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Single-cell technologies have transformed our understanding of human
tissues. Yet, studies typically capture only a limited number of donors and
disagree on cell type definitions. Integrating many single-cell datasets can
address these limitations of individual studies and capture the variability

presentinthe population. Here we present the integrated Human Lung
Cell Atlas (HLCA), combining 49 datasets of the human respiratory system

into a single atlas spanning over 2.4 million cells from 486 individuals. The
HLCA presents a consensus cell type re-annotation with matching marker
genes, including annotations of rare and previously undescribed cell types.
Leveraging the number and diversity of individuals in the HLCA, we identify
gene modules that are associated with demographic covariates such as

age, sex and body mass index, as well as gene modules changing expression
along the proximal-to-distal axis of the bronchial tree. Mapping new data

to the HLCA enables rapid data annotation and interpretation. Using the
HLCA as areference for the study of disease, we identify shared cell states
across multiple lung diseases, including SPPI* profibrotic monocyte-derived
macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall,
the HLCA serves as an example for the development and use of large-scale,
cross-dataset organ atlases within the Human Cell Atlas.

Rapid technological improvements over the past decade have allowed
single-cell datasets to grow both in size and number’. This has led
consortia, such as the Human Cell Atlas, to pursue the generation of
large-scale reference atlases of human organs®®. To advance our under-
standing of health and disease, such atlases must capture variation
between individuals that is expected to impact the molecular pheno-
types of the cells in a tissue. Whereas the generation of atlases at this
scale by single research groups is currently not feasible, integrating
datasets generated by the research community at large will enable
capture of the diversity of the cellular landscape across individuals.

Several foundational studies have started to map the cellular land-
scape of the healthy human lung*°. These studies each have a specific
bias due to their choice of experimental protocol and technologies, and
are therefore not tailored to serve as a universal reference. The studies
moreover include only alimited number of samples and individuals,
thus lacking the scale and diversity to capture the full cellular hetero-
geneity present within the lung as well as across individuals.

Integrated single-cell atlases provide novel insights not obtained
in individual studies. Recent reference atlases have led to the dis-
covery of unknown cell types””’, the identification of marker genes
that are reproducible across studies”’*", the comparison of animal
and in vitro models with human healthy and diseased tissue”*** and
patient stratification for disease endotypes'*". However, many cur-
rently availableintegrated atlases are limited in the number of human
samples”®'9121° datasets' or cell types”®'>'"*® per organ, as well as
donor metadata™"'"*?° (for example, age, body mass index (BMI)
and smoking status), or focus mainly on a specific disease'**". These
limitations constrain the potential of atlases to serve as a reference,
as they fail to represent and catalog the diversity of cellular pheno-
types within the healthy organand across individuals. Moreover, when
integrating data from different sources, it is paramount to correctly
separate technical biases from biologically relevant information. Yet,
the majority of existing atlases have not assessed the quality of their
dataintegration. Nonetheless, successful integration of the available
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Fig.1/HLCA study overview. Harmonized cell annotations, raw count data,
harmonized patient and sample metadata and sample anatomical locations
encoded into a CCF were collected and generated as input for the HLCA core
(left). After integration of the core datasets, the atlas was extended by mapping
35additional datasets, including disease samples, to the HLCA core, bringing
the total number of cells in the extended HLCA to 2.4 million (M). The HLCA
core provides detailed consensus cell annotations with matched consensus cell
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and anatomical covariates in various cell types (middle right), GWAS-based
association of lung conditions with cell types (middle right) and a reference
projection model to annotate new data (middle right) and discover previously
undescribed cell types, transitional cell states and disease-associated cell states
(right, bottom).

datasetsintoasingletissue atlasis a critical step inachieving the goals
of the Human Cell Atlas?.

In this resource, we present an integrated single-cell transcrip-
tomicatlas of the human respiratory system, including the upper and
lower airways, from published and newly generated datasets (Fig. 1).
The Human Lung Cell Atlas (HLCA) comprises data from 486 donors
and 49 datasets, including 2.4 million cells, which we re-annotated
to generate a consensus cell type reference. The HLCA expands our
understanding of the healthy lung and its changes in disease and can be
used as areference for analyzing future lung data. Together, we provide
aroadmap for building and using comprehensive, interpretable and
up-to-date organ- and population-scale cell atlases.

Results

Dataintegration establishes the HLCA core

Tobuildthe HLCA, we collected single-cell RNA sequencing (scRNA-seq)
data and detailed, harmonized technical, biological and demo-
graphic metadata from 14 datasets (11 published and three unpublis
hed)*¢*22% These datasets include samples from 107 individuals,
with diversity in age, sex, ethnicity (harmonized as detailed in Meth-
ods), BMI and smoking status (Fig. 2a). Cells were obtained from 166
tissue samples using a variety of tissue donors, sampling methods,
experimental protocols and sequencing platforms (Supplementary
Tables 1and 2). Anatomical locations of the samples were projected
onto a one-dimensional (1D) common coordinate framework (CCF),
representing the proximal (0) to distal (1) axis of the respiratory system,
to standardize the anatomical location of origin (Fig. 2a and Supple-
mentary Tables 2and 3).

Consensus definitions of cell types based on single-cell transcrip-
tomic data across studies—particularly of transitional cell states—are
lacking. To enable supervised data integration and downstream inte-
grated analysis, we harmonized cell type nomenclature by building
afive-level hierarchical cell identity reference framework (Methods,
Supplementary Table 4 and Fig. 2b). We then unified cell type labeling

across datasets by mapping the collected cell identity labels for every
dataset as provided by the datagenerator to the hierarchical reference
framework, showing varying cell type proportions per sample (Fig. 2c).

To optimally remove dataset-specific batch effects, we evaluated
12 different dataintegration methods on12 datasets* ** > (Fig. 2d and
Supplementary Fig.1) using our previously established benchmarking
pipeline”. We used the top-performing integration method, scCANVI, to
create anintegrated embedding of all 584,444 cells of 107 individuals
from the collected datasets: the HLCA core (Fig. 3a).

Consensus cell type annotations based on the HLCA core
Alarge-scale integrated atlas provides the unique opportunity to
systematically investigate the consensus in cell type labeling across
datasets. To identify areas of consensus and disagreement, we itera-
tively clustered the HLCA core and investigated donor diversity and cell
type label agreementin these clusters using entropy scores (see Meth-
ods). Most clusters contained cells from many donors (Extended Data
Fig.1a). Clusters with low donor diversity (n = 14) were largelyimmune
cell clusters (n=13), representing donor- or donor group-specific
phenotypes. Similarly, a high diversity of (contradictory) cell type
labels (highlabel entropy) canidentify both annotation disagreements
between studies and clusters of doublets (Methods). Most clusters (61
out of 94) showed low label entropy, suggesting overall agreement
of coarse cell type labels across datasets (Fig. 3b). The remaining 33
clusters exhibited high label entropy, highlighting cellular phenotypes
that were differently labeled across datasets (Fig. 3b). For example, the
immune cluster with the highest label entropy contained many cells
that were originally mislabeled as monocytes and macrophages but
were actually type 2 dendritic cells (Fig. 3c and Extended Data Fig. 1b).
Thus, populations with high label entropy identify mislabeled cell types,
indicating the need for consensus re-annotation of the integrated atlas.
As afirst step to achieve such a consensus on the diversity of cell
types present in the HLCA core, we performed a full re-annotation of
the integrated data on the basis of the original annotations and six
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expert opinions (consensus annotation; Methods and Fig. 3d). Each of
the 61annotated cell types (Supplementary Table 5) was detected in at
least four datasets out of 14, often in specific parts of the respiratory
system, and different cell types showed varying fractions of proliferat-
ing (MKl167") cells (Extended Data Fig. 2a—c). While our consensus cell
type annotations partly correspond to original labels (41% of cells),
there were also refinements (28%) and substantial re-annotations
(31%; Fig. 3e and Supplementary Fig. 2). Torobustly characterize the cell
types, we established a universal set of marker genes that generalizes
acrossindividuals and studies (Methods, Extended Data Fig. 3 and Sup-
plementary Table 6). The fully re-annotated HLCA core thus combines
data from a diverse set of studies to provide a carefully curated refer-
ence for cell type annotations and marker genesin healthy lung tissue.

The HLCA recoversrare cell types and identifies novel ones
Rarecell types, suchasionocytes, tuft cells, neuroendocrine cellsand
specificimmune cell subsets, are often difficult toidentify inindividual
datasets. Yet, combining datasets in the HLCA core provides better
power foridentifying these rare cell types. lonocytes, tuft and neuroen-
docrine cells make up only 0.08, 0.01and 0.02% of the cellsin the HLCA
core according to the original labels, and were originally identified in
onlyseven, two and four datasets out of 14, respectively. Despite their
low abundance, these cells formed three separate clusters of the HLCA
core (Fig. 3f). Our re-annotation increases the number of datasets in
whichthese cells are detected up to threefold and identifies both cells
falsely annotated as monocytes, tuft cells or neuroendocrine cells,
as well as originally undetected rare cells (Fig. 3f and Supplementary
Fig. 3a). Importantly, other integration methods tested during our
benchmarking, such as Harmony? and Seurat’s RPCA*, failed to sepa-
rate these rare cells into distinct clusters (Supplementary Fig. 3b).

We were further able to detect six cell identities that were not
previously found in the human lung or were only recently described
in individual studies. These cell types include migratory dendritic
cells®*? (n =312 cells, expressing CCR7, LADI1 and COL19), hematopoi-
etic stem cells (n = 60, expressing SPINK2, STMN, PRSS57 and CD34),
highly proliferative hillock-like epithelial cells not previously reported
inadulthumanlung (n = 4,600, expressing KRT6A, KRT13and KRT14),
the recently described alveolar type O cells (n =1,440, expressing
STFPB*, SCGB3A2', SFTPC"e" and SCGB3AI'") and the closely related
preterminal bronchiole secretory cells (n = 4,393, expressing SFTPB",
SCGB3A2', SFTPC°" and SCGB3AI"®", together with alveolar type O cells
called transitional club-AT2 cells)**** and a subset of smooth muscle
cells (n =335) that to our knowledge have not previously been described
(Fig. 3d,g and Extended Data Fig. 4a-f). These smooth muscle cells,
predominantly found in the airways, express canonical smooth muscle
markers (CNNI and MYH11) and also uniquely and consistently express
FAMS3D across datasets (Extended DataFig. 4e,f). The HLCA core thus
enablesimproved detectionandidentification of rare cell types, as well
as the discovery of unknown cell types.

Donor and experimental factors affect gene expression
profiles
Demographicand other metadata covariates affect cellular transcrip-
tional phenotypes®?. Better insight into the impact of these covariates
(forexample, sex, BMIand smoking) on cell type gene expression can
shed light on the contribution of these factors to progression from
healthy to diseased states. In addition, technical covariates such as
ribosomal and mitochondrial genes exhibit batch-specific variation
in expression (Methods and Supplementary Table 7). The diversity in
demographics (for example, smoking status, age, harmonized ethnic-
ity and BMI) and experimental protocols represented in the HLCA core
enables us to explore the contribution of each technical or biological
covariateto cell type-specific gene expression variation (Methods and
Supplementary Fig.4). For many cell types, anatomical locationis the
biological variable explaining most of the variance between samples
(Fig.4a). Furthermore, sex is most associated with transcriptomic varia-
tioninlymphatic endothelial cells, whereas BMIis most associated with
variationinBand T cells, harmonized ethnicity in transitional club-AT2
cells and smoking status in innate lymphoid/natural killer cells. Fur-
thermore, for several cell types (for example, mast, AT1 and smooth
muscle cells), the tissue dissociation protocol explains most of the
variance of all technical as well as biological covariates recorded. These
associations provide a systematic overview of the effects of biological
and technical factors on the transcriptional state of lung cell types.
To better characterize how biological variables affect cellular
phenotypes, we modeled their cell type-specific effects on the tran-
scriptome at the gene level (Methods). Sex-related differencesinlym-
phatic endothelial cells are dominated by differential expression of
geneslocated onthe Xand Y chromosomes, butalsoinclude adecrease
in IFNAR1 in females (Supplementary Table 8), which may be linked
to differential interferon responses between the biological sexes™.
We furthermore found cell type-specific programs that change with
proximal (low CCF score) to distal (high CCF score) location along the
respiratory tract (Supplementary Tables 8 and 9). For instance, oxida-
tive phosphorylation (including cytochrome c oxidase genes such as
COX7AI), antigen presentation by major histocompatibility complex
class I molecules (including proteasome and protease subunit genes
such as PSMD14 and PSMB4), signaling by interleukin-1and tumor
necrosis factor «, as well as planar cell polarity, were downregulated
toward more distal locations in secretory, multiciliated and basal cells
(Fig. 4b). Some gene programs were specific for a subset of airway
epithelial cell types (for example, cornification and keratinization,
which were programs that were downregulated in distal multiciliated
and secretory cells; including genes such as KRT8 and KRT19). The
changesinairway epithelial cell states toward the terminal airways are
furtherillustrated by increased expression of developmental pathway
genes such as NKX2-1, NFIB, GATA6, BMP4 and SOX9 in multiciliated
cells along the proximal-to-distal axis (Fig. 4b), whereas basal cells
decrease in number (Fig. 4c)*. Similarly, several cell types display

Fig.2| Composition and construction of the HLCA core. a, Donor and sample
composition in the HLCA core for demographic and anatomical variables.
Donors/samples without annotation are shown as not available (NA; gray bars)
foreach variable. For the anatomical region CCF score, O represents the most
proximal part of the lung and airways (nose) and 1 represents the most distal
(distal parenchyma). Donors show diversity in ethnicity (harmonized metadata
proportions: 65% European, 14% African, 2% admixed American, 2% mixed, 2%
Asian, 0.4% Pacific Islander and 14% unannotated; see Methods), smoking status
(52% never, 16% former, 15% active and 17% NA), sex (60% male and 40% female),
age (ranging from 10-76 years) and BMI (20-49; 30% NA). b, Overview of the
HLCA core cell type composition for the first three levels of cell annotation,
based on harmonized original labels. In the cell type hierarchy, the lowest level
(1) consists of the coarsest possible annotations (that is, epithelial (48% of cells),
immune (38%), endothelial (9%) and stromal (4%)). Higher levels (2-5) recursively
break up coarser-level labels into finer ones (Methods). Cells were set to ‘none’
ifno cell type label was available at the level. Cell labels making up less than

0.02% of all cells are not shown. Overall, 94, 66 and 7% of cells were annotated
atlevels 3,4 and 5, respectively. c, Cell type composition per sample, based on
level 2 labels. Samples are ordered by anatomical region CCF score. d, Summary
of the dataset integration benchmarking results. Batch correction score and
biological conservation score each show the mean across metrics of that type,
asshownin Supplementary Fig. 1, with metric scores scaled to range from O to 1.
Both Scanorama and fastMNN were benchmarked on two distinct outputs: the
integrated gene expression matrix and integrated embedding (see output). The
methods are ordered by overall score. For each method, the results are shown
only for their best-performing data preprocessing. Methods marked with an
asterisk use coarse cell type labels as input. Preprocessing is specified under HVG
(thatis, whether or not genes were subsetted to the 2,000 (HVG) or 6,000 (FULL)
most highly variable genes before integration) and scaling (whether genes were
left unscaled or scaled to have amean of 0 and a standard deviation of 1across

all cells). EC, endothelial cell; NK, natural killer; Bioconserv., conservation of
biological signal.
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transcriptomic changes in donors with increasing BMI (Fig. 4d and
Supplementary Tables 8 and 9). AT2 cells, secretory cells and alveolar
macrophages exhibit downregulation of arange of biological processes
(SupplementaryFig. 5), including cellular respiration, differentiation
and synthesis of peptides and other molecules. In secretory cells, a
downregulation of the insulin response pathway is also associated with
higher BMI, inline with theinsulin resistance observed in donors with
obesity*”*. In alveolar macrophages, inflammatory responses involv-
ing JAK/STAT signaling (previously associated with obesity-induced
chronic systemic inflammation®®) are associated with higher BMI. In
contrast, in plasma cells, high BMl is associated with downregulation

of gene sets associated with immune response and upregulation of
gene sets associated with cellular respiration, the cell cycle and DNA
repair. This is consistent with obesity being a known risk factor for
multiple myeloma—a plasma cell malignancy®. Thus, the HLCA enables
adetailed understanding of the effects of anatomical and demographic
covariates on the cellular landscape of the lung and their relation
todisease.

Biological and technical factors can also affect cell type propor-
tions. Indeed, all cell types show changes in abundance as a function
of anatomical location (Fig. 4c and Extended Data Fig. 5). For exam-
ple, ionocytes are present at comparable proportions in the airway
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epithelium, from the larger lower airways (CCF score = 0.36) down to
the distal lobular airways (CCF score = 0.81), while being largely absent
inthe lung parenchyma (CCF score = 0.97).In contrast, neuroendocrine
cells are predominantly observed in the larger lower airways but are
absent from more distal parts of the bronchial tree (Fig. 4c). In some
cases, these proportions are highly dependent on the tissue sampling
method and the dissociation protocol used (for example, for smooth
muscle FAM83D" cells; Extended DataFig. 5). These observations shed
light on the effects of biological and technical factors onthe abundance
of celltypesindifferent parts of the lung and can help guide important
choicesin study design.

HLCA-based analysis of lung data highlights new cell types

The HLCA core contains an unprecedented diversity of donors, sam-
pling protocols and cell identities, and can serve as a transcriptomic
reference for lung research. New datasets can be mapped to this ref-
erence to substantially speed up data analysis by transferring con-
sensus cell identity annotations to the new data. We tested thison a
recently released multimodal lung dataset*° (Methods, Fig. 6a and
Extended DataFig. 6). Overall, the transferred labels were correctin the
majority of cases, with 68% of the cells correctly labeled, 14% of labels
incorrectly labeled and 18% set to unknown due to highly uncertain
labeling (Fig. 5b and Methods). Uncertain labels were observed spe-
cifically in continuous transitions from one cell type to another and
among cellular identities not presentin the HLCA core, including rare
cell identities (erythrocytes (n=328), chondrocytes (n = 42), myeli-
nating Schwann cells (n = 7), nonmyelinating Schwann cells (n =29)
and nerve-associated fibroblasts (n = 66); Fig. 5b and Extended Data
Fig.6d). Taken together, these results show that the HLCA core can be
used for highly detailed annotation of new datasets, while allowing
for the identification of unknown cell types in these datasets based
on label transfer uncertainty.

The HLCA provides crucial context for understanding disease

Single-cell studies of disease rely on adequate, matching control
samples to allow correct identification of disease-specific changes.
To demonstrate the ability of the HLCA core to serve as a compre-
hensive healthy control and contextualize disease data, we mapped
scRNA-seq datafrom lung cancer samples* to the HLCA core (Methods
and Extended Data Fig. 7a-c). Using HLCA label transfer, we correctly
identified cell states missing from the HLCA core as unknown (cancer
cellsand erythroblasts). The remaining cells were annotated correctly
in 77%, incorrectly in 1% and as unknown in 22% of cases (Extended
Data Fig. 7d-g). A finding of the original study was the separation of
endothelial cells into tumor-associated and normal cells*. Clustering
of the projected dataset with the HLCA reference showed that cells
expressing the suggested tumor-associated marker ACKRI were also
abundantin healthy tissue from the HLCA core, specifically in venous
endothelial cells (both pulmonary and systemic, Fig. 5c and Supple-
mentary Fig. 6a-c). This suggests that ACKR1 is a general marker of
venous endothelial cells rather than a tumor-specific endothelial cell
marker. Similarly, the reported normal endothelial cell marker EDNRB

characterizes aerocyte capillary endothelial cells, both in tumor and
in healthy tissue (Fig. 5c and Supplementary Fig. 6d). As endothelial
cell numbers in the original study were low, correctly identifying and
distinguishing these cell types without a larger healthy reference is
challenging. Thus, by serving as a comprehensive healthy control,
the HLCA prevents misinterpretation of limitations in sampling and
experimental design as meaningful differences between healthy and
diseased tissue.

In addition, the HLCA can provide context to the results of
large-scale genetic studies of disease. Genome-wide association studies
(GWASs) link disease with specific genomic variants that may confer
anincreasedrisk of disease. Previous studies have linked such variants
to cell type-specific mechanistic hypotheses, which are often lacking
in the initial association study. Yet, these studies fail to include all
known lung cell types in their cell type reference***’. To demonstrate
the value of the HLCA core in contextualizing genetic data, we mapped
association results from four GWASs of lung function or disease***
to the HLCA core cell types, by testing significant enrichment of both
weakly and strongly disease-associated variants in regions of genes
that characterize each cell type*® (Fig. 5d, Supplementary Fig. 7 and
Methods). We show that genomic variants linked to lung function
(forced vital capacity) are associated with smooth muscle (adjusted
Pvalue (P,4) = 0.07), alveolar fibroblasts (P,4;= 0.07), peribronchial
fibroblasts (P,q = 0.07) and myofibroblasts (P,4; = 0.07), suggesting
that these fibroblast subtypes play a causative role in inherited dif-
ferences in lung function. We further find a significant association of
lung T cells with asthma-associated single-nucleotide polymorphisms
(SNPs) (P,g; = 0.005). Lung adenocarcinoma-associated variants trend
towards AT2 cells (P,4 = 0.18) and myofibroblasts are significantly asso-
ciated with chronic obstructive pulmonary disease (COPD) GWAS SNPs
(P,g;=0.04). Thus, by linking genetic predispositions to lung cell types,
the HLCA core serves as avaluable resource withwhich toimprove our
understanding of lung function and disease.

Finally, the HLCA canbe used as areference for cell type deconvolu-
tion of bulk RNA expression samples, which have been shown to reflect
cell type proportions more accurately than scRNA-seq datasets®.
Inferring cell type proportions from bulk RNA samples from nasal
brushings and bronchial biopsies using the HLCA core (Supplementary
Table 10, Supplementary Fig. 8a and Methods) revealed no signifi-
cant cell type compositional changes associated with corticosteroid
inhalation® or asthma®, respectively (Supplementary Fig. 8b,c and
Supplementary Table 11). In contrast, we find that the proportion of
capillary endothelial cells in lung resection tissue from the Lung Tis-
sue Database™ is higher in samples from patients with severe COPD
(GOLD stage 3 or 4) than in those from non-COPD controls matched
for age and smoking history (P,4;=0.0004). Conversely, alveolar and
interstitial macrophages, AT2 cells and dendritic cells decrease in pro-
portion (Fig. 5e, Supplementary Fig. 8d and Supplementary Table 11;
P,4;=0.0007, 0.0003, 0.005 and 3.21x 107%, respectively). Finally,
smooth muscle shows the largest shift in proportion, increasing sig-
nificantly in patients with severe COPD (P=1.85 x107®) in line with
previous work®. As deconvolution of bulk samples using the HLCA can

Fig.3|The HLCA core conserves detailed biology and enables consensus-
driven annotation. a, AUMAP of theintegrated HLCA, colored by level 1
annotation. b, Cluster label disagreement (label entropy) of Leiden 3 clusters
ofthe HLCA. The HLCA was splitinto three parts (immune, epithelial and
endothelial/stromal) for ease of visualization. Cells from every cluster are
colored by label entropy. Clusters with less than 20% of cells annotated at level
3are colored gray. ¢, Cell type label composition of theimmune cluster with the
most label disagreement (left), with original labels (middle left) and matching
manual re-annotations (middle right). Azoom-in on the UMAP from b shows the
final re-annotations (right). d, UMAPs of the immune, epithelial and endothelial/
stromal parts of the HLCA core with cell annotations from the expert manual
re-annotation. e, Percentage of cells originally labeled correctly, mislabeled or

underlabeled (that s, only labeled at a coarser level) compared with final manual
re-annotations. The percentages were calculated per manual annotation, as

well as across all cells (right bar). f, UMAP of HLCA clusters annotated as rare
epithelial cell types (that is, ionocytes, neuroendocrine cells and tuft cells). Final
annotations, original labels and the study of origin are shown (top), as well as the
expression of ionocyte marker FOX/1, tuft cell marker LRMP and neuroendocrine
marker CALCA (bottom). g, Log-normalized expression of the migratory
dendritic cell marker CCR7in cells identified during re-annotation as migratory
dendritic cells, versus other dendritic cells. AT, alveolar type; DC, dendritic cell;
FB, fibroblast; Mph, macrophage; MT, metallothionein; SM, smooth muscle;
SMG, submucosal gland; TB, terminal bronchiole.
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reveal disease-specific changes in cell type composition, we provide
publicly available preprocessed cell type signature matrices based on
the HLCA core (https://github.com/LungCellAtlas/HLCA).
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Fig. 4 |Demographic and technical variables driving interindividual
variation. a, Fraction of total inter-sample variance in the HLCA core integrated
embedding that correlates with specific covariates. Covariates are split into
technical (left) and biological covariates (right). Cell types are ordered by the
number of samples in which they were detected. Only cell types presentin
atleast 40 samples are shown. Tissue sampling method represents the way a
sample was obtained (for example, surgical resection or nasal brush). Donor
status represents the state of the donor at the moment of sample collection (for
example, organ donor, diseased alive or healthy alive). The heatmap is masked
gray where fewer than 40 samples were annotated for a specific covariate or
where only one value was observed for all samples for that cell type. b, Selection
of gene sets that are significantly associated with anatomical location CCF score,
indifferent airway epithelial cell types. All gene set names are Gene Ontology
biological process (GO: BP) terms. Sets upregulated toward distal lungs are
showningreen, whereas sets downregulated are shown inblue. The full name
of the term marked by an asterisk is ‘Antigen processing and presentation of
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exogenous peptide antigen viaMHC-I'. ¢, Cell type proportions per sample, along
the proximal-to-distal axis of the respiratory system. The lowest and highest

CCF scores shown (0.36 and 0.97) represent the most proximal and most distal
sampled parts of the respiratory system, respectively (trachea and parenchyma),
excluding the upper airways. The dots are colored by the tissue dissociation
protocol and tissue sampling method used for each sample. The boxes show the
median and interquartile range of the proportions. Samples with proportions
more than 1.5 times the interquartile range away from the high and low quartile
are considered outliers. Whiskers extend to the furthest nonoutlier point.n =23,
19,9 and 90 for CCF scores 0.36,0.72,0.81and 0.97, respectively. d, Selection

of gene sets significantly up- (green) or downregulated (blue) with increasing
BMI, in four different cell types. For band d, P values were calculated using
correlation-adjusted mean-rank gene set tests (Methods) and false discovery rate
corrected using the Benjamini-Hochberg procedure. IL-1, interleukin-1; MHC-I,
major histocompatibility complex class I; TNF, tumor necrosis factor.

tobefurther refined. The HLCA and its annotations can be updated by
learning from new data projected onto the reference. We simulated such
an HLCA update using the previously projected healthy lung dataset,
specifically focusing on the cell identities that were distinguished based
on their tissue location in matched spatial transcriptomic data (spa-
tially annotated cell types)*’. These cell identities were present at very
low frequencies (median: 0.005% of all cells; Supplementary Fig. 9a).

Both spatially annotated mesenchymal cell types with more than 40
cells (immune-recruiting fibroblasts and chondrocytes) and two rare
celltypes (myelinating Schwann cells and perineurial nerve-associated
fibroblasts) were recovered in distinct clusters (spatially annotated
clusters), and three of these (all except chondrocytes) also contained
cells from the HLCA core, thereby enabling a refinement of existing
HLCA core annotations using the spatial context from the projected
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dataset (Fig. 5fand Supplementary Fig. 9b,c). In this manner the HLCA
core and its annotations can be refined by mapping new datasets to
theatlas and incorporating annotations from these new datasetsinto
the reference.

Mapping data to the HLCA highlights disease-related states

To extend the atlas and include samples from lung disease, we mapped
1,797,714 cells from 380 healthy and diseased individuals from 37 data-
sets (four unpublished and 33 published??*?¢?73>40415470) t g the HLCA
core using scArches”, bringing the HLCA to a total of 2.4 million cells
from486 individuals (Fig. 6aand Supplementary Table1). Label transfer
from the HLCA core to the newly mapped datasets enabled detailed
celltype annotation across datasets evenfor rare cells, including 2,048
migratory dendritic cellsidentified across 28 datasets with label trans-
fer, whereas this cell type was originally labeled in only two of 12 labeled
datasets (Extended DataFig. 8).

Out of 37 new datasets, 27 were observed to map well to the HLCA,
asevaluated by the mean label transfer uncertainty score (Fig. 6b, Sup-
plementary Fig. 10a and Methods). The remaining ten datasets were
often from coronavirus disease 2019 (COVID-19) studies or, unlike the
HLCA core, contained pediatric samples (Fig. 6b,cand Supplementary
Fig.10b). In these datasets, higher uncertainty values may be attrib-
utable to true biological differences between the mapped data and
the HLCA core adult, healthy lung samples. Overall, the successfully
mapped datasets include disease samples, as well as single-nucleus and
single-cell datafrom multiple chemistries (Fig. 6b), demonstrating the
potential of the HLCA core as a universal reference.

Pulmonary diseases are characterized by the emergence of unique
disease-associated transcriptional phenotypes*?-**?*’2, We observed
higher levels of label transfer uncertainty in datasets from diseased
lungs (Fig. 6b, condition), possibly flagging cell types changed in
response to disease. Specifically, labels of alveolar fibroblasts and
alveolar macrophages, whichinteract to forma dysregulated cellular
circuit in idiopathic pulmonary fibrosis (IPFs)*-****, are transferred
with higher uncertainty in IPF samples than in samples from healthy
controls from the same dataset®* (Fig. 6d and Extended Data Fig. 9a,b).
Furthermore, uncertainty scores separate cells—derived from donors
with IPF—within these cell types into more and less affected subsets: the
genes more highly expressed in the high-uncertainty subset are also
lowly expressed in healthy samples (Fig. 6e). Genes downregulated in
high-uncertainty IPF macrophages are associated with homeostatic
functions of tissue-resident alveolar macrophages and lipid metabo-
lism (PPARG, FABP4 and others)****%, while upregulated genes are
associated with extracellular matrix remodeling and scar formation
inthe context of lung fibrosis (SPP1, PLA2G7 and CCL2; Supplementary
Tables 12 and 13 and Extended Data Fig. 9b,c)?>***%, Thus, the HLCA
core canbe used to annotate new data, identify previously unreported

populations, and—using label transfer uncertainty scores—help to
detect disease-affected cell states and corresponding gene expres-
sion programs. This vastly speeds up analysis and interpretation of
new data, automatically prioritizing the most relevant populations.
Automated mapping of new data to the HLCA core canbe done by any
user viaaninteractive web portal (https://github.com/LungCellAtlas/
HLCA) or using code tutorials as provided online.

The HLCA reveals common aberrant cell states across diseases
Similar to healthy cellular states, the HLCA can provide insight into
disease-specific states that are consistent across demographics and
experimental protocols. To demonstrate this, we determined which
cell types are consistently affected by IPF across datasets, extending
the previous IPF analysis to five independent datasets. We found that
cellslabeled as alveolar fibroblasts consistently show high uncertainty
levels in IPF samples compared with controls across all mapped IPF
datasets thatinclude controls®®*>* (Extended Data Fig.10a). Clustering
ofalveolar fibroblasts from the HLCA core and all IPF datasets?"***5626*
shows that cells from patients with IPF predominantly cluster together
inasingle cluster (Fig. 6f,g and Extended Data Fig.10b) characterized
by high expression of genes previously associated with IPF**”>7* (CCL2,
COL1A1, CTHRCI and MMP19), as well as further fibrosis-associated
markers (SERPINEI, an inhibitor of extracellular matrix breakdown”,
and HIFIA, a chronic hypoxia response gene’®; Fig. 6h and Supplemen-
tary Table 14). These marker genes are consistently expressed across
datasets (Extended Data Fig. 10c), confirming that the identification
of this IPF-specific alveolar fibroblast state is reproducible.

The HLCA contains data across more than ten lung diseases,
providing the unique opportunity to discover cellular states shared
across diseases. Discovering such common diseased cellular states
could improve our understanding of lung diseases and accelerate
the identification of effective treatments. For example, profibrotic
SPPI" monocyte-derived macrophages (MDMs) have previously been
reported in COVID-19, IPF and cancer®*””’%, To test whether similar
cross-disease MDM states could be discovered in the HLCA, we per-
formed clustering of all MDMs from the HLCA (Fig. 6i). We identified
four main MDM subtypes (Methods and Supplementary Table 15),
each showing distinct gene expression and disease enrichment pat-
terns, and representing different stages of monocyte-to-MDM dif-
ferentiation and adaptation to the disease microenvironment. First,
an early and inflammatory MDM state was observed that was high in
theexpression of CCL2,ageneinvolvedintherecruitment ofimmune
cells. This cluster predominantly contained cells from bronchoalveolar
lavage fluid samples collected early during the course of COVID-19
pneumonia (cluster 2; /LIRN"" and SIO0AI2"e"; Fig. 6i-k and Extended
Data Fig. 10d-h). We further observed an MDM subset expressing
inflammation and phagocytosis-associated genes (cluster 4; CCL1S,

Fig. 5| The HLCA core serves as areference for label transfer and data
contextualization. a, UMAP of the jointly embedded HLCA core (gray) and the
projected healthy lung dataset (colored by label transfer uncertainty). HLCA
cell types surrounding regions of high uncertainty are labeled. b, Percentage
of cells from the newly mapped healthy lung dataset that are annotated either
correctly orincorrectly by label transfer annotation or annotated as unknown,
split by original cell type label (number of cells in parentheses). Cell type labels
not present in the HLCA are boxed. ¢, Top, percentage of cells derived from
tumor tissue, per endothelial cell cluster from the joint HLCA core and lung
cancer dataembedding. Only clusters with at least ten tumor cells are shown.
Clusters are named based on the dominant HLCA core cell type annotation in
the cluster. Middle, box plot showing the expression of EDNRBin endothelial
cellclusters, split by tissue source. Bottom, as in the middle plot but for

the expression of ACKR1. Numbers of cells per group were as follows: 6,574
(endothelial cell aerocyte capillary), 7,379 (endothelial cell arterial (I)), 10,906
(endothelial cell general capillary (1)), 3,440 (endothelial cell general capillary
(1)), 2,859 (endothelial cell general capillary (111)), 6,318 (endothelial cell venous

pulmonary) and 7,161 (endothelial cell venous systemic). d, Association of HLCA
cell types with four different lung phenotypes based on previously performed
GWASs. The horizontal dashed lines indicate a significance threshold of a = 0.05.
Pvalues were calculated using linkage disequilibrium score regression (Methods)
and multiple testing corrected with the Benjamini-Hochberg procedure. e, Cell
type proportionsin lung bulk expression samples as estimated from HLCA-based
cell type deconvolution, comparing controls (n = 281) versus donors with severe
COPD (GOLD stage 3/4; n = 83).f, UMAP of fibroblast-dominated clusters from
the jointly embedded HLCA core and mapped healthy lung dataset, colored by
spatial cluster, with cells outside of the indicated clusters colored in gray. For
allboxplots, the boxes show the median and interquartile range. Data points
more than1.5times the interquartile range outside the low and high quartile are
considered outliers. Inc, these are not shown (see Supplementary Fig. 6 for full
results), whereas in e, they are shown. Whiskers extend to the furthest nonoutlier
point. corr., corrected; FVC, forced vital capacity; MAIT cells, mucosal-associated
invariant T cells; NKT cells, natural killer T cells.
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IL18, C1QA and TREM?2) and enriched for samples from patients with  The final MDM subset was dominated by IPF samples. Interestingly,

this cluster was also enriched for cells from patients who died late in

COVID-19 pneumonia, as well as samples from patients with lung car-

the course of COVID-19 and developed post-COVID-19 lung fibrosis,
as well as cells from patients with lung carcinoma (cluster O; Fig. 6i-k

cinoma (Fig. 6i-k and Extended Data Fig.10d-h). A third MDM subset
represented a more differentiated MDM phenotype, as indicated by

the expression of MARCO and MCEMPI, dominated by cells from non-

and Extended Data Fig. 10g-i). This multidisease cluster is marked by

high expression of SPP1, LPL and CHIT1—markers that have been shown

A

Fig. 6i-k and Extended Data Fig. 10d,f).
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Fig. 6| The extended HLCA enables the identification of disease-associated
cellstates. a, UMAP of the extended HLCA colored by coarse annotation (HLCA
core) oringray (cellsmapped to the core). b, Uncertainty of label transfer from
the HLCA core to newly mapped datasets, categorized by several experimental
or biological features. Categories with fewer than two instances are not shown.
The numbers of datasets per category were as follows: 30 cells, 7 nuclei, 23
healthy, 5IPF, 3 CF, 3 carcinoma, 4 ILD, 8 surgical resection, 7 donor lung, 12 lung
explant, 6 bronchoalveolar lavage fluid, 4 autopsy, 910x 5’,3110x 3/, 4 Drop-Seq
and 3 Seq-Well. ¢, Bottom, mean label transfer uncertainty per mapped healthy
lung samplein the HLCA extension, grouped into age bins and colored by study.
The numbers of mapped samples per age bin were as follows: 43 for 0-10 years,
33 for10-20 years, 31for 20-30 years, 23 for 30-40 years, 19 for 40-50 years,
12 for 50-60 years, 9 for 60-70 years, 8 for 70-80 years and 2 for 80-90 years.
Top, bar plot showing the number of donors per age group in the HLCA core.

d, Violin plot of label transfer uncertainty per transferred cell type label for
asingle mapped IPF dataset®, splitinto cells from healthy donors (blue) and
donorswith IPF (orange). e, Uncertainty-based disease signature scores among
alveolar fibroblasts and alveolar macrophages, split into cells from control

donors (n=10,453 and 1,812, respectively), and low-uncertainty cells (n = 1,419
and 200, respectively) and high-uncertainty cells (n =1,172 and 162, respectively)
from donors with IPF.f, UMAP embedding of alveolar fibroblasts (labeled with
manual annotation (core) or label transfer (five IPF datasets)) colored by Leiden
cluster. g, Composition of the clusters shown in fby study, with cells from control
samples colored in gray. h, Expression of marker genes for IPF-enriched cluster

O per alveolar fibroblast cluster. Cluster 5 was excluded as 96% of its cells were
from asingle donor. i, UMAP of all MDMs in the HLCA, colored by Leiden cluster.
Jj, Composition of the MDM clusters from i by disease. k, Expression of cluster
marker genes among all MDM clusters excluding donor-specific clusters Sand 6.
For h and k, mean counts were normalized such that the highest group meanwas
setto1foreachgene.Forb, cand e, the boxes show the median and interquartile
range. Data points more than 1.5 times the interquartile range outside the low and
high quartile are considered outliers. Whiskers extend to the furthest nonoutlier
point. BALF, bronchoalveolar lavage fluid; CF, cystic fibrosis; Drop-Seq, droplet
sequencing; ILD, interstitial lung disease; Mph, macrophages; SM, smooth
muscle; uncert., uncertainty.

toplay a causal role in the development of lung fibrosis®>”° ' (Fig. 6k),
one of which (CHITI) is currently being investigated as a therapeutic
target for IPF®2. The expression of these markers is consistent across
diseases and studies (Extended Data Fig. 10f), suggesting that also in
cancer and late-stage COVID-19 samples a subset of MDMs adopt a
fibrosis-associated phenotype. Together, this analysis shows that the
HLCA enables abetter understanding of cellular states shared between
diseases and thereby has the potential to accelerate the discovery of
effective disease treatments.

Discussion

In this study, we built the HLCA: an integrated reference atlas of the
humanrespiratory system. While previous studies have described the
cellular heterogeneity within the human lung* ***%, study-specific
biases due to experimental design and a limited number of sampled
individuals constrain their capacity to capture population variation
and serve as a universal reference. The HLCA integrates data from
49 datasets to produce such areference of 2.4 million cells, covering
all major lung scRNA-seq studies published to date. The core of this
atlas consists of afully integrated healthy reference of 14 datasets with
61 cell identities, including rare and novel cell types, representing a
data-derived consensus annotation of the cellular landscape of the
human lung. We leveraged the unprecedented complexity of the HLCA
torecover cell type-specific gene modules associated with covariates
such as lung anatomical location, age, sex, BMI and smoking status.
By projecting data onto the HLCA, we showed that the HLCA enables
afastand detailed annotation of new datasets, as well as the identifica-
tion of unique, disease-associated cell states and cell states common
to multiple diseases. The HLCA is publicly available as a resource for
the community, together with an online platform for automated map-
ping of new data. Taken together, the HLCA is auniversal reference for
single-cell lung research that promises to accelerate future studies into
pulmonary health and disease.

The ultimate goal of ahuman lung cell atlas reference is to pro-
vide acomprehensive overview of all cells in the healthy human lung,
as well as their variation from individual to individual. Despite its
overall diversity, the HLCA is limited by the biological, demographic
and experimental diversity in the foundational single-cell studies.
For example, 65% of the HLCA core data are from individuals of
European harmonized ethnicity, highlighting the urgent need for
diversification of the population sampled in lung studies. Moreo-
ver, ethnicity metadata were based on self-reports and harmonized
across datasets, which is an imperfect approach to representing
the diversity of the atlas. SNP-based inference of genetic ancestry
constitutes a more objective and therefore preferable approach to
the grouping of individuals based on genetic background and would

aid in better assessing the genetic diversity captured in the atlas.
Overall, more diverse samples will enrich the atlas, diversify captured
cell identities and improve the quality of the HLCA as a reference
for new datasets. Such areference will also enable comparison with
model systems such as mice, cell lines or organoids, although further
method development may be required to map across diverseinvitro
and clinical datasets.

The constituent datasets of the HLCA vary widely in experimental
design, such as the sample handling protocol or single-cell platform
used, causing dataset-specific batch effects. The quality of the HLCA
hinges on the choice of data integration method, with methods such
as Seurat’s RPCA*® and Harmony? failing to correctly group rare cell
identities into separate clusters. Nevertheless, also in the HLCA, cer-
tain subsets of T cells (regulatory T cells and y6 T cells) could not be
identified as separate clusters, showing the limitations of the current
HLCA in capturing cellular heterogeneity for a subset of immune cell
types. Mapping additional datasets with high-resolution annotations
(for example, derived from multimodal data) could provide the power
to detect these cell identities in the atlas. Indeed, the HLCA must be
viewed as a live resource that requires continuous updates. While
we showed that mapping new, spatially annotated data to the HLCA
core can refine HLCA annotations, this new knowledge must be con-
solidated by regular updates of the HLCA with new datasets (includ-
ing epigenomic, spatial and imaging data) and refinements of HLCA
annotations based on additional expert opinions. Thereby, the HLCA
can serve as acommunity- and data-driven platform for open discus-
sion on lung cell identities as the respiratory community progresses
incharting the cellular landscape of the lung. In this process, we envi-
sion that the HLCA will be completed in two phases: first on the level
of cellular variation (when no new consensus cell types can be found)
and then in the description of individual variation (when population
diversity is fully represented).

Taken together, the HLCA provides a central single-cell refer-
ence of unprecedented size. It offers a model framework for build-
ing integrated, consensus-based, population-scale atlases for other
organs within the Human Cell Atlas. The HLCA is publicly available, and
combined with an open-access platform to map new datasets to the
atlas, this resource paves the way toward a better and more complete
understanding of both health and disease in the human lung.
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Methods

Ethics approval and consent

Ethics approval information per study was as follows. For the pooled
datafromrefs. 21,27, approval was given by the Vanderbilt Institutional
Review Board (IRB) (numbers 060165 and 171657) and Western IRB
(number 20181836). All samples were collected from declined organ
donorswhowere also consented for research. For ref. 6, the study was
approved by the Comité de Protection des Personnes Sud Est IV
(approval number 17/081). Informed written consent was obtained
fromall participantsinvolved. ForJain_Misharin_2021(A.V.M.,M.]. and
N.S.M,, newly generated dataset), the protocol was approved by the
Northwestern University IRB (STU00214826). Written informed con-
sent was obtained from all study participants. For ref. 5, patient tissues
were obtained under a protocol approved by Stanford University’s
Human Subjects Research Compliance Office (IRB 15166). Informed
consent was obtained from each patient before surgery. For ref. 22,
healthy control lungs were obtained under a protocol approved by the
University of Pittsburgh Committee for Oversight of Research and
Clinical Training Involving Decedents (CORID protocol 718) and fol-
lowing rejection as candidate donors for transplant (IRB STUDY
19100326). For ref. 23, tissue samples were obtained from the Cam-
bridge Biorepository for Translational Medicine (CBTM) withapproval
from the National Research Ethics Services (NRES) Committee of East
of England—Cambridge South (15/EE/0152). Tissue samples were
obtained with informed consent from the donor families. For ref. 26,
the protocol was approved by the Northwestern University IRB
(STU00212120). Written informed consent was obtained from all indi-
viduals in the study. For the pooled data from ref. 4 and associated
unpublished data, the protocol was approved by the IRB (Algemeen
Beoordelings- en Registratieformulier number NL69765.042.19).
Patients gave informed consent. Forref. 25, the National Jewish Health
IRB approved the research under IRB protocols HS-3209 and HS-2240.
Informed consent was obtained from authorized family members of
all donors. For ref. 4, approval was given by the NRES Committee of
East of England—Cambridge South (Research Ethics Committee (REC)
reference: 15/EE/0152). Informed consent for use of the tissue was
obtained from the donors’ families. For Barbry_unpubl (P.B., L.-E.Z.,
M.J.A., A.C., C.B. et al., newly generated dataset), the protocol was
approved by the Centre Hospitalier Universitaire de Nice. Nasal and
tracheobronchial samples were collected from patients with IPF after
obtaining their informed consent. For ref. 26, approved was given by
the IRB of Northwestern University (STU00212120, STU00213177,
STU00212511 and STU00212579). For inclusion in this study, patients
or their designated medical power of attorney provided informed
consent. For Duong_lungMAP_unpubl (T.E.D.,K.Z.,X.S.,).S.H.and G.P.,
newly generated dataset), all postmortem human donor lung samples
were obtained from the Biorepository for Investigation of Neonatal
Diseases of the Lung (BRINDL), supported by the National Heart, Lung,
and Blood Institute (NHLBI) LungMAP Human Tissue Core housed at
the University of Rochester. Consent can be found on the repository’s
website (brindl.urmc.rochester.edu/). For ref. 54, the study was con-
ductedinaccordance withthe Declaration of Helsinkiand Department
of Healthand Human Services Belmont Report. The use of biomaterial
and data for this study was approved by the local ethics committee of
the Medical Faculty Heidelberg (S-270/2001 and S-538/2012). All indi-
viduals gave informed consent for inclusion before they participated
inthestudy. Forref. 55, human lungtissues were procured under each
institution’sapproved IRB protocol (numbers 00035396 (Cedars-Sinai
Medical Center), 03-1396 (University of North Carolina at Chapel Hill),
1172286 (Cystic Fibrosis Foundation and WIRB-Copernicus Group
Western IRB) and 16-000742 (University of California, Los Angeles)).
Informed consent was obtained from lung donors or their authorized
representatives. For ref. 57, the study was approved and monitored by
the National Jewish Health IRB (FWA00000778). Written informed
consent was obtained from all participants. For ref. 58, the study

protocol was approved by the Partners Healthcare IRB (protocol
2011P002419). For ref. 60, lung tissue was obtained under a protocol
approved by the University of Pittsburgh IRB (IRB STUDY 19100326)
during transplantation surgery. For ref. 59, the study was conducted
according to the principles expressed in the Declaration of Helsinki.
Ethical approval was obtained from Ethics Committee Research UZ/
KU Leuven (S63881). All participants provided written informed con-
sent for sample collection and subsequent analyses. For ref. 40,
approval was given by the NRES Committee of East of England—Cam-
bridge South (15/EE/0152). The CBTM operatesin accordance with UK
Human Tissue Authority guidelines. Samples were obtained from
deceased transplant organ donors by the CBTM with informed consent
fromthe donor families. For ref. 70, ethical approval was given through
the Living Airway Biobank, administered through the University Col-
lege London Great Ormond Street Institute of Child Health (REC refer-
ence: 19/NW/0171; Integrated Research Application System (IRAS)
project ID: 261511; North West Liverpool East REC), REC reference 18/
SC/0514 (IRAS project ID: 245471; South Central Hampshire B REC;
administered through the University College London Hospitals NHS
Foundation Trust), REC reference 18/EE/0150 (IRAS project1D:236570;
East of England—Cambridge Central REC; administered through Great
Ormond Street Hospital NHS Foundation Trust) and REC reference 08/
H0308/267 (administered through the Cambridge University Hospitals
NHS Foundation Trust), as well as by the local R&D departments at all
hospitals. All of the study participants or their surrogates provided
informed consent. For ref. 61, all protocols were reviewed and approved
by the IRB at the Memorial Sloan Kettering Cancer Center (IRB protocol
14-091). Noninvolved lung, tumor tissues and metastatic lesions were
obtained from patients with lung adenocarcinoma undergoing resec-
tion surgery at the Memorial Sloan Kettering Cancer Center after
obtaininginformed consent. For ref. 69, samples underwent IRB review
and approval at the institutions where they were originally collected.
Specifically, the Dana-Farber Cancer Institute approved protocol
13-416, the partners Massachusetts General Hospital and Brighamand
Women'’s Hospital approved protocols 2020P000804,2020P000849
and 2015P002215, the Beth Israel Deaconess Medical Center approved
protocols2020P000406 and 2020P000418 and New York Presbyterian
Hospital/Columbia University Irving Medical Center approved proto-
cols IRB-AAAT0785, IRB-AAAB2667 and IRB-AAAS7370. Secondary
analysis of samples at the Broad Institute was covered under Massa-
chusetts Institute of Technology IRB protocols 1603505962 and
1612793224, or the Not Human Subjects Research protocol ORSP-3635.
Donor identities were encoded at the hospitals before shipping to or
sharing with the Broad Institute for sample processing or data analysis,
respectively. For ref. 62, the study was approved by the local ethics
committee of the Ludwig Maximilian University of Munich (EK 333-10
and 382-10). Writteninformed consent was obtained from all patients.
ForSchiller 2021(H.B.S.,).G.-S.,C.H.M.,B.H.K., M.A. et al., newly gener-
ated dataset), the study was approved by the local ethics committee
of the Ludwig Maximilian University of Munich (EK333-10 and 382-10).
Writteninformed consent was obtained from all patients. For Schultze_
unpubl (J.L.S.,C.S.F., T.S.K.and E.C., newly generated dataset), human
lung tissue was available for research purposes following ethical
approval from Hannover Medical School (ethical vote of the German
Centre for Lung Research (DZL) number 7414,2017). All patients in this
study provided written informed consent for sample collection and
data analysis. For ref. 63, samples were obtained under the Cells and
Mediators IRB protocol (2003P002088). Allindividuals provided writ-
ten informed consent. For ref. 64, the studies described were con-
ducted accordingto the principles of the Declaration of Helsinki. The
study was approved by the University of California, San Francisco IRB.
Written informed consent was obtained from all individuals.
For ref. 65, peripheral blood was obtained from healthy consenting
adultvolunteers by venipuncture through a protocol approved by the
Columbia University IRB. All relevant ethical regulations for work with
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human participants were complied with. For ref. 66, donor lung samples
were provided through the federal United Network for Organ Sharing
viathe National Disease Research Interchange and International Insti-
tute for the Advancement of Medicine and entered into the NHLBI
LungMAP BRINDL at the University of Rochester Medical Center, over-
seen by the IRBasRSRB00047606. For for the pooled data fromref. 33
and associated unpublished data, human lung tissue collection was
approved by the Duke University IRB (Pro00082379) and University
of North Carolina Biomedical IRB (03-1396) under exempt protocols.
Consent was obtained to use human tissues for research purposes. For
ref. 41, the study was approved by the local ethics committee at Uni-
versity Hospitals Leuven (B322201422081) and all of the relevant ethical
regulations were complied with. Only patients with untreated, primary,
nonmetastatic lung tumors who underwent lung lobe resection with
curative intent and who provided informed consent were included in
this study. Forref. 67, all of the research involving human participants
was approved by the Northwestern University IRB. Samples from
patients with COVID-19, viral pneumonia and other pneumonia, as well
as controls without pneumonia, were collected from participants
enrolled in the Successful Clinical Response in Pneumonia Therapy
study STU00204868. All study participants or their surrogates
provided informed consent. For ref. 56, the IRB of the University of
Cincinnati College of Medicine approved all human-relevant studies.
For ref. 68, the study was conducted according to the principles
expressed in the Declaration of Helsinki. Ethical approval was obtained
from the REC of Shenzhen Third People’s Hospital (2020-112). All par-
ticipants provided written informed consent for sample collection and
subsequentanalyses. Further study details can be found in Supplemen-
tary Table 1.

Single-cell sequencing and preprocessing of data
Several previously unpublished datasets were used for the HLCA and
generated as follows.

Barbry_unpubl. Participants recruited by the Pneumology Unit of Nice
University Hospital were sampled between 1and 15 December 2020.
The full procedure, including patient inclusion criteria, is detailed at
https://www.clinicaltrials.gov/ct2/show/NCT04529993. Nasal and
tracheobronchial samples were collected from patients with IPF after
obtaining their informed consent, following a protocol approved by
the Centre Hospitalier Universitaire de Nice. The data were derived
from the clinical trial registered at ClinicalTrials.gov under reference
NCT04529993. This study was described as an interventional study
instead of an observational study because the participants were vol-
unteers and all assigned to a specific bronchoscopy not related to
routine medical care. Participants were prospectively assigned to a
procedure (bronchoscopy) according to a specific protocol to assess
our ability to sample the airway. No other procedures were included
in this study. Metadata of the donors’ sex was based on self-report.
The libraries were prepared as described in Deprez et al.® and yielded
an average of 61,000 + 11,000 cells per sample, with a viability above
95%. The single-cell suspension was used to generate single-cell librar-
ies following the v3.1 protocol for 3’ chemistry from 10x Genomics
(CG000204). Sequencing was performed on a NextSeq 500/550
sequencer (Illumina). Raw sequencing data were processed using the
Cell Ranger 6.0.0 pipeline, with the reference genome GRCh38 and
annotation using Ensembl98. For each sample, cells with fewer than
200 transcripts or more than 40,000 transcripts were filtered out, as
well as genes expressed in fewer than three cells. Normalization and
log transformation were done using the standard Scanpy® pipeline.
Principal component analysis (PCA) was performed on 1,000 highly
variable genes (HVGs) to compute 50 principal components, and the
Louvain algorithm was used for clustering. These clusters were then
annotated by hand for each sample. Raw counts and the thus obtained
cell annotations were used as input for the HLCA.

Schiller_2021. Tumor-free, uninvolved lung samples (peritumor tis-
sues) were obtained during tumor resections at the lung specialist
clinic Asklepios Fachkliniken Miinchen-Gauting and accessed through
thebioArchive of the Comprehensive Pneumology Center in Munich.
The study was approved by the local ethics committee of the Ludwig
Maximilian University of Munich (EK 333-10 and 382-10), and written
informed consent was obtained fromall patients. All fresh tissues from
patients in a given time frame without any specific selection criteria
wereincluded, and only patients with obvious chroniclung disease as
comorbidity based on their lung function parameters before tumor
resection were excluded. Metadata of the donors’ sex were based on
self-report.

Single-cell suspensions for scRNA-seq were generated as previ-
ously described®. In brief, lung tissue samples were cut into smaller
pieces, washed with phosphate-buffered saline (PBS) and enzymati-
cally digested using an enzyme mix composed of dispase, collagenase,
elastase and DNAse for 45 min at 37 °C while shaking. After inactivating
the enzymaticactivity with10% fetal calf serum (FCS)/PBS, dissociated
cells were passed througha 70 pm cell strainer, pelleted by centrifuga-
tion (300g; 5 min) and subjected to red blood cell lysis. After stopping
the lysis with 10% FCS/PBS, the cell suspension was passed through a
30 um strainer and pelleted. Cells were resuspended in10% FCS/PBS,
assessed for viability and counted using a Neubauer hematocytom-
eter. The cell concentration was adjusted to 1,000 cells per pl and
~16,000 cells were loaded on a 10x Genomics Chip G with Chromium
Single Cell 3’ v3.1gel beads and reagents (3’ GEX v3.1; 10x Genomics).
Libraries were prepared according to the manufacturer’s protocol
(CG000204_RevD; 10x Genomics). After a quality check, scRNA-seq
libraries were pooled and sequenced onaNovaSeq 6000 instrument.

The generation of count matrices was performed using the Cell
Ranger computational pipeline (v3.1.0; STARv2.5.3a). The reads were
alignedtothe GRCh38 humanreference genome (GRCh38; Ensembl99).
Downstream analysis was performed using the Scanpy®® package
(version 1.8.0). We assessed the quality of our libraries and excluded
barcodes with fewer than 300 genes detected, while retaining those
with anumber of transcripts between 500 and 30,000. Furthermore,
cells with a high proportion (>15%) of transcript counts derived from
mitochondrial-encoded genes were removed. Genes were considered if
they were expressed in atleast five cells. Raw counts of cells that passed
filtering were used as input for the HLCA.

Duong_lungMAP_unpubl. All postmortem humandonor lung samples
were obtained from BRINDL, supported by the NHLBI LungMAP Human
Tissue Core housed at the University of Rochester. Consent, tissue
acquisition and storage protocols can be found on the repository’s
website (brindl.urmc.rochester.edu/). Data were collected as part of
the Human Biomolecular Atlas Program (HuBMAP). Metadata of the
donor’s sex were based onself-report. Forisolation of single nuclei, ten
cryosections (40 pm thickness) from O.C.T.-embedded tissue blocks
stored at —80 °C were shipped on dry ice and processed according to
apublished protocol®. Single-nucleus RNA-seq was completed using
10x Chromium Single Cell 3’ Reagent Kits v3, according to a published
protocol®**, Raw sequencing data were processed using the 10x Cell
Ranger v3 pipeline and the GRCh38 reference genome. For down-
stream analysis, mitochondrial transcripts and doublets identified by
DoubletDetection® version 2.4.0 were removed. Samples were then
combined and cell barcodes were filtered based on the genes detected
(>200and <7,500) and the gene unique molecularidentifier (UMI) ratio
(gene.vs.molecule.cell.filter function) using Pagoda2 (github.com/
hms-dbmi/pagoda2). Also using Pagoda2 for clustering, counts were
normalized to total counts per nucleus. For batch correction, gene
expression was scaled to dataset average expression. After variance
normalization, all significantly variant genes (n = 4,519) were used for
PCA. Clustering was done at different k values (50,100 or 200) using the
top 50 principal components and the infomap community detection
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algorithm. Then, principal component and cluster annotations were
imported into Seurat®® version 4.0.0. Differentially expressed genes
for all clusters were generated for each k resolution using Seurat
FindAllMarkers (only.pos = TRUE, max.cells.per.ident =1000, logfc.
threshold = 0.25, min.pct = 0.25). Clusters were manually annotated
based on distinct differentially expressed marker genes. Raw counts
and the thus obtained cell annotations were used as input for the HLCA.

Pooled data from ref. 4 and unpublished data. These data were a
combination of published* and unpublished data. In both cases, healthy
volunteers were recruited for bronchoscopy at the University Medical
Center in Groningen after giving informed consent and according
to the protocol approved by the IRB (ABR number NL69765.042.19).
Inclusion criteria and tissue processing were performed as previously
described*.Inshort, all donors were 20-65 years old and had a history
of smoking <10 pack-years. Metadata of the donors’ sex were based
on self-report. To exclude respiratory disease, the following criteria
were used: absent history of asthma or COPD; no use of asthma- or
COPD-related medication; a negative provocation test (concentration
of methacholine that provokes a20% decrease in the forced expiratory
volume in 1s (FEV,) >8 mg ml™); no airflow obstruction (FEV,/forced
vital capacity > 70%); and an absence of lung function impairment
(thatis, FEV, > 80% predicted). All donors underwent abronchoscopy
under sedation using a standardized protocol®. Nasal brushes were
obtained from the lateral inferior turbinate in a subset of the volun-
teers immediately before bronchoscopy using a Cyto-Pak CytoSoft
nasal brush (Medical Packaging Corporation). Six macroscopically
adequate endobronchial biopsies were collected for this study, located
between the third and sixth generation of the right lower and mid-
dle lobe. Bronchial brushes were obtained from a different airway at
similar anatomical locations using a Cellebrity bronchial brush (Boston
Scientific). Extracted biopsies and bronchial and nasal brushes were
processed directly, with a maximum of 1 h delay. Bronchial biopsies
were chopped biopsies using a single-edge razor blade. A single-cell
solution was obtained by tissue digestion using 1 mg ml™ collagenase
D and 0.1 mg ml™ DNase I (Roche) in Hanks’ Balanced Salt Solution
(Lonza) at37 °Cfor1hwith gentle agitation for both nasal brushes and
bronchial biopsies. Single-cell suspensions were filtered and forced
using a 70 pm nylon cell strainer (Falcon), followed by centrifugation
at550gand 4 °Cfor 5 min and one wash with PBS containing 1% bovine
serum albumin (BSA; Sigma-Aldrich). The single-cell suspensions used
for 10x Genomics scRNA-seq analysis were cleared of red blood cells
using a red blood cell lysis buffer (eBioscience) followed by live cell
counting and loading of 10,000 cells per lane. We used 10x Genom-
ics Chromium Single Cell 3’ Reagent Kits v2 and v3 according to the
manufacturers’ instructions. Raw sequencing data were processed
using the Cell Ranger 3.1.0-based HLCA pipeline, with the reference
genome GRCh38 and annotation using Ensembl98. Ambient RNA cor-
rection was performed with FastCAR®, using an empty library cutoff
of 100 UMI and a maximum allowed contamination chance of 0.05,
ignoring the mitochondrial RNA. Data were merged and processed
using Seurat®, filtering to libraries with >500 UMIs and >200 genes
and to the libraries containing the lowest 95% of mitochondrial RNA
per sample and <25% mitochondrial RNA, normalized using sctrans-
form®® while regressing out variation correlating with the percentage
of mitochondrial RNA per cell. In general, 15 principal components
were used for the clustering, at aresolution of 0.5 to facilitate manual
annotation of the dataset. Clustersin the final object that were driven
by single donors were removed. Raw counts and cell annotations were
used as input for the HLCA.

Jain_Misharin_2021. Nasal epithelial samples were collected from
healthy volunteers who provided informed consent at Northwestern
Medicinein Chicago. The protocol was approved by the Northwestern
University IRB (STU00214826). Healthy volunteers were recruited to

match a cohort of patients with cystic fibrosis for the ongoing study
at Northwestern University (with M.]. as the principal investigator).
In both studies, A.V.M. did not influence participant recruitment and
did notintroduce biasesin sample selection. Metadata of the donors’
sex were based on self-report. Briefly, donors were seated and asked
to extend their neck. A nasal curette (Rhino-Pro; VWR) was inserted
into either nareand gently slidin the direction of posterior to anterior
~1cmalongthe lateral inferior turbinate. Five curettes were obtained
per participant. The curette tip was then cut and placed in 2 ml hypo-
thermosol and stored at4 C until processing. A single-cell suspension
was generated using the cold-active dispase protocol reported by
Deprez et al.® and Zaragosi and Barbry®® with slight modification.
Specifically, ethylenediaminetetraacetic acid (EDTA) was omitted and
cells were dispersed by pipetting 20 times every 5 min usingal mltip
instead of tritration using a21/23 G needle. The final concentration of
protease from Bacillus licheniformis was 10 mg ml™. The total diges-
tion time was 30 min. Following the wash in 4 m1 0.5% BSA in PBS and
centrifugation at 400g for 10 min, cells were resuspended in 0.5%
BSA in PBS and counted using a Nexcelom K2 Cellometer with acrid-
ine orange/propidium iodide reagent. This protocol typically yields
~300-500,000 cells with a viability of >95%. The resulting single-cell
suspension was then used to generate single-cell libraries following the
protocol for 5’ V1 (CGO00086 Rev M; 10x Genomics) or V2 chemistry
(CG000331Rev A;10x Genomics). Excess cells from two of the samples
were pooled together to generate one additional single-cell library.
After a quality check, the libraries were pooled and sequenced on a
NovaSeq 6000 instrument. Raw sequencing data were processed using
the CellRanger 3.1.0 pipeline, with the reference genome GRCh38 and
annotation using Ensembl98. To assign sample information to cellsin
thesingle-cell library prepared from two samples, we ran souporcell”
version 2.0 for that library and two libraries that were prepared from
these samples separately. We used common genetic variants prepared
by the souporcellauthors to separate cells into two groups by genotype
foreachlibrary, and Pearson correlation between the identified geno-
typesacross libraries to establish correspondence between genotype
and sample. Cell annotations were assigned to cell clusters based on
expert interpretation of marker genes for each cluster. Cell clusters
were derived with the Seurat® version 3.2 workflow in which samples
were normalized with sctransform®, 3,000 HVGs were selected and
integrated and clusters were derived from 30 principal components
using the Louvain algorithm with default parameters. Clusters with a
low number of UMIs and high expression of ribosomal or mitochondrial
genes were excluded as low quality. Raw counts and the thus obtained
cell annotations were used as input for the HLCA.

Schultze_unpubl. Human lung tissue wabus available for research
purposes following ethical approval from Hannover Medical School
(Nr. 7414, 2017). All patients in this study provided written informed
consent for sample collection and data analyses. At Hannover Medical
School, patients with lung cancer wererecruited in the course of their
operation (that s, surgical tumor resection was performed according
totheethical vote of the German Centre for Lung Research, ethical vote
7414 and data safety guidelines). There was no bias in patient recruit-
mentsince the samples were collected as fresh native tissue following
surgical tumor resection and according to the availability of surplus
adjacent nonmalignant lungtissue, which was resected in parallel to the
tumor tissue. Metadata of the donors’ sex were based on self-report or
reported by medical professionals during consenting. Fresh adjacent
normal tumor-free lung tissues from patients with non-small cell lung
cancer tumors were obtained by the Lung Research group (D. Jonigk,
Pathology, Hannover Medical School) and processed for single-cell iso-
lationimmediately. Lung tissue was chopped with ascalpel and scissors
and digested using BD Tumor Dissociation Reagent (BD Biosciences)
for30 minina37 °Cwater bath. The digestion was stopped with 1% FCS
and 2 mM EDTA in PBS without Ca**/Mg?" and cells were filtered over
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a70 um cell strainer (BD Falcon). Erythrocytes were removed using a
human MACSxpress Erythrocyte Depletion Kit (Miltenyi Biotec) and
cells werefiltered using a40 pm cell strainer (BD Falcon). The viability
ofthe cells was assessed microscopically and by flow cytometry using
a LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (Invitrogen) and was
~84%. The single-cell suspension was processed for scRNA-seq and
library preparation with the Seq-Well protocol®. Library pools with
fewer than 100 cells were discarded and merged into one object. The
Seurat v3.2 pipeline was used to further analyze the data. Genes in
fewer than five cells in the dataset, as well as the mitochondrial genes
MT-RNR1and MT-RNR2, were removed. Cells with fewer than 200 genes
were discarded, whereas cells with <5% mitochondrial genes or <30%
intronic reads were kept for further analysis. The data were log nor-
malized and 2,000 variable genes were calculated for each sample for
integration with Seurat’s Canonical Correlation Analysis algorithm®.
The datawere scaled, 50 principle components were selected and the
datawere clustered with 0.6 resolution. Cluster annotationrevealed a
low-quality cluster that was subsequently removed and the process (the
calculation of variable genes, calculation of 30 principal components,
clustering with 0.4 resolution) was repeated. Raw counts of the cells
that passed all filtering were provided as input for the HLCA.

HLCA core data collection

To accommodate data protection legislation, scRNA-seq datasets of
healthy lung tissue were shared by dataset generators as raw count
matrices, thereby obviating the need to share genetic information.
Count matrices were generated using varying software (Supplementary
Table 1). Previously published scRNA-seq data were partly realigned
by the dataset generators: the raw sequencing data of four previously
published studies were realigned to GRCh38 using Ensembl84 for the
HLCA>*»*°, For two of these studies®, the Cell Ranger 3.1.0-based HLCA
pipeline was used for realignment. For the remaining two**°, datawere
processed as previously described®*°, but with the reference genome
and genome annotation adapted to the HLCA (GRCh38; Ensembl84).
All other datasets in the HLCA core were originally already aligned to
GRCh38 (Ensembl84) except data from ref. 22 (GRCh38; Ensembl93)
(Supplementary Table 1). For ref. 6, the count matrices provided had
ambient RNA removed, as described previously.

Metadata collection (HLCA core)

For all of the datasets from the HLCA core, a preformatted sample
metadata form was filled out by the dataset providers for every sam-
ple, containing metadata such as the ID of the donor from whom the
sample came, the donor’s self-reported ethnicity, the type of sample,
the sequencing platform and so on (Supplementary Table 2). Ethnic-
ity metadata were based on self-reported ethnicity for live donors or
retrieved from medical records or assigned by the organ procurement
teamin the case of organdonors, as collected in the individual studies.
For donor ethnicity, the following categories of self-reported ethnic-
ity were used during metadata collection: Black, white, Latino, Asian,
Pacificlslander and mixed. To conform to pre-existing 1,000 Genomes
ancestry superpopulations®, these self-reported ethnicity categories
were then harmonized with the superpopulation categories as fol-
lows: Black was categorized as African, white as European and Latino
as admixed American, while keeping the category Asian (merging
the superpopulations East Asians and South Asians as this granular-
ity was missing from the collected self-reported ethnicity data) and
keeping Pacific Islander, as this category did not correspond to any
of the superpopulations but does constitute a separate population
in HANCESTRO”. We refer to the resulting categories as harmonized
ethnicity. Both self-reported ethnicity (as collected) and harmonized
ethnicity per donor are detailed in Supplementary Table 2. Cell type
annotations from dataset providers were included in all datasets. For
tissue dissociation protocols, protocols were grouped based on: (1)
enzyme(s) used for tissue dissociation; and (2) the digestion time in

cases where large differences were observed between protocols (that
is, cold protease protocols were split into two groups: 30-60 min
versus overnight).

General data preprocessing for the HLCA core

Patients with lung conditions affecting larger parts of the lung, such
as asthma or pulmonary fibrosis, were excluded from the HLCA core
and later added to the extended atlas. For the HLCA core, all matrices
weregene filtered based on Cell Ranger Ensembl84 gene-type filtering®
(resultingin 33,694 gene IDs). Cells with fewer than200 genes detected
were removed (removing 2,335 cells and 21 extra erythrocytes with
close to 200 genes expressed as these hampered SCRAN normaliza-
tion; see below), along with genes expressed in fewer than ten cells
(removing 5,167 out of 33,694 genes).

Total count normalization with SCRAN

Tonormalize for differences in total UMI counts per cell, we performed
SCRAN normalization”. Since SCRAN assumes that at least half of the
genes in the data being normalized are not differentially expressed
between subgroups of cells, we performed SCRAN normalization
within clusters. To this end, we first performed total count normaliza-
tion, by dividing each count by its cell’s total count and multiplying by
10,000. We then performed alog transformation using natural log and
pseudocount 1. APCA was subsequently performed. Using the first 50
principal components, aneighborhood graphwas calculated with the
number of neighbors set to k =15. Data were subsequently clustered
with Louvain clustering ataresolution of r= 0.5. SCRAN normalization
was then performed on the raw counts, using the Louvain clusters as
input clusters and with the minimum mean (library size adjusted) aver-
age count of genes to be used for normalization set to 0.1. The resulting
size factors were used for normalization. For the final HLCA (and not the
benchmarking subset), cells with abnormally low size factors (<0.01)
or abnormally high total counts after normalization (>10 x 10°) were
removed from the data (267 cellsin total).

Cell typereference creation and metadata harmonization

To harmonize cell type labels from different datasets in the HLCA core,
acommonreference was created to which original cell type labels were
mapped (Supplementary Table 4). Toaccommodate labels at different
levels of detail, the cell type reference was made hierarchical, with level
1 containing the coarsest possible labels (immune, epithelial and so
on) and level 5 containing the finest possible labels (for example, naive
CDA4 T cells). Levels were created in a data-driven fashion, recursively
breaking up coarser-level labelsinto finer ones where finer labels were
available.

To map anatomical location to a 1D CCF score that could be used
formodeling, adistinction was made between upper and lower airways.
First,ananatomical coordinate score was applied to the upper airways,
starting at O and increasing linearly (with a value of 0.5) between each
of the following anatomical locations: inferior turbinate, nasophar-
ynx, oropharnyx, vesibula and larynx. The trachea received the next
anatomical coordinate score using the same linearincrement asin the
upper airways (ascore of 2.5). Inthe lower airways, the coordinate score
within the bronchial tree was based on the generation airway, with the
tracheabeing the first generation and the total number of generations
assumed tobe 23 (ref. 98). The alveolar sac was assigned the coordinate
scoreof the 23rd generation airway. The coordinate score of each gen-
eration airway was calculated by taking the log, value of the generation
and adding it to the score of the trachea. Using this methodology, the
alveolusreceived an anatomical coordinate score of 7.02. To calculate
the final CCF coordinate, the coordinate scores (ranging from 0t0 7.02)
were scaled to a value between O (inferior turbinate) and 1 (alveolus).
Samples were then mapped to this coordinate system using the best
approximation of the sampling location for each of the samples of the
core HLCA (Supplementary Table 3).
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Dataintegration benchmarking

For computational efficiency, benchmarking was performed on a
subset of the total atlas, including data from ten studies split into 13
datasets (ref. 22 was splitinto 10xvland 10xv2 data; ref. 25 was split into
10xv2 and 10xv3 data; and the pooled data fromref. 21 and associated
unpublished datawere splitinto two based on the processingsite). The
data came from 72 donors, 124 samples and 372,111 cells. Preprocess-
ing of the benchmarking dataincluded the filtering of cells (minimum
number of total UMI counts: 500) and genes (minimum number of cells
expressing the gene:5).

Forintegration benchmarking, the scIB benchmarking framework
was used”’ with defaultintegration parameter settings unless otherwise
specified. All benchmarked methods except scGen (that is, BBKNN,
ComBat, Conos, fas’” tMNN, Harmony, Scanorama, scANVI, scVl and
Seurat RPCA) were run at least twice: onthe 2,000 most HVGs; and on
the 6,000 most HVGs. Of these methods, all that did not require raw
counts asinput were run twice on each gene set: once with gene counts
scaled to have a mean of O and standard deviation of 1; and once with
unscaled gene counts. scVl and scANVI, which require raw counts as
input, were not run on scaled gene counts. scGen was only tested on
2,000 unscaled HVGs. For HVG selection, first, HVGs were calculated
per dataset using Cell Ranger-based HVG selection'*® (default param-
eter settings: min_disp=0.5, min_mean=0.0125, max_mean=3, span=0.3,
n_bins=20). Then, genes that were highly variable in all datasets were
considered overall highly variable, followed by genes highly variable
inall datasets but one, inall datasets but two and so on until a predeter-
mined number of genes were selected (2,000 or 6,000 genes).

For scANVI and scVI, genes were subset to the HVG set and the
resulting raw count matrix was used as input. For all other methods,
SCRAN-normalized (as described above) data were used. Genes
were then subset to the precalculated HVG sets. For integration of
gene-scaled data, allgenes were scaled to have mean of 0 and standard
deviation of 1.

Two integration methods allowed for input of cell type labels to
guide theintegration: scGen and scANVI. Aslabels, level 3 harmonized
cell type labels were used (Supplementary Table 4), except for blood
vessel endothelial, fibroblast lineage, mesothelial and smooth muscle
cells, for which we used level 2 labels. Since scGen does not accept
unlabeled cells, cells that did not have annotations available at these
levels (thatis, cells annotated as cycling, epithelial, stromal or lymphoid
cells with no further annotations; 4,499 cells in total) were left out of
the benchmarking data.

The dataset rather than the donor of the sample was used as the
batch parameter. The maximum memory usage was set to 376 Gb and
allmethods requiring more memory were excluded from the analysis.
The quality of each of theintegrations was scored using 12 metrics, with
four metrics measuring the batch correction quality and eight metrics
quantifying the conservation of biological signal after integration (Sup-
plementary Fig. 1; metrics previously described®). Overall scores were
computed by taking a 0.4:0.6 weighted mean of batch effect removal
to biological variation conservation (bioconservation), respectively.
Methods were ranked based on overall score (Supplementary Fig. 1).

Splitting of studies into datasets

Forintegration of the datainto the HLCA core, we first determined for
which cases studies had to be splitinto separate datasets (which were
treated as batches during integration). Reasons for possible splitting
were: (1) different 10x versions used within astudy (for example, 10xv2
versus 10xv3); or (2) the processing of samples at different institutes
within a study. To determine whether these covariates caused batch
effects withinastudy, we performed principal component regression'’.
To this end, we preprocessed single studies separately (total count
normalization to median total counts across cells and subsequent PCA
with 50 principal components). For each study, we then calculated the
fraction ofthe variancein thefirst 50 principal components that could

beexplained (PC,,,) by the covariate of interest (that s, 10x version or
processinginstitute):

50
izt
50
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var (cov)
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o var (PC,)

where var(PCjcov) is the variance in scores for the ith principal com-
ponent across cells that can be explained by the covariate under con-
sideration, based on alinear regression.

Then, 10x version or processing institute assignments were ran-
domly shuffled between samples and PC,,, was calculated for the
randomized covariate. This was repeated over ten random shufflings
and themean and standard deviation of PC,,,, were then calculated for
the covariate. If the nonrandomized PC,,,, was more than 1.5 standard
deviations above the randomized PC,,,;, we considered the covariatea
source of batch effect and split the study into separate datasets. Thus,
bothJain_Misharin_2021and ref. 22 were splitinto 10xvland 10xv2; ref.
25was splitinto10xv2 and 10xv3; andref. 21 andits pooled unpublished
datawere not split based on 10x version nor on processing location.

Integration of HLCA core datasets with scCANVI

For integration of the datasets into the HLCA core, coarse cell type
labels were used as described for integration benchmarking (AT1,
AT2, arterial endothelial cell, B cell lineage, basal, bronchial vessel 1,
bronchial vessel 2, capillary, multiciliated, dendritic, fibroblast lineage,
KRT5KRT17" epithelial, lymphatic endothelial cell, macrophages, mast
cells, megakaryocytes, mesothelium, monocytes, neutrophils, natural
killer/naturalkiller T cells, proliferating cells, rare, secretory, smooth
muscle, squamous, submucosal secretory, T cell lineage, venous and
unlabeled), except cells with lacking annotations were set to unlabeled
instead of being removed. scANVI was run on the raw counts of the
2,000 most HVGs (calculated as described above), using datasets as
thebatch variable to enable the conservation of interindividual varia-
tion. The following parameter settings were used: number of layers: 2;
number of latent dimensions: 30; encode covariates: True; deeply inject
covariates: False; use layer norm: both; use batch norm: none; gene
likelihood: nb; nepochs unsupervised: 500; n epochs semi-supervised:
200; and frequency: 1. For the unsupervised training, the following
early-stopping parameters were used: early stopping metric: elbo;
save best state metric: elbo; patience: 10; threshold: 0; reduce Ir on
plateau: True;Ir patience: 8; and Ir_factor: 0.1. For the semisupervised
training, the following early-stopping parameter settings were used:
early stopping metric: accuracy; save best state metric: accuracy; on:
full dataset; patience:10; threshold: 0.001; reduce Ir on plateau: True;
Ir_patience: 8; and Ir_factor: 0.1. The integrated latent embedding
generated by scANVI was used for downstream analysis (clustering
and visualization). For gene-level analyses (differential expression and
covariate effect modeling), uncorrected counts were used.

UMAP embedding and clustering

To cluster the cells in the HLCA core, a nearest neighbor graph was
calculated based on the 30 latent dimensions that were obtained from
the scANVI output, with the number of neighbors set to k=30. This
choice of k, while improving clustering robustness, could impair the
detection of very rare cell types. Coarse Leiden clustering was done on
the graph with aresolution of r= 0.01. For each of the resulting level 1
clusters, anew neighbor graph was calculated using scANVIs 30 latent
dimensions, with the number of neighbors again set to k = 30. Based
on the new neighbor graph, each cluster was clustered into smaller
level 2 clusters with Leiden clustering at a resolution of r=0.2. The
same was done for levels 3 and 4 and (where needed) 5, with k set to
15,10 and 10, respectively, and the resolution set to 0.2. Clusters were
named based on their parent clusters and sister clusters (for example,
cluster 1.2 is the third biggest subcluster (starting at 0) of cluster 1).
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Forvisualization, a2D UMAP'” of the atlas was generated based on the
30 nearest neighbors graph.

Calculating cluster entropy of cell type labels and donors

To quantify cluster cell type label disagreement for a specific level of
annotation, thelabel Shannon entropy was calculated on the cell type
label distribution per cluster as

k

=Y pe)loglp ],

i=1

where x;...x, are the set of labels at that annotation level and p(x,) is
the fraction of cellsin the cluster that was labeled as x;. Cells without a
label at the level under consideration were notincluded in the entropy
calculation. If <20% of cells were labeled at the level under considera-
tion, the entropy was set to not available for the figures. The entropy
of donors per cluster (that is, diversity of donors in a cluster) was cal-
culated in the same way.

Thresholds for high label/donor entropy and doublet clusters
Tosetathreshold for high label entropy, we calculated the label entropy
of a hypothetical cluster with 75% of cells given one label and 25% of
cells given another label, as a cluster with <75% of cells with the same
label suggests substantial disagreementin terms of cell type labeling.
Clusterswithalabel entropy above thatlevel (0.56) were considered to
have high label entropy. Six small clusters with high label entropy even
at the coarsest level of annotation highlighted doublet populations
(identified via simultaneous expression of lineage-specific marker
genes; for example, expression of both epithelial (AT2) and stromal
(smooth muscle) marker genes) not labeled as such in the original
datasets. These clusters were removed from the HLCA core, bringing
the total number of clusters to 94. To set a threshold for low donor
entropy, we calculated the label entropy for a hypothetical cluster with
95% of cells from one donor and the remaining 5% of cells distributed
over all other donors, as clusters with >95% of the cells from the same
cluster could be considered single-donor clusters, possibly caused by
remaining batch effects or by donor-specific biology that is difficult to
interpret. Clusters with a donor entropy below that level (0.43) were
considered clusters with low donor entropy.

Rare cell type analysis

To determine how well rare cell types (ionocytes, neuroendocrine cells
and tuft cells) were clustered together and separate from other cell
types after integration, we calculated recall (the percentage of all cells
annotated asaspecificrare cell type that were grouped into the cluster)
and precision (the percentage of cells from the cluster that were anno-
tated asaspecificrare celltype) for alllevel 3 clusters. Nested clustering
onHarmony?*'°and Seurat’s RPCA*® output was done based on PCA of
the corrected gene counts, recalculating the principal components for
every parent cluster when performing clustering into smaller children
clusters, with clustering performed as described above under ‘UMAP
embedding and clustering’. The level 3 clusters with the highest sensi-
tivity for each cell type areincluded in Supplementary Fig. 3b.

Manual cell type annotation

Re-annotation of cells in the HLCA core was done by six investigators
with expertise in lung biology (E.M., M.C.N.,AV.M,, L.-E.Z.,N.E.B. and
J.A.K.) based on original annotations and differentially expressed genes
of the HLCA core clusters. Annotation was done per cluster, using finer
clusters where these represented specific known cell types or states
rather than donor-specific variation. Annotations of cell identities
were hierarchical (as was the harmonized cell type reference) and each
cluster was annotated at the finest known level, whereafter coarser
levels could automatically be inferred (for example, a cell annotated
asaCD8' T cell was then automatically annotated as of T cell lineage

atlevel 3, lymphoid cell lineage at level 2 and immune cell lineage at
level 1). The number of cells per cell type is shown for all levels in Sup-
plementary Table 5.

Mislabeling of original cells was identified by comparing final
annotations with original harmonized labels and checking whether
these were contradictory (and not only done at different levels of
detail). Out of 61 final cell types, 18 included mostly mislabeled cells,
12 of which were previously known cell types. Despite consisting of
mostly mislabeled cells from the original datasets, individual experts
agreed on the annotation of these cell types: for all previously known
cell types with a high proportion of mislabeled cells, the majority of
experts agreed on the final annotation for the atlas, or only differed in
the granularity of annotation.

Marker gene selection

Marker genes were calculated based on per-sample, per-cell-type
pseudo-bulks, calculating the mean (normalized and log-transformed)
expression per pseudo-bulk for every gene. Pseudo-bulks were only
calculated for asampleifit had at least ten cells of the cell type under
consideration. An exception was made for cell types with fewer than
100 cells in total, for which the minimum number of cells per sample
was set to 3. Pseudo-bulks rather than cell-level counts were used to
ensure equal weighing of every sample in the differential expression
test, thus statistically testing cell type-specific changes in expression
thatwere significant across samples rather than cells. As pseudo-bulks
represent the mean of arepeated draw from asingle distribution, based
on the central limit theorem, we expect pseudo-bulk gene counts to
be normally distributed, and a t-test was therefore used to test differ-
ential gene expression, comparing a single cell type with all other cell
typesinthe atlas (marker iteration1). To further filter out differentially
expressed genes that were not consistently expressed across samples,
we applied a filtering step to remove genes expressed in <80% of the
pseudo-bulks, or genes expressed in <50% of cells per pseudo-bulk
(with thefiltering based on the mean across pseudo-bulks). Similarly,
to ensure specificity of gene expression, additional filtering was done
to remove genes expressed in >20% of other pseudo-bulks. For many
cell types, marker genes unique to a single cell type across the entire
atlas could notbe found. To nonetheless collect arobust and unique set
of marker genes for every cell type, ahierarchical approach was taken,
subsetting the atlas to four compartments (epithelial, endothelial,
immune and stromal, for each of which a marker set was calculated)
before calculating cell type-specific marker genes and filtering on
uniqueness only within the compartment (marker iteration 2). When
necessary, a second subsetting step was done, now subsetting to the
next coarsest cell type set within the compartment (for example, lym-
phatic endothelial cells) and repeating the same procedure (marker
iteration 3). Finally, filtering criteria were loosened for the remain-
ing cell types for which no unique markers could be found in any of
the iterations (marker iterations 4 and 5). Exact filtering parameters
per iteration can be found in Supplementary Table 16. For lymphatic
endothelial cell subtypes, one subtype contained sufficient cells for
only asingle sample, hampering a pseudo-bulk-based approach. There-
fore, lymphatic endothelial cell subset markers (mature, differentiat-
ing and proliferating) were chosen based on known literature, after
checking consistency with expression patterns observed inthe HLCA
lymphatic endothelial cells.

Variance between individuals explained by covariates

To quantify the extent to which different technical and biological
covariates correlated with interindividual variation in the atlas, we
calculated the variance explained by each covariate for each cell type.
We first split the data in the HLCA core by cell type annotation, merg-
ing substates of a single cell type into one (Supplementary Table 5;
includes the number of cells per cell type). For every cell type, we
excluded samples that had fewer than ten cells of the sample. We then
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summarized covariate values per sample for every cell type depend-
ing on the variable, taking the mean across cells from a sample for
scANVI latent components (integration results), UMI counts per cell
and fractions of mitochondrial UMIs, while for all other covariates (for
example, BMIand tissue sampling method) each sample had only one
value; therefore, these values were used.

Next, we performed principal component regression on every
covariate, as described previously (see the section ‘Splitting of studies
into datasets’), but now using scANVI latent component scoresinstead
of principal component scores for the regression, yielding a fraction
of latent component variance explained per covariate. Samples that
did not have a value for a given covariate (for example, where the BMI
was not recorded for the donor) were excluded from the regression.
Categorical covariates were converted to dummy variables. Cell type-
covariate pairs for which only one value was observed for the covariate
were excluded from the analysis.

Quantification of the correlation or dependence between vari-
ables within a cell type and identification of the minimum number
of samples needed to control for spurious correlation are described
below.

Covariate dependence for interindividual variance

To check the extent to which covariates correlated with each other,
thereby possibly acting as confounders in the principal component
regression scores, we determined dependence between all covariate
pairs for every cell type. If at least one covariate was continuous, we
calculated the fraction of variance in the continuous covariate that
could be explained by the other covariate (dummying categorical
covariates) and took the square root (equal to Pearson’s r for two con-
tinuous covariates). For two categorical covariates, if both covariates
had more than two unique values, we calculated normalized mutual
informationbetween the covariates using scikit-learn'’?, since alinear
regression between these two covariates is not possible.

Finding the minimum number of samples for variance
modeling

To control for spurious correlations between interindividual cell type
variation and covariates due to low sample numbers, we assessed the
relationship between sample number and mean variance explained
across all covariates for every cell type. We found that for cell types
sampledinfewer than 40 samplesthe meanvariance explained across
all covariates showed a high negative correlation with the number of
samples (Supplementary Fig. 4a). Wereasoned that for these cell types
correlations between interindividual variation and our covariates were
inflated due toundersampling. Moreover, we note that at lower sample
numbers technical and biological covariates often strongly correlate
witheachotheracross donors (Supplementary Fig. 4c). This might lead
to the attribution of true biological variation to technical covariates,
and vice versa, complicating the interpretation of observed interin-
dividual cell type variation. Consequently, we consider 40 a recom-
mended minimum number of samples to avoid spurious correlations
between observed interindividual variation and tested covariates, and
excluded results from cell types with fewer samples.

Cell typefiltering covariate encoding for gene-level modeling
To select cell types for which covariate effects could be confidently
modeled at the gene level, we followed the same procedure for every
cell type: we filtered out all genes that were expressed in fewer than
50 cells and all samples that had fewer than ten cells of the cell type.
We furthermore filtered out datasets with fewer than two donors and
refrained from modeling categories in covariates that had fewer than
three donorsin their category for that cell type.

We encoded smoking status as a continuous covariate, setting
never to 0, former to 0.5 and current to 1. Anatomical region was
encoded into anatomical region CCF scores as described earlier.

As we noted that changes from the nose to the rest of the airways and
lungs were often independent from continuous changes observed in
the lungs only, we encoded nasal as a separate covariate, setting sam-
ples from the nose to 1and all others to 0. BMI and age were rescaled,
such that the 10th percentile of observed values across the atlas was
set to 0 and the 90th percentile was set to 1 (25 and 64 years for age,
respectively, and 21.32 and 36,86 for BMI).

To determine whether covariance between covariates was low
enough for modeling, we calculated the variance inflation factor (VIF)
between covariates at the donor level. The VIF quantifies multicollin-
earity among covariates of an ordinary least squares regression and a
high VIF indicates strong linear dependence between variables. If the
VIF was higher than 5 for any covariate for a specific cell type, we con-
cluded that covariance was too high and excluded that cell type from
the modeling. As many cell types lacked sufficient representation of
harmonized ethnicities other than European, including harmonized
ethnicity in the analysis simultaneously decreased the samples that
could be included in the analysis to only those with ethnicity annota-
tions; hence, we excluded harmonized ethnicity from the modeling.

Modeling gene-level interindividual variation and GSEA

To model the effects of demographic and anatomical covariates (sex,
age, BMI, harmonized ethnicity, smoking status and anatomical loca-
tion of the sample) on gene expression, we employed a generalized
linear mixed model. We used sample-level pseudo-bulks (split by cell
type), sincethe covariates modeled also varied at the sample or donor
leveland not at the celllevel. Modeling these covariates at the cell level
(that is, treating single cells as independent samples even when they
come from the same sample) has been shown to inflate P values'**'%,
First, we split the lung cell atlas by cell type annotation, pooling detailed
annotations into one subtype (for example, grouping all lymphatic
endothelial cell subtypes into one) (Supplementary Table 5; includes
the number of cells per cell type). Subsequent filtering, covariate
encoding and exclusion of cell types due to covariate dependence are
described above.

Gene counts were summed across cells for every sample, within
cell type. Sample-wise sums (that is, pseudo-bulks) were normalized
using edgeR’s calcNormFactors function, using default parameter
settings. We then used voom'?, a method designed for bulk RNA-seq
that estimates observation-specific gene variances and incorporates
these into the modeling. Specifically, we used a voom extension (dif-
ferential expression testing with linear mixed models) that allows for
mixed-effects modeling and modeled gene expression as:

log [normcount] ~ 1 + age + sex + BMI + smoking + nose + CCF score

+ (1|dataset)

where dataset is treated as a random effect to correct for
dataset-specific changesin expression and all other effects are modeled
as fixed effects. Resulting P values were corrected for multiple testing
within every covariate using the Benjamini-Hochberg procedure.

To identify more systematic patterns across genes and changes
happening at the gene set level, a gene set enrichment analysis was
performed using correlation-adjusted mean-rank gene set tests'”".
The analysis was performed in R using the cameraPR function in the
limma package'®®, with the differential expression test statistic. Gene
Ontology biological process terms'**"° were tested separately for each
comparison. These sets were obtained from MSigDB (version 7.1)'", as
provided by the Walter and Eliza Hall Institute (https://bioinf.wehi.edu.
au/MSigDB/index.html).

Mapping of GWAS results to the HLCA cell types

Tostratify GWAS results from several lung diseases by lung cell type, we
appliedstratified linkage disequilibriumscore regressioninsingle cells
(sc-LDSC)*.sc-LDSC canlink GWAS results to cell types by calculating,
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foreach cell type, whether disease-associated variants are enriched in
genomicregions of cell-type specific genes (i.e. the region of each gene
andits surrounding base pairs), while taking into account the genetic
signal of proximal linkage disequilibrium-associated regions. Here
cell-type specificgenes are defined as genes differentially expressedin
the celltype of interest*®. In contrast with simple enrichment testing of
onlysignificantly disease-associated genes from a GWAS among genes
differentially expressed in a cell type, this method takes into account
allSNPsincluded inthe GWAS. Thus, consistent enrichment of weakly
disease-associated genes (that would notindividually pass significance
tests) ina celltype could still lead to asignificant association between
the disease and the cell type. In this way, sc-LDSC provides more sta-
tistical power to detect associations between cell types and heritable
phenotypes such as lung diseases.

To performsc-LDSC on the HLCA, first adifferential gene expres-
sion test was performed for every grouped cell type (Supplementary
Table 5) in the HLCA using a Wilcoxon rank-sum test, testing against
the rest of the atlas. The top 1,000 most significant genes with posi-
tive fold changes were stored as genes characterizing that cell type
(celltype genes) and used as input for LDSC*®. Gene coordinates of cell
type genes were obtained based on the GRCh37.13 genome annotation.
For SNP data (names, locations and linkage-related information), the
1000 Genomes Europeanreference (GRCh37) was used, as previously
described*®. Only SNPs from the HapMap 3 project were included
in the analysis. For identification of SNPs in the vicinity of cell type
genes, we used a window size of 100,000 base pairs. Genes from X
and Y chromosomes, as well as human leukocyte antigen genes, were
excluded because of their unusual genetic architecture and linkage
patterns. For linkage disequilibrium score calculation, a1l cM window
was used. Significance of the link between a phenotype and acell type
was calculated using LDSC*%. P values yielded by LDSC were corrected
formultiple testing for every disease tested using the Benjamini-Hoch-
berg correction procedure. As anegative control, the analysis was per-
formed with a GWAS of depression and no cell types were found to be
significant (Supplementary Fig. 7). The numbers of cases and controls
per GWAS study were as follows: n = 2,668 cases and 8,591 controls for
IPF; n= 35,735 cases and 222,076 controls for COPD; n=11,273 cases
and 55,483 controls for lung adenocarcinoma; n = 321,047 individuals
for lung function; n = 88,486 cases and 447,859 controls for asthma;
and n=113,769 cases and 208,811 controls for depression (used as
negative control).

Generating cell type signature matrices for deconvolution

To enable deconvolution of bulk expression data on the basis of
the HLCA, HLCA cell type signature matrices were generated. One
generic-purpose signature matrix was created per sublocation of the
respiratory system (thatis, one parenchyma, one airway and one nose
tissue matrix; Supplementary Table 10). Additionally, a script to gen-
erate custom reference sets from the HLCA data is provided together
with the HLCA code on GitHub (https://github.com/LungCellAtlas/
HLCA) to tailor the deconvolution signature matrix to any specific
research question.

Cell types were included in the bulk deconvolution signature
matrix on the basis of cell proportions (constituting >2% of cells within
samples of the corresponding tissue in the HLCA core). In addition,
cell types were merged when they were deemed too transcriptionally
similar. For eachincluded cell type, 200 cells were randomly sampled
from the HLCA core, while all cells were included for cell types with
fewer than 200 cells presentin the HLCA core. Cells were sampled from
the matching anatomical location (for example, nose T cells rather
than parenchymal T cells were used for the nose signature matrix).
Signature matrices were constructed using CIBERSORTx"? (version1.0)
according to default settings, and no cross-platformbatch correction
was applied. The reference data were optimized by deconvolution of
pseudo-bulk samples constructed from the HLCA core data, assessing

deconvolution performance per included cell type based on the cor-
relation of predicted proportions with ground truth composition
(Supplementary Fig. 8a).

The following cell types were included in the deconvolution:
endothelial cell arterial, endothelial cell capillary, lymphatic endothe-
lial cell, basal and secretory (merged), multiciliated lineage, AT2, B
celllineage, innate lymphoid cell (ILC) natural killerand T cell lineage
(merged), dendritic cells, alveolar macrophages, interstitial mac-
rophages, mast cells, fibroblast lineage, smooth muscle, endothelial
cell venous and monocytes (for the parenchyma); basal resting and
suprabasal (merged), multiciliated lineage, club, goblet, dendritic
cells, hillock like and T cell lineage (for the nose); and endothelial cell
venous, CD4 T cells, fibroblasts, smooth muscle, basal and secretory
(merged), multiciliated lineage, endothelial cell capillary, interstitial
macrophages, B cell lineage, natural killer cells, CD8 T cells, dendritic
cells, alveolar macrophages, mast cells and monocytes (for the air-
way). Capillary endothelial cells and interstitial macrophages (airway)
were excluded from statistical testing due to poor performanceinthe
benchmark. Venous endothelial cells and monocytes (parenchyma),
hillock-like cells and T cell lineage cells (nose) and B cell lineage cells,
naturalkiller cells, CD8T cells, dendritic cells, alveolar macrophages,
mast cells and monocytes (airways) were excluded from statistical
testing due to >60% zero proportions.

Deconvolution of bulk expression data using the HLCA core
The parenchymal signature matrix was used to deconvolve RNA expres-
sion data of samples from the Lung Tissue Database® (GEO accession
number GSE23546) using only lung tissue samples from patients with
COPD GOLD stages 3 and 4 (n =27 and 56, respectively) and matched
controls (n=281). The Lung Tissue Database dataset was run on the
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microarray plat-
form (HuRSTA-2a520709; GPL10379). As this platform has multiple
probe sets for each gene, we focused on the probe sets that were
derived from curated RefSeq records (with NM_accession prefixes)
when present to maximize the accuracy of the deconvolution. Where
genes did not have probe sets based on curated RefSeq records or had
multiple probe sets mapping to curated RefSeq records, the probe
set with the highest average microarray intensity across samples was
selected. Quantile normalization of the dataand subsequent deconvo-
lution were performed using CIBERSORTX. A Wilcoxon rank-sum test
between control and GOLD stage 3/4 samples was performed to iden-
tify statistically significant compositional changesinadvanced-stage
COPD compared with control tissue. GOLD 3/4 and control samples
were matched for age and smoking history. Cell types with >60% of
samples predicted to have aproportion of zero were excluded from the
Wilcoxontest, as the high number of tied ranks (zerosin both groups)
would result in inflated P values. P values were multiple testing cor-
rected using the Benjamini-Hochberg procedure.

The same procedure was followed for a dataset of nasal brush bulk
RNA-seq samples from asthmatic donors pre- and postinhalation of
corticosteroids (n =54 and 26, respectively)*® and a dataset of airway
biopsy bulk RNA-seq samples from asthmatic donors and controls
(n=95and 38, respectively)®. As these consisted of RNA-seq data, no
quantile normalization was applied.

Extension of the HLCA core by mapping of new data

To map unseen scRNA-seq and single-nucleus RNA-seq data to the
HLCA, we used scArches, our transfer learning-based method that
enables mapping of new datato an existing reference atlas™. scArches
trains an adaptor added to a reference embedding model, thereby
enabling it to generate acommon embedding of the new data and the
reference, allowing reanalysis and de novo clustering of the joint data.
The datatomap were subsetted to the same 2,000 HVGs that were used
for HLCA integration and embedding, and HVGs that were absent in
the new datawere set to O counts for all cells. Raw counts were used as
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input for scArches, except for the ref. 40 dataset, for which ambient
RNAremoval was run previously on the raw counts. Healthy lung data*°
were split into two datasets: 3’ and 5’ based. Lung cancer data* were
also splitinto two datasets: 10xvl and 10xv2.

The model that waslearned previously for HLCA integration using
scANVIwas used as the basis for the scArches mapping. scArches was
then run to train adaptor weights that allowed for mapping of new
datainto the existing HLCA embedding, using the following parameter
settings: freeze-dropout: true; surgery_epochs: 500; train base model:
false; metrics to monitor: accuracy and elbo; weight-decay: 0; and
frequency: 1. The following early-stopping criteria were used: early
stopping metric: elbo; save best state metric: elbo; on: full dataset;
patience: 10; threshold: 0.001; reduce Ir on plateau: True; Ir patience:
8landIr_factor: 0.1.

Gene name harmonization

To enable cross-dataset gene-level analysis, harmonization of gene
names from different datasets (using different reference genomebuilds
and genome annotations; Supplementary Table 1) was necessary. Both
annotation sources (for example, Ensembl or RefSeq) and annota-
tion versions (for example, Ensembl release 84 or Ensembl release 91)
contribute to the variation between different gene naming schemes.
Therefore, bothannotation sources and versions, including outdated
ones, need to be taken into account to enable the mapping of all gene
names to asingle naming scheme.

For the harmonization of gene names, we aimed tomap all original
gene names to the target scheme HUGO Gene Nomenclature Commit-
teegenename, correspondingto the Ensembl release 107 publication.
To find the most likely match between each original gene name and a
target gene name, we first downloaded Ensembl releases 79 to 107,
whichincluded for eachrelease: (1) all Ensembl gene IDs from the down-
loadedrelease (forexample, ENSGO0000081237.21); (2) corresponding
Ensembl transcript and protein IDs (for example, ENSTO0000442510.8
and ENSP00000411355.3); (3) matching Ensembl IDs from the previous
release; (4) matching gene IDs from other genome annotation sources
(for example, RefSeq); and (5) matching gene, transcript and protein
identifiers fromvarious external resources, such as UniProt, the HUGO
Gene Nomenclature Committee and the Consensus Coding Sequence
Project. We then constructed a graph, with each Ensembl ID, other
genome annotation ID and external resource identifier represented
byasingle node per release. Nodes were then connected based onthe
matching (points 2-5) provided by Ensembl, weighing edges based on
Ensemblsimilarity scores where available. For each original gene name
from the HLCA datasets, the path with the lowest mean edge weight
from that gene name to a gene name from the target names (Ensembl
release 107) was selected to find the most likely matching gene name
from the target (Supplementary Table 17). Genes for which no target
couldbe found were excluded from downstream analysis. When multi-
plegenes were matched with the same target gene name, counts from
the original genes were summed.

Identification of genes associated with common batch effects
Toidentify the genes most commonly exhibiting batch-specific expres-
sion, the HLCA was split by cell type and a differential expression analy-
sis was performed (based on a Wilcoxon rank-sum test) in each cell
type, comparing cells from one dataset (batch) with those from all
other datasets and repeating this for all datasets. Datasets that had
fewer than ten cells of the cell type or fewer than three samples with
cells of the cell type were excluded from the test. For each test, genes
werefiltered such that only genes that were significantly upregulated
were retained. Next, the fraction of included datasets in which agene
was significantly upregulatedin the cell type (affected dataset fraction)
was calculated for all genes. To find genes that were often batch effect
associated across many cell types, the mean of the affected dataset
fractions was calculated across cell types for each gene.

Cell type label transfer from the HLCA core to new datasets

To perform label transfer from the HLCA core to the mapped data-
sets from the extended HLCA, we used the scArches k nearest
neighbor-based label transfer algorithm”.. Briefly, a k nearest neighbor
graph was generated from the joint embedding of the HLCA core and
the new, mapped dataset, setting the number of neighbors to k= 50.
Based on the abundance and proximity in a cell’s neighborhood of
reference cells of different types, the most likely cell type label for
that cell was selected. Furthermore, amatching uncertainty score was
calculated based on the consistency of reference annotations among
the knearest neighbors of the cell of interest

UcyN, =1-p(Y=yX=cN.)

where u \. is the uncertainty score for a query cell c with transferred
label y; N, is its set of k nearest neighbors; and p(Y =y|X =¢, N,) is the
weighted (by edge weights) proportion of N, with label y, as previ-
ously described™. Thus, high consistency in HLCA core annotations
leads tolow uncertainty scores and low consistency (that is, mixing of
distinct reference annotations) leads to high uncertainty scores. For
label transfer to lung cancer and healthy, spatially annotated projected
data (Fig. 5b and Extended Data Fig. 7g), cells with an uncertainty score
above 0.3 were set to unknown.

Disagreementbetween original labels and transferred annotations
(thatis, transferred annotations with high certainty but not matching
the original label) in the data from ref. 40 highlighted three different
cases: annotations not included in the mapped data (for example,
preterminal bronchiole secretory cells, which were labeled as club and
gobletin the mapped data; these may not be incorrect label transfers
but cannot be verified by label comparison alone); cell types that are
partofacontinuum, with cutoffs between cell types chosen differently
inthereference thaninthe projected data (for example, macrophage
subtypes); and cell types missing in the HLCA core that have high tran-
scriptional similarity to other cell types that are present in the HLCA,
which was observed for several finely annotated immune cellidentities.
Forexample, y6 T cells, ILCs, megakaryocytes, natural killer T cells and
regulatory T cells were not annotated in the HLCA core, as these cell
types could not be distinguished with confidence in the integrated
objectand were oftenlackingin the constituent datasets. Indeed, cell
types fromthe T cell/ILC/naturalkiller lineages are known to be particu-
larly difficult to annotate using transcriptomic data only'. Therefore,
cellsannotated with these labelsin the projected dataset were largely
incorrectly annotated as CD4" T cells, CD8" T cells and natural killer
cells through label transfer (Fig. 5b and Extended Data Fig. 6e)

Calibration of uncertainty cutoff for classifying as unknown

For the extended atlas, we calibrated the uncertainty score cutoff
by determining which uncertainty levels indicate possible failure of
label transfer. To determine the uncertainty score at which technical
variability from residual batch effects impairs correct label transfer,
we evaluated how label transfer performed at the level of datasets, as
these predominantly differ in experimental design. To determine an
uncertainty threshold indicative of possible failure of label transfer,
we harmonized original labels for 12 projected datasets®***°*¢*%® (one
unpublished: Duong_lungMAP_unpubl) and assessed the correspond-
ence between original labels with the transferred annotations. Only
cells with level 3 or 4 original annotations were considered, as these
levels represent informative annotations while not representing the
finest detail. Level 5 annotations will often display high uncertainty
levels due to high annotation granularity rather than remaining batch
effects. To assess the optimal uncertainty cutoff for labeling anew cell
as unknown, we used these results to generate a receiver operating
characteristic curve. We chose a cutoff around the elbow point, keeping
thefalse positive rate below 0.5 (uncertainty cutoff = 0.2; true positive
rate = 0.879; false positive rate = 0.495) to best distinguish correct
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fromincorrectlabel transfers (Supplementary Fig. 10a). False positives
were either due toincorrect label transfer or incorrect annotationsin
the original datasets. Cells with an uncertainty higher than 0.2 were
set to unknown.

Identifying clusters with spatially annotated cell types

Theref. 40 study of healthy lungincluded cell type annotations based
on matched spatial transcriptomic data. Many of these annotations
were not presentinthe HLCA core. To determine whether these spatial
cell types could still be recovered after mapping to the HLCA core, we
looked for clusters specifically grouping these cells. We focused on six
spatial cell types: perineurial nerve-associated fibroblasts; endoneurial
nerve-associated fibroblasts; immune-recruiting fibroblasts; chon-
drocytes; myelinating Schwann cells; and nonmyelinating Schwann
cells. As these cell types were often present at very small frequencies,
we performed clustering at different resolutions to determine whether
these cells were clustered separately at any of these resolutions. We
clustered at resolutions of 0.1,0.2,0.5,1, 2, 3, 5, 10, 15, 20, 25, 30, 50,
80and 100, with the number of neighbors set to k = 30 for resolutions
under 25and k =15 for resolutions of 25 or higher, to enable the detec-
tion of smaller clusters. Minimum recall (the percentage of cells with
the spatial cell type annotation capturedinthe cluster) and minimum
precision (the percentage of cells from ref. 40 in the cluster that had
the spatial cell type annotation) were both set to 25%. The cluster with
the highest recall was selected for every spatial cell type (unless this
cluster decreased precision by >33% compared with the cluster with
the second highest recall). If the precision of the next best cluster was
doubled compared with the cluster with the highest recall and recall
did not decrease by >20%, this cluster was selected.

Disease signature score calculation

Tolearn disease-specific signatures based on label transfer uncertainty
scores, cells from the mapped data with the same transferred label
(either alveolar fibroblasts or alveolar macrophages) were split into
low-uncertainty cells (<0.2) and high-uncertainty cells (>0.4), excluding
cellsbetween these extremes (for alveolar fibroblasts, n =11,119 (<0.2)
and n=2,863 (>0.4); for alveolar macrophages, n=1,770 (<0.2) and
n=577 (>0.4)). We then performed a differential expression analysis
on SCRAN-normalized counts using a Wilcoxon rank-sum test with
default parameters, comparing high- and low-uncertainty cells. The
20 most upregulated genes based on log-fold changes were selected
after filtering out genes with a false discovery rate-corrected P value
(using the Benjamini-Hochberg procedure) above 0.05and genes with
ameanexpressionbelow 0.1inthe high-uncertainty group. To calculate
the score of acell for the given set of genes, the average expression of
the set of genes was calculated, after which the average expression
of areference set of genes was subtracted from the original average,
as described previously. The reference set consists of a randomly
sampled set of genes for each binned expression value. The resulting
score was considered the cell’s disease signature score.

Cross-dataset analysis of IPF-associated cell states

To uncover the cell identities affected in IPF, label transfer uncer-
tainty was analyzed for three mapped datasets from the extended
HLCA®%2%* that included both IPF and healthy samples. Cell types of
interest were determined based on the largest increase in mean label
transfer uncertainty in IPF compared with healthy samples, while
checking for consistency inincrements across the three datasets. This
highlighted alveolar fibroblasts as the main cell type of interest. To find
IPF-specific alveolar fibroblast states, all alveolar fibroblasts from the
abovementioned datasets and two more IPF datasets?** (for which
no healthy data were mapped, as these were already in the core) were
clustered together with the alveolar fibroblasts from the HLCA core.
For clustering, a k nearest neighbor graph was calculated on the joint
scArches-derived 30-dimensional embedding space setting k =30,

after which the cells were clustered using the Leiden algorithm with a
resolution of 0.3. The resolution was chosen such that datasets were
not isolated in single clusters, thus avoiding clustering driven solely
by dataset-specific batch effects. One cluster (cluster 5) was small
(n=460 cells) and displayed low donor entropy (0.17), indicating that
italmost exclusively came fromasingle donor (96% of cells from HLCA
core donor390C). It was therefore excluded from further analysis. To
perform differential gene expression analysis, gene counts were nor-
malized to atotal of 7,666 counts (the median number of counts across
the HLCA) and then log transformed with a pseudocount of 1. Finally, a
Wilcoxon rank-sum test was used on the normalized data to detect dif-
ferentially expressed genes for cluster O (n = 6,765 cells versus atotal of
n=14,731). Theresults werefiltered such that genes expressed in<30%
of cells of the cluster of interest were excluded, as well as genes that
were expressed in >20% of cells outside of the cluster and genes with
amultiple testing-corrected P value (using the Benjamini-Hochberg
procedure) above 0.05 (Supplementary Table 14).

Multidisease analysis

To investigate whether the HLCA can be used to identify
disease-associated cell states shared across multiple diseases, MDMs
fromthe HLCA core, together with all cells from the mapped datasets
labeled as MDMs based on label transfer, were jointly analyzed. Data-
sets and diseases with fewer than 50 MDMs were excluded from the
analysis. The cells were subsequently clustered as described above for
the cross-dataset IPF analysis. Finally, a Wilcoxon rank-sum test was
used on the normalized data to detect differentially expressed genes
per cluster (number of cells per cluster: n = 64,915 (cluster 0), 47,539
(cluster1),32,027 (cluster 2), 31,097 (cluster 3), 25,267 (cluster 4),1,998
(cluster 5) and 307 (cluster 6)). The results were filtered as described
above (Supplementary Table 15).

Versioninformation

Thefollowing tools and versions were used: R (version 4.1.1for covari-
atemodelingand version 4.0.3 for GSEA); edgeR (version 3.28.1); Ime4
(version1.1-27.1); LDSC (version1.0.1); Limma (version 3.46.0); Scanpy
(version1.9.1); scArches (version 0.3.5); scIB (version 0.1.1); scikit-learn
(version 0.24.1); and scvi-tools (scANVI; version 0.8.1).

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The HLCA (raw and normalized counts, integrated embedding, cell
type annotations and clinical and technical metadata) is publicly avail-
able and can be downloaded via cellxgene (https://cellxgene.czisci-
ence.com/collections/6f6d381a-7701-4781-935¢c-db10d30de293).
The HLCA core reference model and embedding for the mapping of
new data to the HLCA can moreover be found on Zenodo (https://
doi.org/10.5281/zenodo.7599104). The original, published data-
sets that were included in the HLCA can also be accessed under GEO
accession numbers GSE135893, GSE143868, GSE128033, GSE121611,
GSE134174, GSE150674, GSE151928, GSE136831, GSE128169, GSE171668,
GSE132771, GSE126030, GSE161382, GSE155249, GSE135851, GSE145926
and GSE178360, GSE227136, GSE158127, European Genome-phe-
nome Archive study IDs EGASO0001004082, EGAS00001004344,
EGAD00001005064 and EGAD0O0001005065 and URLs https://
www.synapse.org/#!Synapse:syn21041850, https://data.humancel-
latlas.org/explore/projects/c4077b3c-5¢98-4d26-a614-246d12c2e5d7,
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs001750.v1.p1, https:/www.nupulmonary.org/covid-19-ms2/?
ds=full&meta=SampleName, https://figshare.com/articles/dataset/
Single-cell_ RNA-Seq_of human_primary_lung and_bronchial_epithe-
lium_cells/11981034/1, https://covid19.lambrechtslab.org/downloads/
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Allcells.counts.rds, https://s3.amazonaws.com/dp-lab-data-public/
lung-development-cancer-progression/PATIENT_LUNG_ADENO-
CARCINOMA_ANNOTATED.hS, https://github.com/theislab/2020_
Mayr, https://static-content.springer.com/esm/art%3A10.1038%
2Fs41586-018-0449-8/MediaObjects/41586_2018 449 MOESM4 ESM.
zip, http://blueprint.lambrechtslab.org/#/099de49a-cd68-4db1-82cl1-
cc7acd3c6d14/*/welcome and https://www.covid19cellatlas.org/index.
patient.html (see also Supplementary Table1). GWAS summary statis-
tics of COPD*® (GWAS catalog ID: GCST007692; database of Genotypes
and Phenotypes (dbGaP) accession number: phs000179.v6.p2), IPF'
and lung adenocarcinoma* (GWAS catalog ID: GCST004748; dbGaP
accession number: phs001273.v3.p2) were made available via the
dbGaP upon request. Summary statistics of lung function*’ (GWAS
catalog ID: GCST007429), asthma** (GWAS catalog ID: GCST010043)
and depression® (used as a negative control; GWAS catalog ID:
GCST005902) were publicly available.

Code availability

The HLCA pipeline for processing the sequencing data for counting
matrices, used for a subset of HLCA datasets (Methods), is available
athttps://github.com/LungCellAtlas/scRNAseq_pipelines. All further
code used for the HLCA project can be found in the HLCA reproducibil-
ity GitHub repository (https://github.com/LungCellAtlas/HLCA repro-
ducibility). The landing page of the HLCA, including up-to-date links,
canbefoundat https://github.com/LungCellAtlas/HLCA. Automated
mapping to the HLCA and label transfer can be done with scArches”
at FASTGenomics (https://beta.fastgenomics.org/p/hlca) or using the
code and tutorial in the HLCA mapping GitHub repository (https://
github.com/LungCellAtlas/mapping_data_to_the_HLCA). Links to addi-
tional and updated platforms will be published on the HLCA landing
page (see above). Automated mapping to the HLCA and label transfer
with Azimuth'®” (not shownin this manuscript) canbe done atazimuth.
hubmapconsortium.org. Label transfer with CellTypist"” (not shown
inthis manuscript) canbe done at https://www.celltypist.org/models.
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Extended Data Fig. 1| HLCA cluster donor diversity and marker expression
for a cluster with high cell type label disagreement. a, Donor diversity is
calculated for every cluster as entropy of donor proportions in the cluster,

with high entropy indicating the cluster contains cells from many different
donors. Most clusters (80 out of 94) contain cells from many donors (median 47
donors per cluster, range 2-102), as illustrated by high donor entropy (>0.43),
whereas 14 clusters show low donor diversity. These are largely immune cell
clusters (n=13, of which 7 macrophage clusters, 4 T cell clusters and 2 mast cell

clusters), representing donor- or group-specific phenotypes. Matching cell

type annotations are shown in Fig. 3d. b, Marker expression among cells from
the immune cluster with highest disagreement in original cell type labels (high
‘label entropy’). DC2, monocyte and macrophage marker expressionis shown
for cells from Fig. 3c. Cells are labeled by their final annotation, as well as their
original label. Log-normalized counts are scaled such that for each gene the 99th
expression percentile, as calculated among all cells included in the heatmap, is
setto 1. DC: dendritic cell.
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Extended Data Fig. 2| HLCA core cell type composition details. a, Percentage

locations, shown per cell type. ¢, Percentage of cells with at least one UMI count

for MK167, a marker gene of proliferating cells, shown per cell type. AT:

alveolar
submucosal gland. DC: dendritic cell. Mph:

metalloth

of cells from each of the 11 studies included in the HLCA core, shown per cell type
(3studiesinclude 2 separate datasets). Each cell type was detected in at least 4

terminal bronchiole. SMG:

type. TB

.SM:smooth muscle. EC

ionein

:natural killer. MT:

macrophage. NK
endothelial cell.

out of 14 datasets, with a median of 11 datasets in which a cell type was detected,
and amaximum of 14. b, Percentage of cells from each of the three anatomical

Icine

Nature Med


http://www.nature.com/naturemedicine

https://doi.org/10.1038/s41591-023-02327-2

Resource

Marker for cell type

Bunesayoid z1y

v

v

wnipyda sejoanly

NP OWS

SNoINW ONS.

(121Y2U0Iq) SN0IZS DS

(leseu) snoiss OWS

puel9 [esodnwgns.

auL0pusINaN

unL

S1ko0u0|

Kioyandas g)-a1d

ol

(1e3uawbasans) 321409

(feypuoiq) 31909

(leseu) 321909

(leseu) anp>,

(Jeseu-uou) aniy

(eseu-uou) pax

PRI

(leseu) pa

PRI

|ewososzInag

|eseqeidns

Bupsai jeseg

wnipyyda Aemiy

lelayyd3

E

2 s s
gg @ -5 i
sg ® 8 3
£5 o -2 H
g T 3 H
£ 2
L) .
o oo

(XXX ]

@ oce0e0000

© ® o

LX)

Basal resting
Suprabasal
Hillock-Tike

)

Multiciliated (nasal
Multiciliated (non-nasal

Tuft

Neuroendocrine
SMG serous (nasal)

fonocyte
SMG serous (bronchial)

Goblet (bronchial
Goblet (subsegmental
pre-T8 secretory

uoleIOULE |90

SMG mucous

SMG duct

AL
A2

AT2 proliferating {

YEOEPTT-TIdY

£8NIdYIS
su
£9dL
AN
STy
TNVdSL
TiNIdY3S
zdg40l
€413
Wvdd3
£and

Marker

si[@d 3sel

sako0Uow [e:

se|d-UoN

se3ho0u0w ed1sserd

seinoseauad ydi fensiaul

4dw panuisp-a3ho0uoiy

Bunessyioxd ydi Jejoanty

aAnisod-Liy udi JeioaAly

+€12D udi Jejoanly

sabeydoioew Jej0anly

50 proyhoewseld

$5a A1oresbin

zoa

Marker for cell type

ploeA

SI192 3N

Buneseyjod sife> 1.

si122 1 80D

sl122 1 D

sil@2 ewseid ]

3z @ -§ 7
< o - ey
2% o -3 a8
£5 o -2 ce
& TN =
o
.
°

siieo 8l
usﬁ:}_” .
.
si122 ways anaodojewsy || |
.
©°000000 -0 oo
sunwuy CER X XX X X e0-00c000
ececeece e@c-0e0ce
C L vr e PrLNCC e PELE L e
Te3ees5e88888nz2525LL%
M s £83%EZ388¢8y
EELpEE F35c 838ty
% 238% 85863522 g¢es
s 2008 593f=888EE
3 = SptE554588
g g [(EREE RN
g - §2553s8%
5 23gf£s5S0%
E T 282F 5
= =<z g =

uonelouue 180

8z
SZASUANL
970v0>
LT4SYINL
IS
§10
0zos!
LdvW
ZaNIdY3s

in group (%)
2040 6080100

Fraction of cells

Mean expression

in group.

Marker

asuodsal ssans PareARdE WS
+QAE8WY4 21Psnw yioows [

apPsnw yloows

s1501q0IqUOAN

siseiqoiqy eanaidans

savhouad ]

Marker for cell type

S15R|qOIqY Je|0BAY

S158IqOIql [2NUBAPY

siselqouqy |

I 35e1q01a1

ewons

Peribronchial fibroblasts

Adventitial fibroblasts

Alveolar fibroblasts
Pericytes

Subpleural fibroblasts
Myofibroblasts

Smooth muscle

Smooth muscle FAM83D+

uojeIouLE (9D

SM activated stress response

Mesothelium

2
3
W
86dn
o
€41y
8504

TIOVNIL
TIHAW
TdUAL

Zv1100

Fraction of cells

in group (%)

20406080100

Mean expression

in group

Bunenuasayp 53

Bunesayijod 53 dneyduwiA]

aimew >3 dneydwAy

53 sneydwigy

>

Ueuowind snous 53

Marker for cell type

Auejides jeiausb 53

Auejides 21400198 53

Jenayie 53

s|9sSaA poolg

ﬁ
[
ﬁ
ﬁ
|
ﬁ
|
|

ec e o

oo el

EC arterial
EC aerocyte capillary {[@ © @

EC general capillary {[@ © @|/® ® @

EC venous systemic

EC venous pulmonary
Lymphatic EC mature

Lymphatic EC proliferating

uoEIoULE |90

Lymphatic EC differentiating

10

0.5

o
S

[S7ES

on.

3|See next page for capti

Extended Data Fig.

Icine

Nature Med


http://www.nature.com/naturemedicine

Resource

https://doi.org/10.1038/s41591-023-02327-2

Extended Data Fig. 3| Marker gene expression for all 61 cell types in the
HLCA core. Expression is shown within each cell type compartment. a, Epithelial
cell type markers, b, Immune cell type markers, ¢, Stromal cell type markers,

d, Endothelial cell type markers. Expression was normalized such that the
maximum group expression of cells within the compartment for each marker
was set to 1. Marker gene sets include both sets that mark groups of cell types

(for example ‘epithelial’) and single cell types (for example ‘basal resting’). For
each marker gene set, cell types identified by the set are boxed. AT: alveolar
type. TB: terminal bronchiole. SMG: submucosal gland. DC: dendritic cell. Mph:
macrophage. NK: natural killer. MT: metallothionein. SM: smooth muscle. EC:
endothelial cell.
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Extended Data Fig. 4 | Marker expression of several rare and novel cell
types detected in the HLCA. a, AUMAP embedding of all cells annotated as
dendritic cells, colored by final detailed annotation (left), and by expression of
three migratory DC marker genes (right, CCR7,LADI1, and CCL19).b, Expression
of migratory DC marker genes from a among migratory DCs (red, right half of
violins) versus other DCs (gray, left half of violins), split by study. Number of
migratory DCs per study is specified in the x-axis labels. ¢, Expression of markers
for two novelimmune cell types (hematopoietic stem cells and migratory DCs,
foundin 9 and 10 out of 11 studies, respectively), shown per stromal cell type.
d, Expression of markers for three novel epithelial cell types (hillock-like, ATO,
and pre-TB secretory cells, found in 9,9, and 11 out of 11 studies, respectively),

shown per epithelial cell type. Two markers shared between ATO and pre-TB
secretory cellsare also included. e, Expression of markers for a novel stromal cell
type (‘smooth muscle FAM83D+, found in 8 out of 11 studies), including three
general smooth muscle marker genes and one marker gene uniquely expressed
in FAM83D+ smooth muscle cells (FAM83D), shown per stromal cell type. For c-e,
gene counts were normalized such that the maximum expression of a group of
cellsinthe plot was set to 1. f, FAM83D expression across stromal cell types. Cells
annotated as FAM83D+smooth muscle are split by study. Studies with fewer
than 3 smooth muscle FAM83D+ cells are not shown. DC: dendritic cell. Mph:
macrophage. MT: metallothionein. AT: alveolar type. SMG: submucosal gland.
TB: terminal bronchiole.
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Extended DataFig. 5| Cell type proportions per sample along the proximal-
to-distal axis of the lung. All cell types not included in Fig. 4b are shown. The
lowest and highest CCF score shown (0.36, 0.97) represent the most proximal
and most distal sampled parts of the respiratory system, respectively (trachea
and parenchyma), excluding the upper airways. Dots are colored by the

tissue dissociation protocol and tissue sampling method used for the sample.

Anatomical region CCF score

Boxes show median and interquartile range of the proportions. Samples with
proportions more than 1.5 times the interquartile range away from the high and
low quartile are considered outliers. Whiskers extend to the furthest non-outlier
point.n=23,19,9 and 90 for CCF score 0.36,0.72, 0.81and 0.97, respectively.
AT:alveolar type. DC: dendritic cell. EC: endothelial cell. NK: natural killer. Mph:
macrophages. SMG: submucosal gland.
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Extended Data Fig. 6 | Mapping of unseen healthy lung scRNA-seq data

to the HLCA core. a, UMAP of the jointly embedded HLCA core (dark blue,
plotted on top) and the newly mapped healthy lung data (gray). b, Same as a,
but now plotting cells from the HLCA in gray, and cells from the new data on top
inlightblue. ¢, Same as a, but now coloring cells from the HLCA core by their
final annotation, and coloring cells from the new datain black. Cells fromeach
of the compartments are outlined to ease visual identification of cell types by
colors. d, Uncertainty of label transfer (ranging from O to 1) for cells from the
mapped data, subdivided by original cell type label. Number of cells per label

is shown between brackets. Cell labels are ordered by mean uncertainty. Boxes

of cell labels not present in the HLCA core are colored red. Boxes show median
and interquartile range of uncertainty. Cells with uncertainties more than 1.5
times theinterquartile range away from the high and low quartile are considered
outliers and plotted as points. Whiskers extend to the furthest non-outlier
point. e, Sankey plot of original labels of cells from the mapped dataset versus
predicted annotations based on label transfer. Cells with uncertainty >0.3 are
labeled ‘unknown’. AT: alveolar type. DC: dendritic cells. EC: endothelial cells.
ILCs: innate lymphoid cells. MAIT cells: mucosal-associated invariant T cells. MT:
metallothionein. Mph: macrophages. NK: natural killer. NKT cells: natural killer
T cells. SM: smooth muscle. SMG: submucosal gland. TB: terminal bronchiole.
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Extended Data Fig. 7 | See next page for caption.

Nature Medicine


http://www.nature.com/naturemedicine

Resource

https://doi.org/10.1038/s41591-023-02327-2

Extended Data Fig. 7| Mapping of unseen lung cancer datato the HLCA. a,
UMAP of the jointly embedded HLCA (dark blue, plotted on top) and lung cancer
data(gray). b, Same as a, but now plotting cells from the HLCA core in gray. Cells
from the mapped data are plotted on top, and colored by the cancer type of the
patient. ¢, Same as a, but now coloring cells from the HLCA core by their final final
annotation, and coloring cells from the mapped cancer datain black. Cells from
each of the compartments are outlined to ease visual identification of cell types
by colors. d, Uncertainty of label transfer, shown for all cells from the mapped
data. Regions dominated by high-uncertainty cells are labeled by the original
celltypelabel. Cells from the HLCA core are colored in gray. e, Uncertainty of
label transfer (ranging from O to 1) for the mapped cells, subdivided by original
celltype label. Number of cells per label is shown between brackets. Boxes of cell
type labels not presentin the HLCA core are colored red. Cell types are ordered
by mean uncertainty. Boxes show median and interquartile range of uncertainty.

Cells with uncertainties more than 1.5 times the interquartile range away from
the high and low quartile are considered outliers and plotted as points. Whiskers
extend to the furthest non-outlier point. f, Sankey plot of original labels of the
mapped data versus predicted annotations based on label transfer. Cells with
uncertainty >0.3 are labeled ‘unknown’. g, Percentage of cells from newly mapped
healthy lung dataset that are either annotated correctly or incorrectly by label
transfer annotation (matched at the level of the original labels), or annotated

as unknown, subdivided by original cell type label. The number of cells in the
mapped dataset labeled with each label are shown between brackets after cell
type names. Cell type labels not presentin the HLCA are boxed. AT: alveolar
type. DC: dendritic cells. EC: endothelial cells. MT: metallothionein. Mph:
macrophages. NK: natural killer. SM: smooth muscle. SMG: submucosal gland.
TB:terminal bronchiole.
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and by label transfer uncertainty (right). Cells with labels transferred to fewer
than10 cells were excluded. b, same as a, but showing cells originally labeled
as macrophages. ¢, As b, but now colored by expression of SPP1 and FABP4.SM:
smooth muscle. Mph: macrophages. DC: dendritic cells.
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Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | Disease-specific cellular states and states shared
across diseases in the extended HLCA. a, Label transfer uncertainty shown per
cell type, comparing cells from control samples (‘healthy’, blue) to cells from
IPF samples (orange). Results are shown per dataset, only showing datasets that
include both control and IPF mapped samples. Alveolar fibroblasts, the cell
type chosen for downstream analysis, are boxed in red. AT: alveolar type. DC:
dendritic cell. TB: terminal bronchiole. EC: endothelial cell. Mph: macrophage.
MT: metallothionein. NK: natural killer. SM: smooth muscle. b, Composition

of alveolar fibroblast clusters by study. ¢, Expression of several genes highly
expressed in IPF-enriched alveolar fibroblast cluster O, shown per cluster.

Cluster Ois splitinto control (‘Healthy’) and IPF, further subdivided by study. d,
Composition of monocyte-derived macrophage (MDM) clusters by study. e, As
d, but by tissue sampling method. f, Expression of MDM cluster marker genes
shown per cluster, with clusters split into studies. Studies with fewer than 200
were grouped into ‘Other’ for each cluster. g, Composition of MDM clusters by
study, subsetted to only cells from donors with COVID-19. h, As g, but by tissue
sampling method. i, As g, but subsetted to cells from donors with IPF. For cand
f, mean expressions were normalized such that the highest mean expression
was set to1for each gene. BALF: bronchoalveolar lavage fluid. IPF: idiopathic
pulmonary fibrosis.
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|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 0XOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis All code is made public on GitHub, as also specified in the manuscript. https://github.com/LungCellAtlas/HLCA_reproducibility.
Software versions used:
R 4.1.1 (covariate modeling)
edgeR: 3.28.1
Ime4: 1.1-27.1
LDSC: 1.0.1
Limma: 3.46.0, R 4.0.3 (GSEA)
Scanpy: 1.9.1
scArches: 0.3.5
sclB: 0.1.1
scikit-learn: 0.24.1
scvi-tools (scANVI): 0.8.1
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

There are no restrictions on data availability. The HLCA is fully public.

Data Availability Statement

The HLCA (raw and normalized counts, integrated embedding, cell type annotations and clinical and technical metadata) is publicly available and can be
downloaded via cellxgene:

https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935¢c-db10d30de293

The HLCA core reference model and embedding for mapping of new data to the HLCA can moreover be found on Zenodo, doi: 10.5281/zenodo.7599104.

The original, published datasets that were included in the HLCA can also be accessed under GEO accession numbers GSE135893, GSE143868, GSE128033,
GSE121611, GSE134174, GSE150674, GSE151928, GSE136831, GSE128169, GSE171668, GSE132771, GSE126030, GSE161382, GSE155249, GSE135851, GSE145926,
GSE178360, EGA study IDs EGAS00001004082, EGAS00001004344, EGAD0O0001005064, EGADO0001005065, and under urls https://www.synapse.org/#!
Synapse:syn21041850, https://data.humancellatlas.org/explore/projects/c4077b3c-5c98-4d26-a614-246d12c2e5d7, https://www.ncbi.nIm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs001750.v1.p1, https://www.nupulmonary.org/covid-19-ms2/?ds=full&meta=SampleName, https://figshare.com/articles/dataset/
Single-cell_RNA-Seq_of _human_primary_lung_and_bronchial_epithelium_cells/11981034/1, https://covid19.lambrechtslab.org/downloads/Allcells.counts.rds,
https://s3.amazonaws.com/dp-lab-data-public/lung-development-cancer-progression/PATIENT_LUNG_ADENOCARCINOMA_ANNOTATED.h5, https://github.com/
theislab/2020_Mayr, https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-018-0449-8/MediaObjects/41586_2018_449_MOESM4_ESM.zip, http://
blueprint.lambrechtslab.org/#/099de49a-cd68-4db1-82c1-cc7acd3c6d14/*/welcome, https://www.covid19cellatlas.org/index.patient.html (see also Supplementary
Data Table 1).

GWAS summary statistics of COPD(GWAS catalog ID: GCST007692, dbGaP accession number: phs000179.v6.p2), IPF, and of lung adenocarcinoma(GWAS catalog ID:
GCST004748, dbGaP accession number: phs001273.v3.p2) were made available on dbGap upon request. Summary statistics of lung function (GWAS catalog ID:
GCST007429), of asthma (GWAS catalog ID: GCST010043), and of depression (used as negative control, GWAS catalog ID: GCST005902) were publicly available.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender For each of the previously unpublished datasets included in the paper, the methods state whether sex was self-reported or
assigned based on a medic's report. Disaggregated data of subjects' sex is available in the publicly available human lung cell
atlas, which includes per-sample (and per-cell) metadata. Information about sex can moreover be found in Supplementary
Data table 2, which includes per-sample metadata. Consent was obtained for obtaining and sharing patient data for each
study, as indicated in the methods.

Effects of sex on cell type transcriptomes were modeled, for which results are shown in figure 4, as well as in Supplementary
data table 8 and 9.

Overall male/female proportions among subjects included in the HLCA core are shown in figure 2a and specified in the
caption (60% male, 40% female).

Population characteristics This information can be found in Supplementary Data table 2 (sex, age, BMI, smoking history, lung disease). Statistics for the
HLCA core are moreover stated in the text: "These datasets include samples from 107 individuals, with diversity in age, sex,
ethnicity (harmonized as detailed in Methods), BMI, and smoking status (fig. 2a)." and in the caption of figure 2a: "Donors
show diversity in ethnicity (harmonized metadata proportions 65% European, 14% African, 2% Admixed American, 2% mixed,
2% Asian, 0.4% Pacific Islander, 14% unannotated, see Methods)".

Further notes on the encoding of ethnicity can be found in the methods:

"Ethnicity metadata was based on self-reported ethnicity for live donors, or retrieved from medical records or assigned by
the organ procurement team in case of organ donors, as collected in the individual studies. For donor ethnicity, the following
categories of self-reported ethnicity were used during metadata collection: black, white, latino, asian, pacific islander, and
mixed. To conform to pre-existing 1000 genomes ancestry “superpopulations”, these self-reported ethnicity categories were
then harmonized with the superpopulation categories as follows: black was categorized as African, white as European, latino
as admixed American, while keeping the category “Asian” (merging superpopulations “East Asians” and “South Asians' as this
granularity was missing from the collected self-reported ethnicity data), and keeping “Pacific Islander”, as this category did
not correspond to any of the superpopulations but does constitute a separate population in HANCESTRO. We refer to the
resulting categories as “harmonized ethnicity”. Both self-reported ethnicity as collected and harmonized ethnicity per donor
are detailed in Supplementary Data Table 2."

Recruitment Recruitment was done in individual studies as published, recruitment for unpublished data:
Banovich_Kropski_2020: Primary tissue was obtained from the Donor Network of Arizona or Tennessee Donor Services. All

samples were collected from declined organ donors who were also consented for research. Only lungs with no known lung
disease were used in this study.
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Barbry_unpubl: Our IPF volunteers patients were selected from a prospective cohort of 180 IPF patients.

Patients involved in this paper respected all these Inclusion and non-inclusion criteria.

Inclusion criteria

Age > 18 years

Diagnosis of idiopathic pulmonary fibrosis made less than 5 years ago on scannographic and/or histological criteria and
validated in an interstitial pathology consultation meeting according to the ATS/ERS/JRS/ALAT 2018 recommendations
(Raghu G, Remy-Jardin M, Meyers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis: an
official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 2018;198:e44-e68.).

GAP Index 1 or 2 (Ley, B. et al. A Multidimensional Index and Staging System for Idiopathic Pulmonary Fibrosis. Ann Intern
Med 156, 684-U658 (2012))

FVC > 50% of theoretical

DLCO > 35% of theoretical

Non-smoker (active or passive) or ex-smoker of less than 20 pack-years and stopped for more than 5 years

No current acute pathology at inclusion

No symptoms suggestive of a progressive pathology being diagnosed

Patient with a chest CT scan in the year prior to inclusion

Woman of childbearing age using effective contraception

Patient with written consent

Non-inclusion criteria:

Recent ENT or bronchial infection (< 6 weeks)

Long-term systemic corticosteroid therapy regardless of the reason for prescription

Systemic corticosteroid therapy in the previous 3 months

Patient on long-term oxygen therapy

Chronic cardiovascular, neuro-psychic or metabolic pathology in progress, clinically significant or not controlled during the
last 6 months

Other associated chronic respiratory pathology (COPD, asbestosis, bronchiectasis, etc.)

Patient on anti-platelet agents or other anticoagulant at risk of bleeding during sampling

Patient with a history of cancer in the previous 5 years, excluding basal cell disease

Patient with a history of clinically significant (i.e. recurrent or loss of consciousness) vagal discomfort

History of allergy or intolerance to xylocaine and/or propofol

History of significant epistaxis (i.e. recurrent epistaxis of any amount or at least one severe epistaxis)

Patient at risk of difficult intubation according to the criteria of the SFAR 2006 expert conference*.

Relationship between volunteer and investigator

Patient not socially insured

Mental disability

Pregnant woman (a urine test will be carried out for all women of childbearing age) or nursing mother

Vulnerable person (person deprived of administrative and legal freedom).

In addition to the respect of all these inclusion criteria, a nasal swab analysis was made for each patient at the beginning of
the procedure and analyzed for viruses (tested for 22 pathogens (RespiFinder® 2Smart). Virus: Influenza A, Influenza B,
Influenza A(HIN1)pdmQ9, RSV-A, RSV-B, Human Metapneumovirus, Rhinovirus/Enterovirus, Adenovirus, Parainfluenza-1,
Parainfluenza-2, Parainfluenza-3, Parainfluenza-4, Bocavirus, Coronavirus NL63/HKU1, Coronavirus OC43, Coronavirus 229E,
SARS-CoV-2, MERS CoV, Bacteria: Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila,
Bordetella pertussis). None of the patients selected had inhaled treatment.

Duong_HuBMAP_unpubl: The dataset includes a single donor: an organ donor who was a 37 year-old black male with a
history of marihuana, with no lung disease.

Jain_Misharin_2021: Healthy volunteers were recruited to match a cohort of patients with cystic fibrosis for the ongoing
study at Northwestern University (Pl Manu Jain). In both studies Dr. Misharin did not influence participant recruitment and
did not introduce biases in sample selection.

Misharin_2020: Donor Lungs. Samples were collected in an opportunistic manner, based on sample availability and organ
allocation to Northwestern Lung Transplant center. One donor was rejected for organ transplant. For the other donor,
samples were collected during donor lung for size reduction during lung transplantation.

Nawijn_2021: Subjects and methods

Recruitment was performed through advertisements in the local newspaper.

Inclusion criteria:

* Age between 18 and 45 years old.

* Smoking history <2 packyears and no smoking during the 6 months before inclusion

¢ No history of asthma.

¢ No use of inhaled corticosteroids or 2-agonists for a period longer than 1 month in their lifetime and not during the 6
weeks before inclusion.

* No symptoms of wheeze, nocturnal dyspnea, or bronchial hyperresponsiveness.

* PC20 methacholine > 8 mg/ml, FEV1/FVC > 70% and FEV1 > 80% predicted.

Exclusion criteria

e FEV1<1.2 L,

e Subjects must be able to adhere to the study visit schedule and other protocol requirements.

* A subject is not eligible to enter and participate if he has not signed and dated a written informed consent form prior to
participation in the study.

* A subject is not eligible to enter and participate if he does not agree that we inform his general practitioner.

» Upper respiratory tract infection (e.g. colds), within 6 weeks.

e Serious acute infections (such as hepatitis, pneumonia or pyelonephritis) in the previous 3 months.

« Signs or symptoms of severe, progressive or uncontrolled renal, hepatic, hematologic, endocrine, pulmonary, cardiac,
neurologic or cerebral disease.

* Malignancy within the past 5 years (except for squamous or basal cell carcinoma of the skin that has been treated with no
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evidence of recurrence).
* Known recent substance abuse (drug or alcohol).
* Females of childbearing potential without an efficient contraception unless they meet the following definition of post-
menopausal: 12 months of natural (spontaneous) amenorrhea or 6 months of spontaneous amenorrhea with serum FSH >40
mlU/mL or the use of one or more of the following acceptable methods of contraception:

a) Surgical sterilization (e.g. bilateral tubal ligation, hysterectomy).

b) Hormonal contraception (implantable, patch, oral, injectable).

c) Barrier methods of contraception: condom or occlusive cap (diaphragm or cervical/vault caps) with spermicidal foam/gel/
cream/suppository.

d) Continuous abstinence.

Schiller_2021: Non-involved tissue from lung tumor resections was used. All fresh tissues from patients in a given timeframe
without any specific selection criteria were included. Only patients with obvious chronic lung disease as comorbidity based on
their lung function parameters prior to tumor resection were excluded.

Schultze_unpubl: Patients undergoing lung tumor resections. At Hannover Medical School, MHH, patients with lung cancer
were recruited in the course of their operation, i.e. surgical tumor resection according to the ethical vote of the German
Centre for Lung Research (DZL), ethical vote 7414 and data safety guidelines. There was no further bias in patients
recruitment since the samples were collected as fresh native tissue following surgical tumor resection and availability of
“surplus” adjacent non-malignant lung tissue, which was resected in parallel to the tumor tissue.
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Tata_unpubl: Transplant donor tissues were collected from individuals that died from accidental death. Lungs were screened
by PCR and antigen testing to exclude HIV, HCV, Burkholderia and other respiratory viruses. Sub-transplant quality transplant
donor tissues were collected from individuals that died from accidental death.

Ethics oversight Banovich_Kropski_2020: Vanderbilt IRB nos. 060165 and 171657 and Western IRB no. 20181836
Barbry_unpubl: CHU Nice, registered at clinicaltrials under reference NCT04529993.
Duong_HUBMaP_unpubl: brindl.urmc.rochester.edu/
Jain_Misharin_2021: Protocol was approved by Northwestern University IRB (STU00214826)
Misharin_2020: Protocol was approved by Northwestern University IRB (STU00212120).
Nawijn_2021: University Medical Center Groningen Institutional Review Board (ABR number NL69765.042.19)
Schiller_2021: local ethics committee of the Ludwig-Maximilians University of Munich, Germany (EK 333-10 and 382-10).
Schultze_unpubl: ethical approval of Hannover Medical School Nr. 7414, 2017
Tata_unpubl: Duke University Institutional Review Board (Pro00082379) and the University of North Carolina Biomedical
Institutional Review board (03-1396).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size All large, publicly available single-cell lung datasets were included in the HLCA where available. For the HLCA core, 10X data of non-diseased
lung tissue was included. For the atlas extension, disease data was included as well, from any UMI-based single cell protocol. Furthermore,

data from groups who offered to share unpublished data (data generation included in the methods, data included in the -publicly available-
HLCA was included. No other data was generated for the HLCA.

Data exclusions  No data were excluded from the analysis. For the HLCA core, only data of control (i.e. non-diseased) tissue was used, as the HLCA core serves
as the control/healthy reference. All other data was included in the extended HLCA.

Replication No replication experiments were done. One of the goals of building the HLCA, i.e. pooling data across studies, is to enable checking
reproducibility of findings across studies.

Randomization  There were no different experimental groups, such as treated versus control, in the newly generated HLCA data.

Blinding As there were no different experimental groups, there was also no blinding.

Lc0c Y21o
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XX XXX s
OXOOOO

Dual use research of concern

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NCT04529993
Study protocol https://clinicaltrials.gov/ct2/show/study/NCT04529993

Data collection Participants recruited by the Pneumology Unit of the Nice University Hospital were sampled between the 1st and the 15th of
December 2020. The full procedure is detailed in https://www.clinicaltrials.gov/ct2/show/NCT04529993. Nasal and tracheobronchial
samples were collected from IPF patients after obtention of their informed consent, following a protocol approved by CHU Nice. The
data was derived from the clinical trial registered at clinicaltrials under reference NCT04529993. This study was described as an
"interventional study" instead of an "observational study" because the participants were volunteers and all assigned to a specific
bronchoscopy not related to routine medical care. Participants were prospectively assigned to a procedure (bronchoscopy) according
to a specific protocol to assess our ability to sample the airway. No other procedures were included in this study. "Participants
recruited by the Pneumology Unit of the Nice University Hospital were sampled between the 1st and the 15th of December 2020.
The full procedure is detailed in https://www.clinicaltrials.gov/ct2/show/NCT04529993".

Outcomes As this study did not involve any treatments are tracking of patients, just a single biopsy from volunteers, "outcomes" were not
tracked in this study.
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