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A B S T R A C T   

Objective: Obesity is an established risk factor for higher SARS-CoV-2 viral loads, severe COVID-19 pneumonia 
requiring hospitalization, and worse outcomes. However, the underlying mechanisms for the increased risk are 
not well understood. SARS-CoV-2 is a respiratory virus with the primary route of entry through the lungs, where 
the Spike protein of SARS-CoV-2 binds to the ACE2 receptor on pneumocytes. Lung surfactant produced by type 
II pneumocytes plays a major role in respiratory defense against infections. Surfactant predominantly contains 
lipids, especially phosphatidylcholines (PC), and obesity is characterized by aberrant lipid metabolism. We 
hypothesized that altered lipid composition in lung surfactant in obesity may promote SARS-CoV-2 infection, 
leading to severe COVID-19 disease. 
Methods: Lipidomic analysis of lung tissue and bronchoalveolar lavage fluid (BALF) was performed using LC-MS/ 
MS. The effects of PCs on SARS-CoV-2 pseudovirus infection were studied in HEK293T cells with ACE2 over-
expression and in Vero-E6 cells with endogenous ACE2 expression. For the cell-cell fusion assay, HEK293T-ACE2 
and HEK293T expressing SARS-CoV-2 Spike/eGFP were used as the target and effector cells, respectively. 
Results: Lipidomic analysis revealed that myristic acid-containing dimyristoyl-PC (DMPC) and 
palmitoylmyristoyl-PC (PMPC) were reduced in lung tissue and BALF from high fat diet-induced obese mice. 
DMPC and PMPC markedly inhibited wild type and D614G mutant SARS-CoV-2 infection in HEK293T-ACE2 and 
Vero-E6 cells. Feeding obese mice with trimyristin, the triglycerides of myristic acid, increased DMPC and PMPC 
levels in lung surfactant. Lipid extract from BALF of trimyristin-treated obese mice mitigated the elevated wild 
type and D614G mutant SARS-CoV-2 infection. The inhibitory effects of DMPC and PMPC on SARS-CoV-2 
infection were reversed by cholesterol. 
Conclusions: The reduced DMPC and PMPC in lung surfactant may promote SARS-CoV-2 infection. Increasing 
DMPC and PMPC in lung surfactant could be an innovative strategy for preventing and treating severe COVID-19 
disease in obesity.   

1. Introduction 

The ongoing COVID-19 pandemic caused by SARS-CoV-2 infection 
has led to more than 6 million deaths worldwide [1,2]. Although it is 
well documented that obesity is a major risk factor for higher SARS-CoV- 
2 viral load, severe COVID-19 disease, and worse outcomes [3–5], the 

underlying molecular mechanisms are not well understood. The proin-
flammatory status, impaired immune response, thrombogenic responses 
to pathogens, and dysregulation of the renin-angiotensin system may be 
involved [3–5], but experimentally validated evidence for these mech-
anisms is limited. 

COVID-19 is primarily a respiratory disease, and the initial viral 

* Corresponding authors. 
E-mail addresses: jshan@njucm.edu.cn (J. Shan), qin.yang@uci.edu (Q. Yang).   

1 Kang Du and Ling Sun contributed equally to this work. 

Contents lists available at ScienceDirect 

Metabolism 

journal homepage: www.journals.elsevier.com/metabolism 

https://doi.org/10.1016/j.metabol.2022.155181 
Received 3 December 2021; Received in revised form 18 February 2022; Accepted 14 March 2022   

mailto:jshan@njucm.edu.cn
mailto:qin.yang@uci.edu
www.sciencedirect.com/science/journal/00260495
https://www.journals.elsevier.com/metabolism
https://doi.org/10.1016/j.metabol.2022.155181
https://doi.org/10.1016/j.metabol.2022.155181
https://doi.org/10.1016/j.metabol.2022.155181
http://crossmark.crossref.org/dialog/?doi=10.1016/j.metabol.2022.155181&domain=pdf


Metabolism 131 (2022) 155181

2

entry is through the respiratory tract. The lungs are constantly exposed 
to microbes from aspiration. During evolution, the lung has developed 
dedicated defense systems to prevent infections. Surfactant produced by 
type II pneumocytes is a frontline of the lung host defense system [6]. 
Lung surfactant is a complex mixture of lipids and proteins, with 
approximately 90% lipids, predominantly phosphatidylcholines (PCs), 
and 10% proteins by mass [7,8]. The main function of surfactant is to 
reduce surface tension at the air-liquid interface to prevent alveolar 
collapse. Surfactant also plays a key role in host defense against infec-
tion and inflammation. The lipophilic lung surfactant fraction has anti- 
microbial and anti-inflammatory properties when applied intra-
tracheally to the lung as well as topically onto the skin [9,10]. 

Since obesity is characterized by aberrant lipid metabolism, we 
reasoned that altered lipid composition in lung surfactant may weaken 
its defense against SARS-CoV-2 infection. Our lipidomic analysis of lung 
tissue and surfactant revealed that dimyristoyl-phosphatidylcholine 
(DMPC) and palmitoylmyristoyl-phosphatidylcholine (PMPC) were 
reduced in obese mice. Importantly, DMPC and PMPC inhibited wild 
type and D614G mutant SARS-CoV-2 infection. Thus, increasing DMPC 
and PMPC in lung surfactant may reduce SARS-CoV-2 infection and 
prevent severe disease of COVID-19. 

2. Materials and methods 

2.1. Mouse studies 

The obese mouse model was generated by feeding C57BL/6J male 
mice (Jackson Laboratory, Bar Harbor, ME, USA) with a high-fat diet 
(HFD) for 12 weeks starting from 8 weeks of age [11,12]. For the tri-
myristin treatment, obese mice were fed the HFD containing 5%(wt/wt) 
trimyristin (J62819, Alfa Aesar, Tewksbury, MA, USA) for two weeks. 
Glucose and insulin tolerance tests were performed as described previ-
ously [11,12]. All mouse studies were conducted in accordance with 
federal guidelines and were approved by the Institutional Animal Care 
and Use Committee of the University of California, Irvine. 

2.2. Lipidomic analysis 

The nontargeted lipidomic analysis of lung tissue and BALF was 
performed as described, and the data were processed using MS-DIAL (v. 
2.78) software program [13]. The targeted lipid measurements used 
DMPC, PMPC and DPPC from Avanti as standards. 

2.3. Generation of SARS-CoV-2 pseudovirus 

Two types of SARS-CoV-2 pseudovirus particles were generated for 
studying Spike-mediated viral infection. The first type was based on the 
single-cycle lentiviral system using plasmids obtained from BEI Re-
sources repository [14]. The second type of pseudotyped SARS-CoV-2 
used the single-cycle vesicular stomatitis viruses (scVSVs) system 
[14,15]. The mutant D614G SARS-CoV-2 Spike gene was obtained from 
Addgene (158075). 

2.4. Measurements of SARS-CoV-2 pseudovirus infection 

HEK293T cells with stable overexpression of ACE2 (HEK293T-ACE2) 
were kindly provided by Dr. Jesse D. Bloom [14]. Vero E6 cells were 
obtained from ATCC (CRL-1586). SARS-CoV-2 pseudoviruses with 
different concentrations of DMPC, PMPC and DPPC dissolved in ethanol 
were inoculated to HEK293-ACE2 or Vero E6 cells. After 24 h of incu-
bation, SARS-CoV-2 viral infection rates were detected by GFP positive 
cells or measured by luciferase activity (E1501, Promega, Madison, WI, 
USA). In the experiments using cholesterol, cells were pre-incubated 
with cholesterol for 2 h before SARS-CoV-2 pseudovirus and lipids 
were added. 

2.5. Cell–cell fusion assay 

Cell–cell fusion assays were performed as described previously 
[16,17]. Briefly, the target HEK293T cells were transfected with 2019- 
nCov_pcDNA3.1(+)-P2A-eGFP plasmid (from Haisheng Yu and obtained 
from Genscript (Piscataway, NJ, USA)), resulting in simultaneous 
expression of spike protein and eGFP in the same cell. HEK293T-ACE2 
cells were used as target cells. The same amount of target and effector 
cells (1 × 104) were mixed and co-cultured in DMEM with or without 
lipids for 48 h in the 96-well plate. The cell-cell fusion rate was counted 
from five randomly selected fields under the fluorescence microscope. 

2.6. Statistical analyses 

GraphPad Prism software (La Jolla, CA, USA) was used to analyze 
statistical differences. The two-tailed student's t-test was used to 
compare two groups, and the analysis of variance (ANOVA) test was 
used to compare three or more groups. Data were displayed as the mean 
± standard error of the mean (SEM). Values of p < 0.05 were considered 
statistically significant. 

3. Results 

3.1. Lipidomic analysis of lung tissue and BALF in obesity 

HFD feeding markedly increased body weight, glucose, cholesterol 
and triglyceride levels, and impaired glucose and insulin tolerance 
(Supplementary Fig. 1A–F). BALF lipids from obese mice enhanced 
SARS-CoV-2 infection compared with lipids from lean control mice 
(Fig. 1A) in both HEK293T with ACE2 overexpression and Vero E6 cells 
with endogenous ACE2 expression. To identify potential lipids that 
promote SARS-COV-2 infection in obesity and diabetes, we performed 
nontargeted lipidomic analysis of lung tissue and BALF from obese and 
control lean mice [18]. The Principal Component Analysis showed that 
clustering of lipid profiles from obese and lean mice was readily sepa-
rated under either the positive or negative ion mode (Supplementary 
Fig. 2A–D). HFD feeding significantly altered 95 lipids in the lung and 37 
lipids in BALF compared with controls (Supplementary Fig. 2E–F). 
Among the altered lipids, 8 were commonly reduced in lung and BALF, 
while none was commonly increased (Fig. 1B). The eight reduced lipids 
included two PCs (14:0–14:0; 14:0/16:0), four PGs (16:0–22:6; 
16:0–16:1; 14:0–16:0; 16:0–20:5), one PI (16:0–22:6) and one PE 
(16:0–16:1) (Fig. 1B). Since PMPC (14:0/16:0) is relatively abundant in 
BALF [19,20] and another myristic acid containing PC (DMPC, 
14:0–14:0) was one of the most reduced lipids in obese BALF, we per-
formed targeted lipidomic studies using the standard compounds. We 
confirmed that DMPC and PMPC, but not the most abundant DPPC, were 
reduced in BALF of diet-induced obese mice (Fig. 1C–E). Lysophospha-
tidylcholine acyltransferases (LPCAT1–4) were not altered in the lung of 
diet-induced obese mice (Supplementary Fig. 3), suggesting the Land 
cycle is not involved in regulating DMPC and PMPC levels [21]. 

We then tested the effects of DMPC and PMPC on SARS-CoV-2 
infection using the pseudotyped virus system. Both DMPC and PMPC 
inhibited SARS-CoV-2 pseudovirus infection in HEK293T-ACE2 cells in a 
dose-dependent fashion. DMPC appeared to be more potent than PMPC 
(Fig. 1F–G), while DPPC had no effects on SARS-CoV-2 infection 
(Fig. 1H). The pseudotyped SARS-CoV-2 also expressed GFP as a marker 
for virus infection. DMPC and PMPC, but not DPPC clearly reduced 
positive GFP cells (Fig. 1I). Neither DMPC nor PMPC affected pseudo-
typed vesicular stomatitis virus (VSV) infection (Fig. 1J), suggesting 
DMPC and PMPC specifically inhibited SARS-CoV-2 infection. 

Similarly, DMPC and PMPC, but not DPPC inhibited SARS-CoV-2 
infection in Vero E6 cells with endogenous ACE2 expression 
(Fig. 1K–M). D614G, the common mutation of the SARS-CoV-2 Spike 
protein in alpha, beta, gamma, and delta SARS-CoV-2 variants, has been 
reported to enhance virus replication and transmission [22,23]. DMPC 
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and PMPC also potently inhibited infection of SARS-CoV-2 pseudovirus 
harboring Spike D614G mutation in HEK293T-ACE2 and Vero E6 cells 
(Fig. 1N–O). Thus, DMPC and PMPC inhibit SARS-CoV-2 infection, 
which provides initial evidence that reduced DMPC and PMPC in BALF 
may contribute to the increased SARS-CoV-2 infection in obesity and 
diabetes. 

3.2. Increasing DMPC and PMPC in BALF inhibits SARS-CoV-2 infection 

We designed two experiments to investigate whether increasing 
DMPC and PMPC in BALF may inhibit SARS-CoV-2 infection. First, since 
DMPC and PMPC were reduced in BALF of obese mice, we added DMPC 
and PMPC to BALF from obese mice and studied the effects on SARS- 
CoV-2 infection. In both HEK293T-ACE2 and Vero E6 cells, the addi-
tion of DMPC and PMPC to BALF from obese mice reversed the increased 
SARS-CoV-2 infection (Fig. 2A–B). In the second approach, we treated 
the HFD-fed obese mice with trimyristin, triglycerides of C14:0 myristic 
acid, and a precursor for BALF DMPC and PMPC [20]. Two weeks of 
trimyristin treatment did not alter body weight or glucose levels 
(Fig. 2C–D). BALF DMPC and PMPC were increased by 8.04 and 1.87 
folds, respectively, while DPPC was reduced in the trimyristin-treated 
obese mice (Fig. 2E–G). BALF from HFD-fed obese mice treated with 
trimyristin reversed the increased SARS-CoV-2 infection in HEK293T- 
ACE2 and Vero E6 cells (Fig. 2H–I). Importantly, trimyristin treatment 
also inhibited D614G mutant SARS-CoV-2 infection (Fig. 2J). These re-
sults suggest that increasing BALF DMPC and PMPC may be a promising 
therapeutic strategy for preventing and treating SARS-CoV-2 infection. 

The SARS-CoV-2 virus uses its Spike protein to bind ACE2 receptor 
on the cell surface to enter target cells. However, DMPC and PMPC did 
not affect Spike-ACE2 interaction (Supplementary Fig. 4). Cholesterol 
comprises 30 mol% of lipids in the cell membrane and plays an essential 
role in mediating SARS-CoV-2 entry to target cells [24–26]. Phosphati-
dylcholines are also the abundant phospholipids in the mammalian cell 
membrane [24,25]. We reasoned that DMPC and PMPC may alter cell 
membrane cholesterol abundance to inhibit SARS-CoV-2 infection. 
Indeed, cholesterol dose-dependently reversed the inhibitory effects of 
DMPC and PMPC on SARS-CoV-2 infection in both HEK293T-ACE2 and 
Vero E6 cells (Fig. 2K–L). The role of cholesterol in regulating the 
inhibitory effects of DMPC and PMPC on SARS-CoV-2 infection is further 
studied in the standard cell-cell fusion assay, in which HEK293T cells 
expressing Spike-eGFP fusion protein serve as target cells, and 
HEK293T-ACE2 cells work as effector cells [16]. The interaction be-
tween Spike and ACE2 fuses the target and effector cells, resulting in 
syncytia formation [17,25]. DMPC and PMPC disrupted the cell fusion 
between Spike and ACE expressing HEK293T. The effects were partially 
reversed by the addition of cholesterol (Fig. 2M–N). These results sug-
gest that DMPC and PMPC may inhibit SARS-CoV-2 infection by 
replacing cell membrane cholesterol. 

4. Discussion 

Since the outbreak of COVID-19 pandemic, epidemiological studies 
have provided convincing evidence that obesity is associated with 

higher SARS-CoV-2 viral loads, severe COVID-19 disease, and worse 
outcomes [3–5]. However, the underlying molecular mechanisms are 
not well understood. Lung surfactant is a frontliner of host defense 
against infections. Since obesity is characterized by aberrant lipid 
metabolism and lung surfactant contains 90% lipids, we hypothesized 
that altered lipid composition in lung surfactant may impair its protec-
tive effects on SARS-CoV-2 infection. Indeed, our lipidomic analysis 
shows that lung and surfactant DMPC and PMPC are reduced in obesity, 
which may contribute to the increased SARS-CoV-2 infection and severe 
COVID-19 disease. 

SARS-CoV-2 viruses infect target cells primarily through the inter-
action between viral surface spike protein and target cell membrane 
ACE2 [27,28]. The interaction triggers the membrane fusion between 
virus and target cells, leading to virus internalization. Our data show 
that DMPC and PMPC do not directly interfere with Spike-ACE2 inter-
action. Cell membrane cholesterol contents are necessary for membrane 
fusion and SARS-CoV-2 viral entry. Depleting cellular cholesterol blocks 
SARS-CoV-2 infection while adding cholesterol enhances SARS-CoV-2 
entry to cultured cells [24,29,30]. Multiple clinical studies show that 
statin use is associated with a reduced risk of developing severe COVID- 
19 [31,32]. Our data show that cholesterol reversed the inhibitory ef-
fects of DMPC and PMPC on membrane fusion, suggesting DMPC and 
PMPC may deplete or displace membrane cholesterol to inhibit SARS- 
CoV-2 infection. It is worth noting that cholesterol levels are often 
increased in obesity. The combination of cholesterol elevation and sur-
factant DMPC/PMPC reduction in obesity could synergistically enhance 
SARS-CoV-2 viral infection. 

The inhibitory effects of DMPC and PMPC on SARS-CoV-2 infection 
offer several potential therapeutic options for preventing or treating 
COVID-19 in obesity. We tested two approaches to increase DMPC and 
PMPC in the lung surfactant. In the first approach, adding DMPC or 
PMPC to BALF lipids extracted from obese mice reversed the increased 
SARS-CoV-2 infection. Natural surfactants from bovine or porcine lungs 
are FDA-approved drugs for treating pediatric and neonatal acute res-
piratory distress syndrome (ARDS) [33]. Although natural surfactants 
are not effective in treating ARDS in adults, DMPC and/or PMPC could 
be added to the natural surfactants with aerosolized/nebulized surfac-
tant preparations for treating COVID-19, especially at the early phase, to 
prevent viral entry to cells. In the second approach, treating obese mice 
with trimyristin increased BALF DMPC and PMPC and inhibited SARS- 
CoV-2 infection. Potentially, trimyristin could be used as a therapeutic 
agent to prevent or treat SARS-CoV-2 infection in obese patients. An 
alternative method is to treat bovine or porcine to increase DMPC and 
PMPC in the natural surfactants, which can be used for preventing SARS- 
CoV-2 infection. 

The current study has several limitations. Although lipidomic ana-
lyses of pulmonary surfactant in humans with asthma, cystic fibrosis and 
ARDS are reported [34,35], the phospholipid profiles in human obesity 
have not been studied likely because it is too invasive to obtain lung 
surfactant for lipidomic analysis from obese patients. Future studies 
using obese primates will be informative. Trimyristin treatment of obese 
mice increases DMPC and PMPC in BALF, but we cannot exclude a 
possibility that other lipids may be involved in inhibiting SARS-CoV-2 

Fig. 1. A. BALF lipids (25 μg/ml) from diet-induced obese mice enhance pseudotyped SARS-CoV-2 infection compared with lipids from lean control mice in both 
293T/ACE2 and Vero E6 cells (n = 6). The pseudotyped SARS-CoV-2 virus particles are generated by transfecting Lenti-X™ 293T cells with plasmids obtained from 
BEI Resources repository: SARS-CoV-2 Spike (NR-52514), HDM-Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519), HDM-tat1b (NR-52518), and Luciferase-IRES- 
ZsGreen (NR-52516). The Spike protein on the pseudotype virus serves as a ligand for viral internalization into HEK293T and Vero E6 with ACE2 expression. 
The luciferase activity is measured as a surrogate for the viral infection rates. B. Commonly altered lipids in lung and BALF of diet-induced obese and control lean 
mice. C–E. DMPC, PMPC, and DPPC levels measured by targeted lipidomics in BALF from chow or HFD-fed mice (n = 6). F–H. DMPC (F) and PMPC (G), but not DPPC 
(H), inhibit SARS-CoV-2 pseudovirus infection in 293T/ACE2 cells. The viral infection rate is measured by luciferase activity (n = 3). I. Representative images for the 
effects of DMPC, PMPC, and DPPC on the infection of SARS-CoV-2 pseudovirus harboring GFP in 293T/ACE2 cells (scale bars, 400 μm). The pseudotyped SARS-CoV-2 
viral particles express ZsGreen reporter, allowing the visualization of GFP fluorescence as an indicator for the viral infection. DMPC, PMPC, or DPPC lipids are 
dissolved in ethanol, and the same volume of ethanol was used as a control. J. Effects of DMPC, PMPC, and DPPC on pseudotyped vesicular stomatitis virus (VSV) 
infection in 293T/ACE2 cells. K–M. DMPC (K) and PMPC (L), but not DPPC (M), inhibit SARS-CoV-2 infection in Vero E6 cells (n = 4–6). N–O. DMPC and PMPC 
inhibit the infection of SARS-CoV-2 pseudovirus harboring Spike D614G mutation in 293T/ACE2 (N) and Vero E6 (O) cells (n = 6). *p < 0.05. 
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infection. Finally, data interpretation should be limited to males because 
only male mice are used in this study. 

In summary, our lipidomic analysis reveals that lung and surfactant 
DMPC and PMPC are reduced in obesity. Importantly, DMPC and PMPC 
inhibit both wild-type and D614G mutant pseudotyped SARS-CoV-2 
infection, suggesting the reduced surfactant DMPC and PMPC may 
contribute to a higher viral load and potentially severe COVID-19 in 
obesity. Increasing DMPC and PMPC in lung surfactant may be an 
attractive and affordable strategy to prevent the development of severe 
COVID-19, especially in obese patients. 
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