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Abstract
A thermoelastic solution is derived for the problem of an
inhomogeneous, fully anisotropic layer subject to an arbitrary non-uniform
through~-thickness temperature variation. The material properties vary

smoothly through the thickness.

1. Introduction

The analysis of thermal stresses in anisotropic media has been of
technological interest since the application of composites in the aerospace
industry. In this context, multi~layered slabs or laminates are generally
employed, the unidirectional distribution of the reinforcing fibers being
varied from lamina to lamina. Motivated by the advantageous properties of
these structures, an arsenal of techniques for the thermal stress analysis
of anisotropic plates with discontinuous material properties has been
developed [1, 2]. Central to these approaches is the representation of each
composite lamina as an equivalent homogeneous ﬁaterial, according to one of
"the numerous available effective medium theories [3]. Analyzing the

composite material in its effective representation yields the average, or



macro-stresses. The determination of the local or micro-stress field for
multi-phase media has received considerable attention as well [4 and
references therein, 5, 6].

A common feature of the vast majority of micro- and macro-stress
analyses is that the material inhomogeneities appear solely in a
discontinuous fashion. By contrast, materials with properties that smoothly
vary with position are attracting ever-increasing attention in the
contemporary technology. This is the case for campositionally modulated
composites, for which the distributions of the embedded phases are designed
So that the macroscopic response is optimized for a prescribed application.
A typical problem for this class of materials - known as Functionally
Gradient Materials, or FGM - is the minimization of the thermal stresses
generated during fabrication and subsequent service [7].

Problems involving layers of smoothly inhomogeneous materials are
frequent in the areas of microelectronics, sensors, and of coating
technology, where anisotropic thin films are commonly encountered not only
in monocrystalline form, but also as multi-crystalline structures - like the
micron-scale electromechanical devices, or MEMS [8] - and as larger(
partially polycrystalline ceramic coatings. These typically present a
continuous through-thickness variation in the microstructural portrait,
which is a function of the deposition parameters [9].

With this background, in this paper the thermoelastic problem of an

_inhomogeneous anisotropic layer with material properties that vary smoothly
through the thickness is examined. The problem is formulated in Section 2,

and subsequently solved, for the case ofan arbitrary through-thickness



temparature variation, via a semi-inverse technique, relying on the
assumptions of simply-connectedness of the body. Some general properties of
the solution are discussed in Section 4, where applications to specific
classes of materials are also presented.

While this research was mainly motivated by the described developments
in the fields of composite materials and thin films, where the analysis is
performed on a point-wise homogenized representation of the materials
[(7,10], the present solution is applicable for the analysis of materials
with chemical composition gradients and/or temperature-dependant material

properties. Classical treatments for these media are found in (2,11,12].

2. Problem generalities.

Let the plate ~-h < :(35 h, with lateral boundary F(x1,x2) = 0, be
subject to a through-thickness thermal strain field
*
€ =g6ﬂx£ (1)

where o and 6T denote the thermal expansion tensor and the temperature
variation fields, respectively. Let the constituent material be
arbitrarily anisotropic and inhomogeneous, with material properties smoothly
varying with position. The plate is not subjected to any external mechanical
load: The body forces and the boundary tractions are zero everywhere.

Introducing the plane stress assumption

Tiz = O i=1,2,3 (2)



together with the assumption of independence of the stress field on the
in-plane coordinates, the equations of equilibrium are automatically
satisfied, and the only field equations governing the problem are

( oT ) =0 (3)

e e S, T +
ikt ' ZimaB TaB T %jm
representing geometric compatibility for a simply connected body. Here and
below, e is the permutation symbol, and S is the tensor of elastic
*

compliances, which is related to the total strain €, the thermal strain €

and the stress T as
*
€ =87+ €. (4)

Following current use, we indicate partial differentiation of the function

f(x) with respect to x by f,n + and employ the summation convention.

3. The case of material properties varying along x_ only.

3

If the material properties S and o are functions of X only, then (3)

simplifies to

0T )

e e S. + , 5
i53%m ¢ %5mag e T Yim 3= O ()

the only non-trivial independent components of which are



(50375 T‘y& + 0&6 4T )’33 =0 . (6)

for (a,B) = (1,1), (1,2), (2,2). Integration of these three equations

yields

saﬁya 776 = %43 X, + Qaﬁ— aaB 0T = Aaﬁ (7)

where Pa and Qaﬁ are six unspecified constants. Equation (7) may be

B

rewritten as

17}
14

]
>

A (8)

where S and A are defined as

S 28
12 26 S22 AZ
S = 28 = 9
= 16 66 s26 ! A A6 ()
S 28 A

Here, the usual plane stress notation convention is adopted, identifying the
pairs of tensorial indices 11, 12 and 22 with the single indices 1,6, and 2,

respectively. This convention will be employed in the sequel, whenever

advantageous.

Solving (8) yields the in-plane stresses



a8 = Pag / D (10)

where D = det S (assumed non zero everywhere), and 91, qz, and %2
are the determinants of the matrices obtained from S upon substitution of
the first, second and third column with the A vector, respectively.

The stress-free boundary conditions on X, = + h are automatically
satisfied, given (2), while the analogous conditions on the lateral boundary

are violated, in general, since the stresses 7 8 are non-vanishing functions
o

of xg only. However, the constants PaB’ QaB may be specified so that

§ .8 dx, = ) 7B x dx. =0 for o,8 = 1,2 (11)

These six conditions ensure that the resultant force and moment acting
on any line section of the lateral boundary vanish. Thus, a

Saint-Venant-type solution is obtained. The equations (11) are equivalent to

the linear system

S I A = Lo (12)

where the following vectors are introduced



z o+ ;
Jolay, 2, +a, By ™ @qp %y 1 9%y
= + -
E Jola, 2, +a, Lo 2 Y 1 9%
+ -
R CPPR I B33 ™ @y 351 9%y )
(13)
+ -
Flay, 2 v a2 ¥y By 1 X5 dxg
G = + -
= fla, 2, +a Lo ~ oy 4 1 X dxg
+ - d
fla, 2,5+ ay B33~ @y 331 x5 dx,
p' = ;9 = 0 (14)
= ‘(22’ 12’11) P9 ‘(sz’ 12’Q11)
together the 3x3 matrices Bn, n=20,1,2, defined by
n n
= ) 15
Raﬁ ] *5 zﬁa dxs (13)
In equations (13,15), 2 denotes D times the determinant of the cofactor

Ba

matrix associated with the element in row o and column g of the matrix §,

and all integrations are performed over the entire thickness of the layer.
Once the constants Paﬁ’ QaB are found by solving (11), the stress field

is given by (10), and the strain field is obtained through (4). Integration

of the strain-displacement relation yields the displacements:

= + +
WS X ep X et 2 e paxg
= + + 16
u2’ X, € F X €+ 2 | 523dx3 (16)
2 2
= d - + + 2
up = f gy dx - (% ‘1,3 T X3 T 2 X X6, 5/



4. Applications and Discussion,
Some general features of the solution presented in Section 3 are now

discussed, prior to the consideration of specific subcages:

a) Necessary conditions for the point-wise vanishing of the stresses

are

oT) 33 =0 a,B

1l

o 1,2, (17)

as may be deduced from (6). Thus, the material inhomogeneity may cause the

stresses to be non-zero even for a uniform temperature variation.

b) 1In general, all strain components are non-zero, vary through the

*
thickness only, and differ from the corresponding components of €.

¢) The curvatures w

i
e

depend on x 3 only. The principal

af 3,a08

curvatures are generally different.
Explicit solutions are now given for some classes of materials.
(i) Case 1: S is an even function of x3.
If all components of the tensor S exhibit an even functional dependence

0] 2
on x3, then all RaB and RaB vanish, in the present coordinate system, and

h d 1 . i
the Paﬁ ecouple from the Qaﬁ It is found that



1 1 1 1 1 1
P = — + -
{F (R, R R,y Ryy) + F (R, R R,. R__)

11 22 21 1 12 11 "32
* F3(R;1 R:2 - R:1 Rgz)} / '

Poo = {F1(R;2 R;3 - R;Z R;s) * FZ(R;Z R:3 - Rlz R;3) (18)
* F3(R;2 Rls - Rlz R;S)} / D'

Pip = {F1(R;1 R;S - R;1 R;3) * Fz(R;1 R:3 - R:1 R;s)
* F3(R;1 Rls N R:1 Rgs)} /D

The constants Qaﬁ are obtained by substituting Gi for Fi in these

. 1, . 1
expressions. In (18), D is the determinant of R.

(ii) Case 2: S is an odd function of Xy

If all components of the tensor S exhibit an odd functional dependence
1 .
on x., then R vanishes, and (12) decouples again. The Qaﬁ are now given by
1, 0 0 .
the right-hand-sides of (18), upon substituting B1and D with R and D, while

1 1
the Paﬁ are again obtained from (18), but upon substituting Fi’ R and D

, 2 2
with Gi' R and D .
(iii) Case 3: Homogeneous material properties.

While equations (18) and their analogues for the Qa also apply to

8

problems involving homogenous materials, a different choice of constants

leads, for this special case, to the following simpler formulation:



If the material properties S and o are spatial constants, the only

non~trivial independent conditions obtained from (3) are

s + =0 1s
afyd Ty8,33 %g 97T 13 (19)
for (a,B8) = (1,1), (1,2), (2,2). The solution of these is
- 3 2
TaB,33 Dog 0T 33/ Dy (20)
and thus
= - 6 + ' + " 21
T B o 8T/ D Kaﬁxs K B (21)
where the D are obtained from the D upon substitution of A with « _,
af af af af
and the Kaﬁ' K o are constants of integration. These constants are
determined by imposing (11). Explicitly, this procedure yields
K , = D "= D 22
where
3 -1 -1
p =3 (2h" D) , q = (2hD), (23)

and

10



h h
R, = | 6T(x3) cix3 , M = h; X 6T(x3) dx3 (24)

-h T -

For a linear thermal variation field the stresses are zero, in
accordance with the exact thermoelastic theory [13), and in constrast with
the inhomogeneous case. Actually, equations (22-24) may be obtained by
imposing that the stresses be zero under arbitrary linear thermal loading.
If this procedure is adopted, the Saint-Venant conditions (11) are then

identically true. The displacements for the homogenecus case are again

calculated by (16).

Specializing the material to be orthotropic in the natural reference

frame,

66 '°12 1 “22
== S -
Dip = 2 Sge gy Sy, %o S1p)
(25)
D_ =0
12
Dpp =2 Sgg @y, Sy = 8.0,

-and thus the in-plane shear stress vanishes. If the material is further

specialized to be transversely isotropic around X

11



D

D = / + 26
o ! @b g/ (5 +5,), (26)
where o is the in-plane thermal expansion coefficient, 6a6 is Kronecker’'s
mb s = = . = i i . i
symbol, and %1 %2 Clearly, q1 52 in this case. If the material

is isotropic, the solution of [14] is recovered.
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