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ABSTRACT: The microenvironment inside of the pores of
mesoporous silica nanoparticles is probed using spectroscopic
techniques. The probe molecules are sealed inside of the pores
by a nanovalve system that is capable of controlling the access
to the pore and ensuring the exclusive probing of the pore
environment without any interference from the probe
molecules on the outer surface of the particles or from the
surrounding solution. Rigidochromism studies are used to
evaluate the rigidity of the solvent matrix inside of the pore, and
dynamic fluorescence anisotropy experiments are employed to determine the rotational diffusion freedom of the probe molecule.
The data show that those probe molecules are neither completely free to move nor tightly attached to the pore wall, and their
mobility is changed by altering the charge of the pore wall.

SECTION: Surfaces, Interfaces, Porous Materials, and Catalysis

The use of molecular probes and spectroscopic methods to
reveal the properties of the confined environment in sol−

gel films and monoliths has been well-developed.1−15 Despite
the success of those studies, little is known about the
microenvironments of mesopores in silica nanoparticles.
Mesoporous silica nanoparticles (MSNs) have been widely
used in the field of controlled delivery, and many studies have
been devoted to modifying the pore walls to accommodate the
loading and docking of guest molecules.16−19 Yet, there is
limited quantitative understanding of the influences of the pore
confinement on the guest molecules in these systems. It
becomes more interesting when the sizes of those guest
molecules are comparable to the diameter of the pore wall,
where the interactions among the pore wall, the solvent
molecules inside of the pore, and the guest molecules are
strongly coupled. One of the major obstacles for implementing
spectroscopic methods to study the interior pores of MSNs is
the necessity to fully differentiate the inner surface of the pore
walls versus the outer surface of the particles. In this Letter, we
employ a nanovalve system19,20 to facilitate the discrimination
of the pore spaces in MSNs. Probe molecules are loaded and
trapped in the mesopores by the nanovalve, while those
absorbed on the outer surface are removed during subsequent
washing steps. Two types of spectroscopic experiments are
conducted to probe the microenvironment inside of the pores
of MSNs. The rigidochromism effect provides information
about the local rigidity surrounding the guest molecule,21−24

and the dynamic fluorescence anisotropy study reveals the
tumbling mobility of the guest molecule.25−29 With these
techniques, we elucidate the pore confinement effect on the
guest molecules.

The MSNs are synthesized according to a well-established
procedure,16,19 and the particle size is around 100 nm while the
pore diameter is around 2.3 nm (Figure 1A and the Supporting
Information). A nanovalve system was grafted at the pore
opening of the MSNs, which allowed us to probe primarily the
mesopores with minimal interference from probe molecules
either on the outer surface or in the surrounding solution.20

This nanovalve consists of two parts, an aromatic amino
compound (the “stalk”) attached at the surface of the MSNs
and a cyclodextrin molecule that encircles the stalk molecule via
supramolecular interactions in aqueous solution (Figure 1B).
The probe molecules are loaded into the pores of thread-
modified MSNs, and the cyclodextrin is then introduced to
form the supramolecular structure and block the pore access.
After extensive washing, only those probe molecules inside of
the mesopores remain for the spectroscopic studies. On the
basis of TGA data and model calculations, the average number
of the stalk molecules around one pore opening is estimated to
be around 3.7, which is sufficient to fully control the pore
access (Supporting Information). It is worth noting that the
length of the pore is much greater than its diameter, and
therefore, the number of the probe molecules that are in
vicinity of the nanovalves makes up a negligible portion of the
total probe population, ensuring minimal interference from the
nanovalves.
Many guest molecules of interest, such as chemotherapy

drugs that are loaded into MSNs, are hydrophilic and have
diameters around 1.0−1.5 nm.16,18,19 Therefore, a probe
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molecule is chosen to have similar properties. Once they are
loaded into the pores, the space between the guest molecule
and the pore wall fits at most three to four water molecules
(Figure 1C). This leads to a complicated interaction between
the guest molecule and the pore wall that cannot be treated as
either a “molecule in solvent” or a “molecule on substrate”
model. In order to minimize preferential orientation of long
aspect molecules along the pore direction, the probe molecule
needs to be highly symmetric to average out the potentially
anisotropic influence from the pore wall and the solvent
molecules inside of the pore. Moreover, the fluorescence
lifetime of the probe needs to be long enough to allow an
ample time window for the spectroscopic studies. With those
criteria, tris(bipyridine)ruthenium(II)hexafluorophosphate
(RuBPy) was chosen as the probe due to its appropriate size,
water solubility, highly symmetric shape (D3 point group), and
long fluorescence lifetime. Around 0.8 wt % of RuBPy was
loaded into the nanoparticles, and the average distance between
two RuBPy molecules inside of the pore was estimated to be
around 11 nm (Supporting Information), which is long enough
to prevent interference from intermolecular energy transfer
among the RuBPy molecules.
Different pore environments are achieved by modifying the

pore walls with either 3-aminopropyltriethoxysilane or 3-
(trihydroxysilyl)propylmethylphosphonate to introduce posi-

tive or negative charges, respectively. These charge modifica-
tions inside of the mesopores help evaluate the behavior of
probe molecules inside of the confined mesopores (Figure 1D).
Rigidochromism studies provide a simplified picture about

the rigidity of the environment inside of the pore. The principle
of the rigidochromic effect is illustrated in Figure 2. Generally,

when a RuBPy molecule is placed in a solvent matrix, the
surrounding solvent dipole moments can be considered to be
randomly oriented because its ground-state permanent dipole
moment is negligible.30−32 When the RuBPy is in its metal-to-
ligand charge-transfer excited state, it has a relatively large
dipole moment with a direction from a ligand to the metal
center.32,33 If the solvent molecules are free to move, they
reorient themselves such that their dipole moments align with
that of the excited RuBPy molecule. In this case, the emission
from the RuBPy molecule has a relatively lower energy. On the
contrary, when the surrounding environment is rigid, the
solvent molecules will not reorient, and the corresponding
emission from this RuBPy molecule is at a higher energy.3,9

The absorption and emission maxima of different samples are
summarized in Table 1. When loaded into the confined

mesopores, the Stokes shift of RuBPy decreases compared to
that of the RuBPy solution. This result indicates that the water
molecules inside of the mesopores are less mobile than those in
a bulk solution and form a more rigid matrix. The positively
charged amine-modified sample gives a Stokes shift of 5.56 ×
103 cm−1, which has a lower energy than that of the negatively
charged samples (the phosphonated sample at 5.25 × 103 cm−1

and the silanol−surface sample at 5.38 × 103 cm−1). This result
shows that the RuBPy molecules are in a more rigid
environment as the surrounding pore wall becomes more
negatively charged. When the pore wall becomes more
negatively charged, the RuBPy molecules are more strongly
attached to the pore wall. This change accounts for the
increased rigidity of the local environment because the water

Figure 1. (A) An illustration of the probe molecules sealed inside of
the mesopores by the nanovalve. (B) The components of the
nanovalve. (C) A dissection of the pore showing the to-scale
comparison of the sizes of the probe molecule, the pore diameter,
and the water molecules. (D). Different pore wall modifications
employed in this study.

Figure 2. The principle of the rigidochromism effect. The energy of
emission 1 is higher than that of emission 2 due to the inability of the
matrix molecule reorientation. The corresponding Stokes shift for
emission 1 is smaller than that of emission 2.

Table 1. Results Summary of the Rigidochromism Studies

wavenumber (cm−1) × 103

samples absorption emission Stokes shift

RuBPy solution 22.08 16.26 5.82
amine 21.88 16.32 5.56
silanol 21.88 16.50 5.38
phosphonate 21.88 16.63 5.25
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molecules close to the pore wall are more rigid than those in
the middle of the pore, and the effect of the rigid silica wall on
the RuBPy becomes more prominent.
In order to achieve a more detailed understanding of the

pore confinement effect posed on the guest molecule, dynamic
fluorescence anisotropy experiments are employed to evaluate
the tumbling freedom of the RuBPy molecule. In these
experiments, RuBPy molecules encapsulated in the mesopores
are irradiated by a polarized excitation pulse beam, and the
fluorescence anisotropy of the emitted light is measured.
Because the probability of exciting a fluorophore molecule
depends on the angle between the transition dipole and the
electric field vector of the excitation light and because the
fluorophore molecules are randomly oriented, the resulting
fluorescence emission is partially polarized, and this can be
characterized by the fluorescence anisotropy (Figure 3A).

When the molecules are mobile in the environment, the
tumbling of the excited molecules before their emission causes
a decay of the fluorescence anisotropy. This decay can be
continuously monitored, and the corresponding curve can be
fitted with a single-exponential function. The decay time
constant, which is defined as the fluorescence anisotropy
correlation time τc , reflects the rate of the rotational diffusion
of the RuBPy molecule and therefore reveals the pore
confinement effect on the molecule.27,29

The fitting of the fluorescence anisotropy decay curves is
shown in Figure 3B. The τc values obtained from the fitting are
listed for each sample. Meanwhile, the fluorescence lifetime of

each sample is also calculated through fitting the total
fluorescence intensity decay with an exponential decay curve
(Supporting Information). The amine-modified, positively
charged sample gave a fluorescence correlation time of 0.75
μs and a fluorescence lifetime of 1.15 μs. This lifetime is much
longer than that of a RuBPy solution (0.49 μs) and is indicative
of the entrapment of RuBPy inside of the pores. The
fluorescence correlation time (0.75 μs) is also an order of
magnitude longer than that of the RuBPy solution (0.025 μs),
which proves that the RuBPy molecules are in a restrained
environment and their mobility is highly limited.
The emission lifetimes in the phosphonated and the silanol

samples are 0.84 and 0.94 μs, respectively, which are similar to
each other but different from the values from the solution and
the amine-modified samples. This indicates that the RuBPy
molecules are in a different environment and is caused by the
negatively charged pore surfaces in the phosphonated and the
silanol-surfaced samples. The silanol−surface sample exhibited
a fluorescence correlation time of 1.31 μs, and the
phosphonated sample gave 1.48 μs. These values are much
larger than that of the anime-modified sample, which reveals
that Ru-triBPy molecules are much less mobile in these
negatively charged environments than in a positively charged
one. This result is expected because the RuBPy ion is positively
charged and the charge distribution is symmetric. In the
negatively charged samples, the Ru-triBPy molecules are most
likely more attached onto the pore wall because of the
electrostatic attraction, which significantly decreases their
mobility. In contrast, the positively charged wall in the
amine-modified sample does not have strong affinity toward
RuBPy cations. As a result, the RuBPy molecules can move
more freely. This result is consistent with that from the
rigidochromism studies, where the positively charged wall
appears to have less impact on the environment rigidity
surrounding the RuBPy molecules.
In summary, nanovalves facilitate the study of the properties

inside of confined mesopores of MSNs and help eliminate the
interferences from the outer surface and the surrounding
solution. When the size of the guest molecules is comparable
with the pore diameter, the effect of the pore wall confinement
is prominent, and this can be quantitatively determined and
compared among different pore wall modifications by using
rigidochromism and dynamic fluorescence anisotropy studies.
Our data prove that these guest molecules are neither
completely free to move nor tightly attached to the pore wall,
and their mobility can be strongly affected by the charge
modification of the pore wall.
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