching higher order partial differential equations which are similar like the

Willmore equation.
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1. Introduction

The first issue that we concern in the study of differential geometry is local

invariant. Invariant theories has been well studied in Riemannian geometry, for

instant, all local Riemannian invariants on a Riemannian manifold are

combinations of Riemannian curvature and its covariant derivatives. We can also

consider the case for hypersurface, then the local Riemannian invariants would be

combinations from ambient curvature tensor, the first and second fundamental

forms and their derivatives. There are also corresponding theories for conformal

invariants of Rienmannian manifold and hypersurfaces [1-5]. The main result of

scalar conformal invariants came from Fefferman and Graham’s work [6-7], they

realized that the conformal group is also the orthogonal group for Minkowski

space-time and this observation provides chance to apply Weyl invariant theorem

for orthogonal groups. The constructions of ambient space and ambient metric in

their work are powerful tools in the study of scalar invariants in conformal

geometry nowadays. In this article we extend the idea of Fefferman and Graham

into the study of scalar conformal invariants of hypersurface. Following the

homogeneity of conformal Gauss map we set up the associated hypersurface and

we find out a nature way to collect and evaluate scalar conformal invariants of

hypersurface in high order.

The structure of this article is the following. First we review the construction of

ambient space and ambient metric from Fefferman and Graham’s work. Then we

introduce the new construction of associate hypersurface for any given

hypersurface, explain how scalar Riemannian invariants of associate hypersurface

can provide scalar conformal invariants of original hypersurface. At the end of the

article, we evaluate the general formula for Willmore curvature and some other

high order scalar conformal invariants. It is well known that the study of Wiilmore

conjecture is a big issue in the filed of geometric analysis [14-16]. We hope we have

chance to get similar partial differential equations which like Willmore equation

and get further understanding on the conformal geometry of hypersurfaces.
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2. Ambient space construction from Fefferman and Graham’s work

2.1. Conformal structure and metric bundle. Let Mn be a n-dimensional

smooth manifold, there is a abstract way to specify its conformal structure: to

consider the class [g] of metrics as a subbundle of the bundle of symmetric

2-tensors on Mn. We denote the subbundle of [g] by G and call G the metric

bundle of the conformal manifold (Mn, [g]). The bundle structure is given as:

π : G →M, π(g|p) = p.

and reflected by the fact that there is a dilation bundle map:

δs : G|p → G|p, δs(g|p) = s2g|p.

Such metric bundle G is characterized by a tautological symmetric 2-tensor g0 on

G such that

g0(X,Y ) = g|p(π∗X,π∗Y ).

for any X,Y ∈ Tz(G), where z = g|p and p ∈Mn. It is easily seen that

δ∗sg0 = s2g0, in fact, given a conformal structure [g] on Mn and a representative

g ∈ [g], we may use the following natural coordinates:

G = {α2g|p : α ∈ R+, p ∈Mn} = {(α, p) : α ∈ R+, p ∈Mn} = R+ ×Mn.

and

π(α, p) = p, δs(α, p) = (sα, p).

It is important to realize that g0 is not Riemannian. It is insightful to see that the

metric bundle for the standard conformal structure on the sphere Sn is the

positive light cone Nn+1
1 in Minkowski space-time Rn+1

1 .

2.2. Ambient space and ambient metric. Suppose that (Mn, [g]) is a

conformal manifold and G is its metric bundle. We then consider the space G ×R,

the identification

i(z) = (z, 0) : G → G × R, ∀z ∈ G,
2



and the extension of the dilation

δs(z, ρ) = (δs(z), ρ), ∀(z, ρ) ∈ G × R.

Definition 2.1 (Pre-Ambient Space). Let G be the metric bundle of a given

conformal manifold (Mn, [g]). A pre-ambient space (G̃, g̃) is such that

1) G̃ is a dilation invariant open neighborhood of the set G × {0} ⊂ G × R,

2) g̃ is a Lorenzian metric such that δ∗s g̃ = s2g̃,

3) i∗g̃ = g0, where g0 is the tautological metric on the metric bundle G.

Next, on a pre-ambient space G̃ of a conformal manifold (Mn, [g]), we would like

to set a coordinate system in which the pre-ambient space metric is in a normal

form and with which we take away the degeneracy caused by the natural

symmetry of diffeomorphisms.

Definition 2.2 (Normal Coordinate). Suppose (G̃, g̃) is a pre-ambient space of a

given conformal manifold (Mn, [g]). A normal coordinate on G̃ associated with a

choice of representative g ∈ [g] is a coordinate system such that

1) For each z ∈ G, the set of all ρ such that (z, ρ) ∈ G̃ is an open interval Iz.

2) For each z ∈ G, the parametrized curve {(z, ρ)|ρ ∈ Iz} is a geodesic for the

pre-ambient space metric G.

3) Let (α, x, ρ) be the coordinate under the choice of g ∈ [g] on G̃. Then on

G × {0},

g̃|ρ=0 = g0 + 2αdαdρ.(2.1)

Assume that x = (x1, · · · , xn) is a coordinate system on Mn, naturally we define

(α, x, ρ) as a coordinate system for G × R, and we will also use the notation

(x0, x, x∞) later, here x0 = α and x∞ = ρ. First we obtain this fact: (x0, x, x∞) is

normal if and only if

g̃0∞ = α, g̃i∞ = 0 and g̃∞∞ = 0.(2.2)
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We may ask for more about normal coordinate by the following lemma:

Lemma 2.3. Assume (α, x, ρ) is the normal coordinate associated with the

representative g ∈ [g], then the following are equivalent:

1) g̃00 = 2ρ and g̃0i = 0,

2) For each p ∈ G̃, the orbit of dilation action δs(p) is a geodesic for g̃.

From these observations, we require the orbit of dilation action to be a geodesic.

In conclusion, the ambient metric g̃ we expect has the following expression under

normal coordinate:

(g̃IJ) =


2ρ 0 α

0 α2gij 0

α 0 0

 .(2.3)

Here gij = gij(x, ρ) and gij(x, 0) = gij .

We call this normal coordinate as homogeneous normal coordinate. Now we are

ready to define what is an ambient space for a given conformal manifold. Basically

an ambient space is a Ricci-flat pre-ambient space at ρ = 0, when the dimension

of manifold is even, we could only ask g̃ to be Ricci-flat to some order at ρ = 0.

Definition 2.4 (Ambient Space). A pre-ambient space (G̃, g̃) of a given

conformal manifold (Mn, [g]) is said to be an ambient space if, in addition:

1) when n is odd, R̃ic = 0 to infinite order at ρ = 0, or

2) when n is even, R̃ic = O(ρ
n
2−1).

Definition 2.5 (Ambient-Equivalent). Let (G̃)1, g̃1) and (G̃)2, g̃2) be two

pre-ambient spaces for a conformal manifold (Mn, [g]). We say that they are

ambient-equivalent if there is a diffeomorphism φ : U1 ⊂ G̃1 → U2 ⊂ G̃2 such that

1) both U1 and U2 are dilation invariant open neighborhood of G × {0};

2) φ commutes with dilation;

3) the restriction of φ on G × {0} is the identity;

4) when n is odd, g̃1 − φ∗g̃2 vanishes to infinite order at ρ = 0;
4



4’) when n is even, g̃1 − φ∗g̃2 = O(ρ
n
2 ).

Fefferman and Graham show that given a conformal manifold (Mn, [g]), there is a

unique ambient space for the conformal manifold up to a ambient-equivalent.

Moreover they provided the power series formula of ρ for gij in (2.3) at ρ = 0, and

they proved all coefficients are linear combinations of Riemannian curvature R

and its covariant derivatives of any order.

Evaluation of coefficients follows by checking the Einstein equation of (2.3), after

tedious calculation, one could obtain the following differential equations:

R̃ij =Rij + ρ∂2ρgij − ρgkl∂ρgik∂ρgjl +
1

2
ρ(gkl∂ρgkl)∂ρgij(2.4)

− 1

2
(gkl∂ρgkl)gij + (1− n

2
)∂ρgij .(2.5)

R̃i∞ = gkl(∇k∂ρgil −∇i∂ρgkl).(2.6)

R̃∞∞ = −1

2
gkl∂2ρgkl +

1

4
gklgpq∂ρgkp∂ρglq.(2.7)

Notices that all left hand sides of equations turn out to be 0 if you let ρ = 0, these

would help you find out the term ∂ρgij |ρ=0. One should take higher derivatives to

get the coefficients of any order. Here we only list the first two terms:

∂ρgij |ρ=0 = 2Pij(2.8)

∂2ρgij |ρ=0 = − 2

n− 4
Bij + 2P ki Pkj , for n 6= 4.(2.9)

5



Here

Pij =
1

n− 2

(
Rij −

S

2(n− 1)
gij

)
Define

Cjkl = ∇lPjk −∇kPjl

and

Bjk = ∇lCjkl + P ilWijkl.

is so-called Bach tensor.

Proof. The key is formula (2.4), let ρ = 0 there, we claim:

0 = Rij −
1

2
(gkl∂ρgkl|ρ=0)gij + (1− n

2
)∂ρgij |ρ=0.(2.10)

Now take trace for both sides, we will get

0 = S − n

2
gkl∂ρgkl|ρ=0 + (1− n

2
)gij∂ρgij |ρ=0.

which forces:

gkl∂ρgkl|ρ=0 =
S

n− 1
.

Take this back to (2.10)

0 = Rij −
S

n− 1
gij + (1− n

2
)∂ρgij |ρ=0

and

∂ρgij |ρ=0 =
2

n− 2

(
Rij −

S

2(n− 1)
gij

)
= 2Pij .

We could take derivative for (2.10) respect to ρ, then restrict ρ = 0, the

information for second derivative is there and we skip the proof here. �

We need to point out here, R1,n+1 could be view as standard model of ambient

space of Sn, since we could understand Minkowski space-time by the following:

gM = −dx20 +

n+1∑
i=1

|dxi|2.
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In fact, Minkowski space-time is a special case of ambient space, if we choose

(2.11)


α = 1

2 (|x|+ x0)

αρ = (|x| − x0)

We therefore arrive at

gM = 2ρdα2 + 2αdαdρ+ α2(1 +
1

2
ρ)2g|Sn .

and

gM |ρ=0 = α2g|Sn + 2αdαdρ.(2.12)

Check with formula (2.1), we know the light cone structure provides canonical

normal coordinate.

3. Associate hypersurface

We are ready to introduction the idea of associate surface for hypersurfaces.

Assume

φ : Nn−1 →Mn

is a hypersurface in conformal manifold (Mn, [g]). First we consider:

φN = αφ : R+ ×Nn−1 → G

for any g ∈ [g] as a representative. Notice that the graph of the hypersurface,

φN (R+ ×Nn−1) is independent of choices of g. We try to find out a unit normal

vector for φN in ambient space G̃.

3.1. Conformal Gauss map. First we need to apply special coordinates, we will

use Fermi coordinate on manifold Mn which induced by φ, and we will use

homogeneous normal coordinate on its ambient space G̃. We use the notation ∂
∂xn

to be the unit normal vector for Nn−1 in Mn, H is the mean curvature for Nn−1

as a hypersurface.
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Definition 3.1.

ξ|(α,φ,0) = H(x)
∂

∂α
|(α,φ,0) + α−1

∂

∂xn
|(α,φ,0).(3.1)

We call ξ as the conformal Gauss map of hypersurface φ.

It is necessary to point out that ξ is independent of choice of g ∈ [g], in other

words, consider gλ = λ2g, we obtain:

(ξλ)|(α,φ,0) = Hλ(
∂

∂α
)λ|(α,φ,0) + α−1(

∂

∂xn
)λ|(α,φ,0) = ξ|(λα,φ,0)

The reason comes from the following formula:

Hλ = λ−1(H − ∂(log λ)

∂xn
), (

∂

∂α
)λ|(α,φ,0) = λ

∂

∂α
|(λα,φ,0)

and

(
∂

∂xn
)λ|(α,φ,0) = λ−1

∂

∂xn
|(λα,φ,0) + α

∂(log λ)

∂xn
∂

∂α
|(λα,φ,0).

The reason that we call ξ as conformal Gauss map is because ξ is exactly the unit

normal vector of φN in the ambient space. On the other hand, it is easy to check

∇̃ ∂
∂α
ξ = 0, which tells us that ξ has homogeneity along the dilation direction.

Consider a special case Mn = S3 and x : N2 → S3, the ambient space becomes

R1,4. In this case, conformal Gauss map ξ has special formula:

ξ = H(1, x) + (0, n)

Here n is the unit normal vector of x.

This case was first studied by Blaschke in 1929 and he gave the geometric

interpretation. Consider ξ as a spacelike vector in R1,4, the corresponding timelike

hyperplane has equation as following:

〈(t, z), H(1, x) + (0, n)〉 = 0

8



Take t = 1 and |z| = 1, then z satisfies equation:

∣∣∣z − (x+
1

H
n)
∣∣∣2 =

1

H2
.

Which tells us the trace of this hyperplane and S3 is the mean curvature sphere of

x.

3.2. Conformal transform. In this section, we discuss another null vector field

which is induced by conformal Gauss map, we call it conformal transform. We

will continue to use Fermi coordinate in conformal manifold (Mn, [g]) and

homogeneous normal coordinates in the ambient space (G̃, g̃).

Definition 3.2. Given homogeneous normal coordinate for the ambient space

(G̃, g̃), a null vector field y∗ is called conformal transform of y = ∂
∂α if it satisfies:

(1) y∗ ⊥ ξ, y∗ ⊥ ∇̃ ∂

∂xi
ξ, i = 1, 2, . . . , n− 1 (2) g̃

(
y∗, y

)
= −1.

on every point of φN.

In fact we can evaluate the formula of y∗ from definition:

Lemma 3.3.

y∗|(α,φ,0) =
1

2
(H2 + |ω|2)y|(α,φ,0)

+ α−1(

n−1∑
i=1

ωi
∂

∂xi
|(α,φ,0) +H

∂

∂xn
|(α,φ,0) −

∂

∂ρ
|(α,φ,0))(3.2)

Here

ωi =
2

|
◦
II|2

◦
IIij(Pjn −

∂H

∂xj
)(3.3)

◦
II is the traceless second fundamental form of φ in (Mn, g), Pij is the

Weyl-Schouten tensor of (Mn, g).

Need to point out that ∇̃ ∂
∂α
y∗ = 0, which means y∗ is homogeneous vector filed.

If we construct geodesics along y∗−direction from the surface φN, we will generate
9



a space-like hypersurface in the ambient space with homogeneity, this gives us the

motivation of the following constructions.

3.3. Associate hypersurface. We will use the method of exponential map to

extend φN locally and construct the associate surface for φ in the ambient space.

Definition 3.4.

φ̃(α, φ, β) = exp(α,φ,0)(αβy
∗) : R+ ×Nn−1 × (−ε,+ε)→ G(3.4)

we call φ as the associate hypersurface for φ.

It is easy to see the homogeneity of the graph of φ̃, since ξ is the unit normal

vector, and the homogeneity of ξ provides the homogeneity of this associate

hypersurface.

4. Scalar invariants of hypersurfaces

In this section we discuss the definitions of (local) scalar invariants of

hypersurfaces. There are plenty of details for constructions of scalar invariants for

Riemannian manifolds in Fefferman and Graham’s work. They consider a scalar

invariants as a polynomial of metric and its derivatives of any order, such that the

value of polynomial is independent of choices of local coordinates. Here we follow

the idea and build up the theories for hypersurfaces.

4.1. Scalar Riemannian invariants. Assume

φ = φ(x1, · · · , xn−1) : A ⊂ Rn−1 → Rn

is a local trivialization of φ in MnCA is a domain in Rn−1, then φ induces a local

coordinate of Mn by the following:

φ̃ = φ̃(x1, x2, · · · , xn) : B ⊂ (−ε,+ε)×A→ Rn

10



which satisfies

φ(x1, · · · , xn−1) = φ̃(x1, · · · , xn−1, 0).

We will use capital Latin letter for index from 1 to n, and use Latin letter for

index from 1 to n− 1. Then we could write down the ambient metric g̃ as:

g̃ = 〈dφ̃, dφ̃〉 = g̃IJdx
IdxJ .(4.1)

The metric of hypersurface φ, or we could say, its first fundamental form is:

Iφ = 〈dφ, dφ〉 = g̃ij

∣∣∣
xn=0

dxidxj .(4.2)

Let us assume ξ is the unit normal vector, then the second fundamental form

could be understood by:

IIφ = −〈dφ, dξ〉 = hijdx
idxj .(4.3)

Definition 4.1. A scalar (pseudo-)Riemannian invariant I(x,Mn, g) for

hypersurface x : Nn−1 →Mn around a point is a polynomial in the variables that

are the coordinate partial derivatives of g of any order and the reciprocal of the

determinant of g, such that the value of I(x,Mn, g) at this point is independent of

choices of local coordinate φ̃ of Mn which is induced from φ.

A natural way to study scalar Riemannian invariant is by using Fermi coordinates

on this hypersurface. We obtain the metric has following expansion:

g̃IJ(x1, · · · , xn−1, xn) =δIJ − 2hij(x
n)− 1

3
(R̃ikjl + hilhjk − hijhkl)(xk)(xl)

(4.4)

− 2hij,k(xk)(xn) + (hikh
k
j − R̃ninj)(xn)(xn) +O(|x|3)

By induction one can prove that, any coordinate partial derivative is a linear

combination of RIJKL,M1···Ms
and hij,k1···kr . From Weyl theorem for invariants of

11



orthogonal groups, up to a orthogonal transform, the only way to get scalar

invariant from such linear combination is to take complete contraction of all

indices. In conclusion, we obtain the following lemma:

Lemma 4.2. A scalar Riemannian invariant is a linear combination of terms

that are complete contractions of RIJKL,M1···Ms
and hij,k1···kl .

4.2. Scalar conformal invariants. First let us state the definition.

Definition 4.3. Assume φ : Nn−1 →Mn is hypersuface and assume [g] is the

conformal structure. Ic(φ,M
n, g̃) is called a scalar conformal invariant of φ, if it is

a scalar Riemaian invariant, and for any positive function λ, it satisfies:

Ic(φ,M
n, λ2g̃) = λ−kIc(φ,M

n, g̃).(4.5)

We call k as the order of Ic(φ,M
n, g̃).

For instant |
◦
II|2(φ,Mn, g) is a scalar conformal invariant since one could verifies

that

|
◦
II|2(φ,Mn, λ2g̃IJ) = λ−2

◦
II(φ,Mn, g̃IJ).

in other words, |
◦
II|2 is a scalar conformal invariant of order 2. Basically this is

the only well-known example. The next famous one might be H = δH + |
◦
II|2H

when you consider Mn = R3. In fact this is a scalar conformal invariant of order

3, i.e. Hλ = λ−3H, but this is tough to verify it directly, we need to know the

general formula of H in the manifold that is not flat. Since this is well-known that

Willmore surface satisfies the equation H = 0, we would like to call it Willmore

curvature later.

In fact, to verify whether a scalar Riemannian invariant is a scalar conformal

invariant is tedious. This is one of the motivations why we would like to introduce

the construction of associate hypersurface. The following theorem tells us the

relation between scalar conformal invariants of φ and scalar Riemannian

invariants of associate hypersurface φ̃.
12



Theorem 4.4. Given conformal manifold (Mn, [g]) and hypersurface

φ : Nn−1 →Mn. Assume (G̃, g̃) is the corresponding ambient space of (Mn, [g]), φ̃

is the associate hypersurface in G̃. For any scalar Riemannian invariant

I(φ̃, G̃, g̃), restrict it at (1, φ, 0), if it is not trivial, it turns out to be a scalar

conformal invariant divided by the term |
◦
II| to some power. In other words:

|
◦
II|p · I(φ̃, G̃, g̃)

∣∣∣
β=0

= Ic(φ,M
n, g).(4.6)

Here p is some positive integer that large enough. When the dimension n is even,

the order of invariants can not larger than n.

In fact, this result is very different from our expect. Recall Fefferman and

Graham’s work, in their case φ = id and there is no trouble for the factor |
◦
II|p,

more precisely, ”polynomial” always goes to ”polynomial”. Unfortunately in our

case, ”polynomial” goes to be ”rational”, and we will point out that we can not

conquer this difficulty, the first term H will be ”rational” if the dimension n > 3.

So far we guess this issue is dimension dependent.

5. Calculation of scalar conformal invariants

Let us evaluate some scalar conformal invariants following the method we

mentioned in last section. First we need to check the behavior of the curvature of

the ambient metric g̃, in fact when you restrict those curvature at ρ = 0 they turn

out to be linear combinations of curvature of g. There are details in Fefferman

and Graham’s work and we have shown the first two coefficient in the second

section. Secondly, we need to study the expansion formula of the second

fundamental form IIφ̃ in term of β, those are all the gears we need.

5.1. Geometry of associate hypersurface. From the discussion above one

may see that, to study scalar conformal invariants, the first step is to study the

first and second fundamental forms for φ̃. Since the way we define φ̃ is by using
13



exponential maps, Jacobi equations would help us find out the expansion formula

in term of β of these forms.

We need to introduce some tensors that we would use often:

Definition 5.1.

Ωij = −g̃
(
∇̃ ∂

∂ui
y, ∇̃ ∂

∂uj
ξ
)
.(5.1)

Ω∗ij = −g̃
(
∇̃ ∂

∂ui
y∗, ∇̃ ∂

∂uj
ξ
)
.(5.2)

ω = (ω1, · · · , ωn−1), ωi =
2

|
◦
II|2

◦
IIij(Pjn −

∂H

∂xj
).(5.3)

We will also use the notations of matrices, Ω = (Ωij)(n−1)×(n−1) and

Ω∗ = (Ω∗ij)(n−1)×(n−1). In fact we can evaluate their formula from definition.

Ωij =
◦
IIij , Ω∗ij =

n−1∑
k=1

(
1

2
Fik − ωiωk)

◦
IIkj .(5.4)

Here Fik = δik(H2 + |ω|2) + ∂
∂uiωk + ∂

∂uk
ωi − 2Hhik − 2Pik, then we mark

F = (Fij)(n−1)×(n−1). Now restrict the calculation at ρ = 0 and we obtain:

Iφ̃|β=0 =


0 0 −α

0 α2In−1 α2ωt

−α α2ω 0

 , I−1
φ̃
|β=0 =


|ω|2 α−1ω −α−1

α−1ωt α−2In−1 0

−α−1 0 0

 .

Here |ω|2 =
∑n−1
i=1 ω

2
i .

Moreover, we could use Jacobi filed equation to get higher order β−derivative

information:

∂

∂β

∣∣∣
β=0

Iφ̃ =


−2 0 0

0 α2F 0

0 0 0

 ,

∂

∂β

∣∣∣
β=0

I−1
φ̃

=


2|ω|4 − ωFωt α−1(2|ω|2ω − ωF) −2α−1|ω|2

α−1(2|ω|2ωt − Fωt) α−2(2ωtω − F) −2α−2ωt

−2α−1|ω|2 −2α−2ω 2α−2

 .
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To get the second fundamental form for φ̃, we point out that ξ is the unit normal

vetor for whole hypersurface. Easy to see when β = 0 it is true, since y∗ is the

direction of exponential map, this property hold along y∗−direction.

Now use ξ as unit normal vector and we obtain:

IIφ̃|β=0 =


0 0 0

0 αΩ 0

0 0 0

 =


0 0 0

0 α
◦
II 0

0 0 0

 ,
∂

∂β

∣∣∣
β=0

IIφ̃ =


0 0 0

0 αΩ∗ 0

0 0 0

 .

From the result from above, we obtain:

I−1
φ̃
IIφ̃|β=0 =


0 ω

◦
II 0

0 α−1
◦
II 0

0 0 0

 .(5.5)

By taking the trace and the norm square of this matrix, we obtain important

information of φ̃:

Hφ̃|β=0 = 0, |
◦
II φ̃|

2|β=0 = α−2|
◦
II|2.(5.6)

It is obviously that mean curvature and the norm square of the second

fundamental forms are scalar Riemannian invariants of φ̃. Now restrict these two

tensors at β = 0, from the main theorem of last section, we should get scalar

conformal invariants of φ. In fact, we did get 0 and |
◦
II|2 as the answers. Though

there is no surprise from these two computations, at least we confirmed our main

theorem.

5.2. Calculation for higher order. From the calculation above we conclude, if

we do not take higher order derivative of
◦
II φ̃, the result should be always trivial.

Naturally we need to consider the first scalar Riemannian invariant, which is

∆φ̃H
φ̃. We may foresee that the tensor we will obtain on the right hand side

should be a scalar conformal invariant of order 3. In fact, it is Willmore curvature

H, which comes from the calculation of −tr(Ω∗). Let us state the result first,
15



calculation steps will be listed on appendices. We claim that the general formula

for Willmore curvature H is:

H = ∆φH + |
◦
II|2H +

n−1∑
ij=1

Pij
◦
IIij −

n−1∑
k=1

Pnk,k + (n− 3)

n−1∑
ij=1

ωi
◦
IIijωj .(5.7)

Recall that

ωi =
2

|
◦
II|2

◦
IIij(Pjn −

∂H

∂xj
).

So the term
∑n−1
ij=1 ωi

◦
IIijωj has order |

◦
II|−2, this shows that the only chance we

can achieve a ”real” scalar conformal invariant is when n = 3, otherwise we need

to multiply at least |
◦
II|2 to cancel the denominator.

Another result is |∇hφ̃|2
∣∣∣
β=0

when n = 3, we obtain:

|∇h|2
φ̃

∣∣∣
β=0

=α−4[|∇
◦
II|2 + 4|∇H|2 − 8H,iP3i + 4|P3i|2 + 3(H2 + P kk )|

◦
II|2(5.8)

+ 6(H,ij − P3i,j)
◦
II
ij

].

More details are shown in the appendices.

A. Calculation of H

Let us start with the definition H = −tr(Ω∗), we need to apply Codazzi theorem

for benefit.

Ω∗ij =

[
1

2
δki(H

2 + |ω|2) + ωk,i −Hhik − Pik − ωiωk
]
◦
IIkj

=
1

2
(H2 + |ω|2)

◦
IIij + ωk,i

◦
IIkj −H(

◦
IIik +Hδik)

◦
IIkj − Pik

◦
IIkj − ωiωk

◦
IIkj

=
1

2
(−H2 + |ω|2)

◦
IIij + (ωk

◦
IIkj),i − ωk

◦
IIkj,i

− 1

2
δij |

◦
II|2H − Pik

◦
IIkj − ωiωk

◦
IIkj

=
1

2
(−H2 + |ω|2)

◦
IIij + (Pnj −H,j),i − ωk

◦
IIkj,i

− 1

2
δij |

◦
II|2H − Pik

◦
IIkj − ωiωk

◦
IIkj

16



Now apply Codazzi theorem we obtain:

Rnjki = hji,k − hjk,i =
◦
IIij,k + δijH,k −

◦
IIjk,i − δjkH,i.

Furthermore,

◦
IIjk,i = −Rnjki +

◦
IIij,k + δijH,k − δjkH,i.

Then we have:

−ωk
◦
IIkj,i = ωkRnjki − ωk

◦
IIij,k − δijωkH,k + ωjH,i.

Now we take trace of index i and j, we obtain

tr(−ωk
◦
IIkj,i) = ωkRnk − (n− 2)ωkH,k

= (n− 2)(ωkPnk − ωkH,k)

= (n− 2)ωkωi
◦
IIik(A.1)

Notice here we have Rnk = (n− 2)P3k since gnk = 0. Use formula (A.1) we obtain:

H = −tr(Ω∗ij) = ∆H + |
◦
II|2H + Pij

◦
II
ij

− Pni,i + (n− 3)ωiωj
◦
IIij .(A.2)
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B. Calculation of ∆φ̃H
φ̃
∣∣∣
β=0

Let us start from ∂
∂β

∣∣∣
β=0

H φ̃:

∂

∂β

∣∣∣
β=0

H φ̃ =
∂

∂β

∣∣∣
β=0

tr(I−1
φ̃
· IIφ̃)

=tr(
∂

∂β

∣∣∣
β=0

I−1
φ̃
· IIφ̃

∣∣∣
β=0

) + tr(I−1
φ̃

∣∣∣
β=0
· ∂
∂β

∣∣∣
β=0

IIφ̃)

=tr


∗ ∗

∗ α−2(2ωiωj − Fij)

 ·
0 0

0 αI̊I




+ tr


∗ ∗

∗ α−2I

 ·
0 0

0 αΩ∗


 .

=α−1tr


0 ∗

0 −2Ω∗


+ α−1tr


0 ∗

0 Ω∗




=− α−1tr(Ω∗) = α−1H.

Here we use results from (A.2)

Now recall the formula of Laplacian operator:

∂

∂β

∣∣∣
β=0

H φ̃ =
1√

|det(Iφ̃|β=0)|
∂A

(√
|det(Iφ̃)| · gAB · ∂BH φ̃

) ∣∣∣
β=0

.(B.1)

If index A or B is ∞, this term turns out to be 0 since H φ̃
∣∣∣
β=0

= 0. So there are

only 3 nonzero terms:

(Case 1) B =∞ and A 6=∞, in this case the index of A can only be 0 Since when

β = 0, the only nonzero term is g0∞, then we can evaluate this 0∞−term:

α−3∂0

(
α3 · (−α−1) · ∂

∂β

∣∣∣
β=0

H φ̃

)
= α−3∂0(−α2 · α−1H) = −α−3H.

(Case 2) A =∞ and B 6=∞, for the same reason the index of B can only be 0,

this ∞0−term is:

α−3α3 · (−α−1) · ∂0
(
∂

∂β

∣∣∣
β=0

H φ̃

)
= α−3H.
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(Case 3) A and B are both ∞, this ∞∞−term is:

α−3α3 · · ∂
∂β

∣∣∣
β=0

g∞∞ · ∂
∂β

∣∣∣
β=0

H φ̃ = 2α−2 · α−1H = 2α−3H

Here we use the result of ∂
∂β

∣∣∣
β=0

g∞∞ from the matrix ∂
∂β

∣∣∣
β=0

I−1
φ̃

. Add all 3

terms and we obtain:

∆φ̃H
φ̃
∣∣∣
β=0

= 2α−3H.(B.2)

We need to point out, from calculation we proved that H is a scalar conformal

invariant of order 3.

C. Calculation of |∇hφ̃|2
∣∣∣
β=0

when n = 3

Let us define ΦAB = I−1
φ̃
· IIφ̃ and compute

ΦAB

∣∣∣
β=0

=



0 0 ωi
◦
IIi1 ωi

◦
IIi2

0 0 0 0

0 0 α−1I̊I11 α−1I̊I12

0 0 α−1I̊I21 α−1I̊I22


.(C.1)

∂

∂β

∣∣∣
β=0

ΦAB =



0 0 −2ωiΩ
∗
i1 −2ωiΩ

∗
i2

0 0 −2α−1ωi
◦
IIi1 −2α−1ωi

◦
IIi2

0 0 −α−1Ω∗11 −α−1Ω∗12

0 0 −α−1Ω∗21 −α−1Ω∗22


.(C.2)
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We need to evaluate Christoffel symbols for Iφ̃ and we obtain the following:

Γkαα = Γkββ = Γkαβ = ΓαaA = 0.

Γβkα = Γβαα = 0,Γβαβ = α−1.

Γijα =
1

2
giA(∂jgAα + ∂αgjA − ∂Agiα) =

1

2
gil∂αgjl = α−1δij .

Γβij =
1

2
gβα(−∂gij) = δij .

Γkij = Γ̂kij +
1

2
gkα(−∂αgij) = Γ̂kij − ωkδij .

Γijβ =
1

2
gil(∂β

∣∣∣
β=0

gjl + ∂jglβ − ∂lgjβ)− 1

2
giα∂αgjβ

=
1

2
Fij +

1

2
ωi,j −

1

2
ωj,i − ωiωj .

Γαij =
1

2
gαα(−∂αgij) +

1

2
gαβ(∂igjβ + ∂igjβ − ∂β

∣∣∣
β=0

gij) +
1

2
gαlα2Γ̂ijl

= −1

2
α
[
2|ω|2δij + ωj,i + ωi,j − Fij − ωlΓ̂ijl

]
= −1

2
α
[
(|ω|2 −H2)δij + 2Hhij + 2Pij − ωlΓ̂ijl

]
.

As a result we also get partial derivatives of ΦAB

Φββ,A = Φβα,A = Φαβ,a = Φαα,a = 0.

Φiα,a = Φiβ,a = Φβi,α = Φiβ,α = 0.

Φαα,i = −α−1ωk
◦
IIki.

Φαβ,k = −ΓlkβΦαl = −(
1

2
Fkl +

1

2
ωl,k −

1

2
ωk,l − ωkωl) · ωi

◦
IIil
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Φαβ,k = −ΓlkβΦαl = −(
1

2
Fkl +

1

2
ωl,k −

1

2
ωk,l − ωkωl) · ωi

◦
IIil

=
1

2
(ωk,l − ωl,k)ωi

◦
IIil − ωiΩ∗ik = −ωiΩ∗ik.

Φiα,k = −α−1Φik = −α−2
◦
IIik.

Φαi,k = ∂kΦαi + ΓαklΦ
l
i − ΓlikΦαl

= (∂kΦαi − Γ̂likΦαl ) + ωlδikΦαl + ΓαklΦ
l
i

= (ωl
◦
IIil),k + δikωlωp

◦
II lp

− 1

2

[
(|ω|2 −H2)δkl + 2Hhkl + 2Pkl − ωpΓ̂klp

] ◦
II li.

Φβi,k = ΓβklΦ
l
i = α−1

◦
IIik.

Φiβ,k = −ΓlβkΦil = −(
1

2
Fkl +

1

2
ωl,k −

1

2
ωk,l − ωkωl)

◦
IIil

= −Ω∗ik +
1

2
(ωk,l − ωl,k)

◦
IIil = −Ω∗ik.

Φij,α = −α−2
◦
IIij .

Φij,β = ∂β

∣∣∣
β=0

Φ̃ij + (ΓiβlΦ
l
i − ΓiβjΦ

i
l).

= α−1
[
−Ω∗ij +

1

2
(ωi,l − ωl,i)

◦
II lj −

1

2
(ωl,j − ωj,l)

◦
IIil

]
= −α−1Ω∗ij .

Φij,k = ∂kΦij + ΓiklΦ
l
j + ΓikαΦαj − ΓlkjΦ

i
l

= (∂kΦij + Γ̂iklΦ
l
j − Γ̂lkjΦ

i
l)− α−1δikΦαj − ωiδklΦlj + ωlδkjΦ

i
l

= α−1
[
◦
IIij,k − ωi

◦
IIjk + δjkωl

◦
II li + δikωl

◦
II lj

]
.

Using the following formula to evaluate |∇h̃|2F

|∇h̃|2 = g̃EF g̃AC g̃BD(h̃BC),E(h̃AD),F

= g̃EF (ΦAB),E(ΦBA),F

= g̃αα(ΦAB),α(ΦBA),α + 2g̃αk(ΦAB),α(ΦBA),k

+ 2g̃αβ(ΦAB),α(ΦBA),β + g̃ij(ΦAB),i(Φ
B
A),j

= I + II + III + IV.
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Evaluate term by term:

I = g̃αα(ΦAB),α(ΦBA),α = g̃αα(Φij),α(Φji ),α

= |ω|2α−4
◦
IIij

◦
IIji = α−4|ω|2|

◦
II|2.(C.3)

II = 2g̃αk(ΦAB),α(ΦBA),k

= 2g̃αk(Φαi ),α(Φiα),k + 2g̃αk(Φij),α(Φji ),k

= 2α−4ωk

[
ωl
◦
II li

◦
IIik −

◦
IIij(

◦
IIij,k − ωi

◦
IIjk + δjkωl

◦
II li − δikωl

◦
II lj)

]
= α−4

[
|ω|2|

◦
II|2 − 2ωk

◦
IIij

◦
IIij,k + |ω|2|

◦
II|2 − |ω|2|

◦
II|2 + |ω|2|

◦
II|2

]
= α−4(−2ωk

◦
IIij

◦
IIij,k).(C.4)

III = 2g̃αβ(ΦAB),α(ΦBA),β = 2g̃αβ(Φij),α(Φji ),β

= −2α−1(−α−2
◦
IIij)(−α−1Ω∗ij) = α−4(−2Ω∗ij

◦
IIij).(C.5)

IV = g̃ij(ΦAB),i(Φ
B
A),j =

1

α2
(ΦAB),k(ΦBA),k

=
1

α2
(Φαα),k(Φαα),k +

2

α2
(Φiβ),k(Φβi ),k +

2

α2
(Φiα),k(Φαi ),k +

1

α2
(Φij),k(Φji ),k

= i+ ii+ iii+ iv.
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Furthermore we obtain:

i =α−2(Φαα),k(Φαα),k

=α−2(−α−1ωi
◦
IIik)(−α−1ωj

◦
IIjk) = α−4(

1

2
|ω|2|

◦
II|2).(C.6)

ii =2α−2(Φiβ),k(Φβi ),k = α−4(−2Ω∗ij
◦
IIij).(C.7)

iii =2α−2(Φiα),k(Φαi ),k

=− 2α−4
◦
IIik[(ωl

◦
IIil),k + δikωlωp

◦
II lp]

+ α−4 · 1

2
|
◦
II|2δkl[(|ω|2 −H2)δkl + 2Hhkl + 2Pkl − ωpΓ̂klp]

=α−4[−2
◦
IIik(ωl

◦
IIil),k + (H2 + |ω|2 + P kk )|

◦
II|2]

=α−4[2H,ij

◦
II
ij

− 2P3i,j

◦
II
ij

+ (H2 + |ω|2 + P kk )|
◦
II|2].(C.8)

iv =α−2(Φij),k(Φji ),k

=α−4
[
◦
IIij,k − ωi

◦
IIjk + δjkωl

◦
II li + δikωl

◦
II lj

]
·
[
◦
IIji,k − ωj

◦
IIik + δikωl

◦
II lj + δjkωl

◦
II li

]
=α−4

[
|∇
◦
II|2 − 2ωj

◦
IIik

◦
IIij,k +

5

2
|ω|2|

◦
II|2 + 4ωl

◦
II lj

◦
IIij,i

]
.(C.9)

Apply Codazzi Theorem on (C.9)

−RN3iji = hij,i − hii,j =
◦
IIij,i +H,iδij − hii,j .

Take trace of index i, easy to see
◦
IIij,i = H,j − P3j = −ωp

◦
IIpj , which means

ωl
◦
II lj

◦
IIij,i = −2|ω|2|

◦
II|2. And also easy to check:

−2ωj
◦
IIik

◦
IIij,k =− 2

◦
IIik[(ωj

◦
IIij),k −

◦
IIijωj,k]

=2H,ij

◦
II
ij

− 2P3i,j

◦
II
ij

+ div(ω)|
◦
II|2.

In conclusion we have:

iv = α−4[|∇
◦
II|2 +

1

2
|ω|2|

◦
II|2 + 2H,ij

◦
II
ij

− 2P3i,j

◦
II
ij

+ div(ω)|
◦
II|2].(C.10)
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Now check term (C.4), again we apply Codazzi identity:

−2ωk
◦
IIij

◦
IIij,k =− 2ωk

◦
IIij(−RN3ijk +

◦
IIik,j + δikH,j − δijH,k)

=2ωk
◦
IIijR

N
3ijk − 2

◦
IIij(ωk

◦
IIik),j + 2

◦
IIij

◦
IIikωk,j − 2ωk

◦
IIjkH,j

=2ωk
◦
IIijR

N
3ijk + 2H,ij

◦
II
ij

− 2P3i,j

◦
II
ij

+ div(w)|
◦
II|2

+ 2|∇H|2 − 2H,jP3j .

where we claim:

ωk
◦
IIijR

N
3ijk =ω2

◦
IIi1R

N
3i12 + ω1

◦
IIi2R

N
3i21

=ω2

◦
II11R

N
3112 + ω2

◦
II21R

N
3212 + ω1

◦
II12R

N
3121 + ω1

◦
II22R

N
3221

=(ω1

◦
II12 + ω2

◦
II22)RN3121 + (ω1

◦
II11 + ω2

◦
II21)RN3212

=(ω1

◦
II12 + ω2

◦
II22)RN32 + (ω1

◦
II11 + ω2

◦
II21)RN31

=(ω1

◦
II12 + ω2

◦
II22)P32 + (ω1

◦
II11 + ω2

◦
II21)P31

=(ωk
◦
IIki)P3i = (P3i −H,i)P3i = |P3i|2 −H,iP3i.

Here we use the fact that Pi3 = RNi3 and
◦
II is traceless. Notice that:

|ω|2|
◦
II|2 = 2|∇H|2 − 4H,iP3i + 2|Pi3|2.

by definition of ωi, in conclusion we hold:

II = |ω|2|
◦
II|2 + 2H,ij

◦
II
ij

− 2P3i,j

◦
II
ij

+ div(ω)|
◦
II|2.(C.11)

And finally we claim:

|∇hij |2
∣∣∣
β=0

=I + II + III + i+ ii+ iii+ iv

=α−4[|∇
◦
II|2 + 4|ω|2|

◦
II|2 + 6H,ij

◦
II
ij

− 6P3i,j

◦
II
ij

+ (H2 + P kk )|
◦
II|2 − 4Ω∗ij

◦
IIij + 2div(ω)|

◦
II|2].
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Recall definition of Ω∗ij we have identity as following:

2Ω∗i j
◦
IIij = [(H2 + |ω|2)δik + ωi,k + ωk,i − 2Hhik − 2Pik]

◦
IIkj

◦
IIij

= [(H2 + |ω|2)δik + ωi,k + ωk,i − 2Hhik − 2Pik]δik
1

2
|
◦
II|2.

= [|ω|2 + div(ω)−H2 − P kk ]|
◦
II|2

Which implies:

−4Ω∗ij
◦
IIij + 2div(ω)|

◦
II|2 = 2(H2 + P kk )|

◦
II|2 − 2|ω|2|

◦
II|2.

In conclusion we hold:

|∇h|2
φ̃

∣∣∣
β=0

=α−4[|∇
◦
II|2 + 2|ω|2|

◦
II|2 + 3(H2 + P kk )|

◦
II|2 + 6(H,ij − P3i,j)

◦
II
ij

]

=α−4[|∇
◦
II|2 + 4|∇H|2 − 8H,iP3i + 4|P3i|2 + 3(H2 + P kk )|

◦
II|2(C.12)

+ 6(H,ij − P3i,j)
◦
II
ij

].
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