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Habitat Management to Reduce Human Exposure to
Trypanosoma cruzi and Western Conenose Bugs (Triatoma
protracta)

Lisa Shender,1 Michael Niemela,2 Patricia Conrad,1 Tracey Goldstein,1

and Jonna Mazet1

1One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
2California Department of Public Health, Sacramento, CA

Abstract: Chagas disease, which manifests as cardiomyopathy and severe gastrointestinal dysfunction, is

caused by Trypanosoma cruzi, a vector-borne parasite. In California, the vector Triatoma protracta frequently

colonizes woodrat (Neotoma spp.) lodges, but may also invade nearby residences, feeding upon humans and

creating the dual risk of bite-induced anaphylaxis and T. cruzi transmission. Our research aimed to assess T.

cruzi presence in woodrats in a previously unstudied northern California area, statistically evaluate woodrat

microhabitat use with respect to vegetation parameters, and provide guidance for habitat modifications to

mitigate public health risks associated with Tr. protracta exposure. Blood samples from big-eared woodrats (N.

macrotis) trapped on rural private properties yielded a T. cruzi prevalence of 14.3%. Microhabitat analyses

suggest that modifying vegetation to reduce understory density within a 40 meter radius of human residences

might minimize woodrat lodge construction within this buffer area, potentially decreasing human exposure to

Tr. protracta.
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INTRODUCTION

In the United States, at least 24 wildlife species are docu-

mented hosts for Trypanosoma cruzi (Bern et al. 2011), a

zoonotic vector-borne parasite that causes Chagas disease

in humans and dogs. Characterized by chronic cardiomy-

opathy and severe gastrointestinal dysfunction, Chagas

disease has an insidious onset in humans. Clinical symp-

toms generally do not present until decades after vectorial

pathogen transmission has occurred, at which point the

patient may have missed the window of opportunity for

effective chemotherapeutic treatment of this often fatal

disease (Marin-Neto et al. 2009). Although Chagas disease

is most frequently acquired in Latin America, locally ac-

quired cases are periodically documented in the United

States (Bern et al. 2011), and recent serological studies

indicate that local pathogen exposure may occur more

frequently than previously realized (Cantey et al. 2012).

Therefore, where the risk of Chagas disease transmission

exists, it is important to improve upon regional knowledge

Electronic supplementary material: The online version of this article (doi:10.1007/

s10393-016-1153-5) contains supplementary material, which is available to autho-

rized users.

Published online: August 11, 2016

Correspondence to: Jonna Mazet, e-mail: jkmazet@ucdavis.edu

EcoHealth 13, 525–534, 2016
DOI: 10.1007/s10393-016-1153-5

Original Contribution

� 2016 The Author(s). This article is published with open access at Springerlink.com

http://dx.doi.org/10.1007/s10393-016-1153-5
http://dx.doi.org/10.1007/s10393-016-1153-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10393-016-1153-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10393-016-1153-5&amp;domain=pdf


of T. cruzi reservoirs and vectors, especially in less-studied

regions, such as parts of northern California.

In California, western conenose bugs (Triatoma pro-

tracta) are often infected with T. cruzi, as was first dis-

covered in 1916 from specimens collected within a

woodrat’s large stick house, or lodge, in San Diego County

(Kofoid and Donat 1933). The close ecological association

between woodrats (Neotoma spp.) and conenose bugs

creates ideal conditions for a sylvatic T. cruzi transmission

cycle, with woodrats serving as a primary reservoir. Fur-

thermore, several woodrat species can adapt to perido-

mestic environments, nesting in and around private

property structures located within woodrat habitat,

resulting in an interface where T. cruzi can spillover from

the sylvatic cycle to domestic animals and humans. When

zoonotic pathogens, such as T. cruzi, are present in the local

rodent population, it is prudent to practice control mea-

sures to reduce the risk of disease transmission to rural

residents. However, the use of rodenticides, a seemingly

attractive quick-fix for rodent control, is impractical at the

landscape level and potentially damaging to local popula-

tions of nontargeted wildlife species, due to direct or sec-

ondary toxicity effects (Stone et al. 1999; Riley et al. 2007).

In contrast, habitat modification may serve as a nontoxic

means of managing woodrat populations, yet methods to

implement this option have not been well described or

made publicly available to property owners.

Although woodrat habitat use in California has been

studied in relatively pristine woodland areas, the use of

microhabitats has not been examined on private properties

where T. cruzi transmission is a risk and anthropogenic

factors might affect woodrat behavior. Dense vegetation

supports larger woodrat populations and construction of

woodrat lodges (Fargo and Laudenslayer 1999), thus pro-

viding more sites for conenose bug colonies. During the

warm summer months, adult bugs disperse from their

colonies and, when drawn to nearby lights, can invade

human residences. Once in the home, the bugs find refuge

in furniture (e.g., beds and couches) and animal bedding to

emerge nightly and feed upon people and their pets. In

addition to posing a risk for Chagas disease transmission,

the bite of Tr. protracta can be allergenic and incite severe

anaphylaxis (Moffitt et al. 2003; Klotz et al. 2010). The

annual incidence of allergic reactions to Tr. protracta bites

is unknown (Moffitt et al. 2003). However, the finding that

6.7% of study participants had elevated Tr. protracta-

specific IgE antibodies led authors to conclude that 30,000

Californians were susceptible to bite-induced allergic

reactions (based on 1983 California population data)

(Marshall et al. 1986). Thus, it is clear that preventive steps

to reduce home invasion by conenose bugs should be fol-

lowed in high-risk areas.

Public information is lacking on how small-scale

microhabitat characteristics and alterations influence the

presence or absence of vectors and reservoirs of T. cruzi

near rural home dwellings. Furthermore, the prevalence of

T. cruzi in northern California woodrat populations has not

been studied. Therefore, our primary research goals were to

(1) assess a northern California woodrat population for the

presence of T. cruzi; and (2) evaluate woodrat capture

locations with respect to vegetation density in the rural

home environment. In addition, combining our data with

previous studies on woodrat microhabitat use in California,

we aimed to propose habitat modifications that should

minimize woodrat activity adjacent to human dwellings,

thereby potentially reducing human exposure to conenose

bugs and T. cruzi. Our study is unique in that it was per-

formed on parcels of rural private property, and we have

integrated data on woodrat habitat use and T. cruzi infec-

tion. Our suggestions serve as a platform for future studies

designed to test woodrat response to microhabitat modi-

fications on residential parcels. Meanwhile, until such

studies have been accomplished, when providing advice to

people faced with the dual risk of T. cruzi transmission and

severe conenose bug allergies, the public health sector

should consider our proposed habitat modifications, in

addition to standard rodent exclusion techniques, as a

likely means of woodrat control.

MATERIALS AND METHODS

Field Methods

Rodent Trapping and Sample Collection

Woodrats were trapped on 4 private properties in Vallecito

(38.0903�N, 120.4736�W), located in the foothills of

Calaveras County, from June to October 2012. Conenose

bugs collected from one of these properties tested positive

for T. cruzi a year before our study’s initiation (M. Nie-

mela, unpublished data), justifying study site selection.

Trapping grids were established on each property with the

size and orientation constrained by topography and prop-

erty boundaries. Grids consisted of 5–7 parallel line tran-

sects spaced approximately 10 m apart with trap stations
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located at roughly 10-m intervals along each transect

length. Two traps (Sherman or Tomahawk model #201)

were placed within a 2 m radius of each station, based on

microhabitat features that improved the probability of ro-

dent capture. Exposed traps were covered with twigs and

vegetation to provide protection from environmental ele-

ments, and all traps included cotton balls as insulation.

Traps were baited with a mixture of oats, peanut butter,

and sunflower seeds no earlier than 90 min before sunset

and were checked within one hour of sunrise for 4 con-

secutive nights/trapping session. Trapping was performed

twice on each property at approximately 2-month intervals

and was conducted in compliance with the California

Department of Fish and Wildlife (permit #SC-003492) and

the University of California, Davis Animal Use and Care

Administrative Advisory Committee (protocol #16816).

Rodent handling incorporated recommended safety pro-

tocols, including the use of appropriate personal protective

equipment (i.e., nitrile gloves, protective eye wear, N95

mask, and Tyvek suit).

Captured woodrats were transferred to a sturdy pil-

lowcase and weighed prior to being anesthetized within a

3.5-L glass jar using a 50:50 mixture of isoflurane/propy-

lene glycol at a dosage of 1 mL/500 mL container volume

(Itah et al. 2004). The anesthetic solution was applied to 3

absorbent gauze pads (4’’ nonwoven 4 ply) inserted into a

mesh wire basket affixed beneath the jar’s lid, to prevent

rodents from directly contacting the solution. To maintain

appropriate anesthetic depth during blood collection,

additional anesthesia was provided using a 6 cc syringe case

as an inhalation nose-cone. A conservative quantity of

blood (<10% total blood volume, where total blood vol-

ume was calculated as 6% body mass; Mitchell 2011) was

collected into 500-lL EDTA Microtainer� tubes from the

retro-orbital plexus via heparinized capillary tubes. Appli-

cation of monel numbered ear tags (#1005-1, National

Band and Tag Company) facilitated individual identifica-

tion across trapping sessions. After processing, woodrats

were monitored within their traps until alert and ready for

release at their original capture location. Individual rodents

were bled once during each 4-day capture session (i.e.,

blood not taken from recaptures). Blood samples were

stored in a cooler on ice until they could be centrifuged in

the field (<12 h). Following centrifugation, the plasma was

removed without disturbing the buffy coat layer. The

remaining whole blood (thin layer of plasma, buffy coat,

and red blood cells) was homogenized and aliquoted into

microcentrifuge tubes for laboratory DNA extraction and

T. cruzi PCR assays. The survival study and requisite small

quantity of blood collected precluded T. cruzi detection via

hemoculture, without which serology would be uninfor-

mative due to cross-reactions with other trypanosomes

commonly harbored by woodrats (Charles et al. 2012;

Upton et al. 1989; Wood and Wood 1937).

Vegetation Microhabitat Analyses

A field tape measure was used to define a 3-m radius circle,

centered at each trapping station. Each circle was quartered,

and the percentages of total understory and overhead ca-

nopy, as well as common plant species, were visually

approximated and recorded. Understory consisted of

downed wood and vegetation (excluding tall grasses) �1 m

tall and canopy of vegetation �3 m. All observations were

made by the same field researcher to maintain consistency

in methodology.

To assess woodrat habitat use preferences at a micro-

habitat level, we used mixed-model logistic regression

analyses to evaluate the potential association between

vegetation cover and woodrat capture success, as defined by

a woodrat ever being captured at a trap location. Study site

was included as a random effect variable with a varying

intercept. The effects of canopy and understory were ini-

tially assessed via univariate analysis of their continuous

percent values. For ease of model interpretation, and con-

sistent with previous research (Cranford 1977), models

were repeated using categorical data, whereby the contin-

uous percent values of significant vegetation variables were

converted into 4 factor levels: 0–25%, >25–50%, >50–

75%, and >75–100%. Estimate biases related to potential

predictor and unit effect correlations (i.e., vegetation

structure correlated with study site) were corrected for by

including variables that represented the average percent

canopy and understory cover by study site (Bafumi and

Gelman 2006). All models were run in R using the lme4

package (R Development Core Team 2011).

Laboratory Methods

The DNeasy Blood and Tissue or QiaAmp DNA Blood

Mini kit (Qiagen; Germantown, MD) was used to extract

DNA from 100–200 lL of whole blood. For each sample,

DNA quality was evaluated via quantification of nucleic

acid concentration (lQuant/Gen5 data analysis software,

BioTek Instruments Incorporated) and the presence of the

interphotoreceptor retinoid-binding protein (IRBP) gene
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via PCR (Ferreira et al. 2010). Trypanosoma cruzi DNA was

detected using 2 conventional PCR assays with previously

published primers TcZ1/TcZ2 (Moser et al. 1989) and 121/

122 (Wincker et al. 1994). For both assays, DNA from the

T. cruzi Y-strain (kindly provided by the CDC Division of

Parasitic Diseases) was used as a positive control. The

TcZ1/TcZ2 PCR products from 3 positive woodrats were

cloned (TOPO� TA Cloning Kit; Invitrogen Cat#: K4575-

01; Life Technologies, Carlsbad, CA) (Woodman 2008) and

sequenced at the UC Davis Sequencing Lab (ABI Prism

analyzer and software). The resulting sequences were

trimmed (Geneious version 5.3.6, http://www.geneious.

com) to remove the TcZ1 and TcZ2 primers and compared

with sequences in the GenBank database to confirm the

presence of T. cruzi DNA. To assess the potential of PCR

inhibitors, for a subset of negative samples, 0.96 mg/mL of

bovine serum albumin was added to the PCR buffer (Chen

et al. 2007) or diluted (1:10) DNA template was added to

the PCR reaction and tested as above. The reaction and

cycling conditions for all assays are provided in Table S1.

RESULTS

Property Descriptions

The habitat type across all properties was a combination of

chaparral and blue oak-foothill pine (Mintier and Associ-

ates and ESA Associates 2008) with dominant plant species

as listed in Table 1. Property owners’ personal preferences

in land management resulted in a diversity of vegetation

structure and composition among sites (Table 1). At Site 1,

a 20–25-m-wide swath of cleared land bisected the trapping

grid horizontally into upper and lower sections. Sites 3 and

4 shared a fence line but differed greatly in vegetation

Table 1. Trapping Grid Characteristics and Woodrat Captures and Lodges by Study site in Vallecito, Calaveras County, California.

Sitea WRsb Lodgesc Understoryd Canopyd Maintenancee Structuresf Trapping grid description

1 12 (3) 10 (3) 47.0 (50) 55.8 (55) None No Densely vegetated with the exception of a 20-meter

wide grassy swath completely void of understory

and canopy where no WRs were trapped

2 5 2 24.2 (22) 77.5 (90) Moderate Yes Grassy open fields interspersed among oak and pine

trees on an eastward facing slope; ornamental

hedge by rock wall

3 16 (5) 18 (4) 51.4 (55) 77.1 (95) None No Undeveloped land leased for cattle grazing; large-

girth oak trees with expansive secondary branch-

ing of trunk base; dense berry vine patches;

abundant downed wood (i.e., downed trees and

smaller woody debris); grassy areas free from

shrubbery, likely from cattle impact, scattered

among oak trees

4g 7 (1) 1 (1) 21.7 (15) 77.6 (92) High Yes Fruit trees adjacent to trapping grid; ornamental,

mat-forming nonnative groundcover (Vinca spp.)

where no WRs were trapped

aAcross all sites, dominant native tree species: interior-live oak (Quercus wislizenii), blue oak (Q. douglasii), and gray pine (Pinus sabiniana). Common

understory species: toyon (Heteromeles arbutifolia), redberry (Rhamnus crocea), manzanita (Arctostaphylos spp.), poison oak (Toxicodendron diversilobum),

chamise (Adenostoma fasciculatum), and buckbrush (Ceanothus cuneatus).
bNumber of woodrats captured per trapping grid (number of WRs captured at targeted dens on property but off the trapping grid).
cNumber of woodrat lodges detected within the trapping grid (additional lodges outside of the grid at which traps were placed).
dMean (median) percent understory and canopy cover based on trapping station measurements.
eModerate = periodic control of poison oak and some clearing of downed brush; High = carefully tended with complete clearing of brush piles and trimming

of lower branches of oak trees.
fSite 2: workshed, abandoned chicken coop, and a small rock wall near the owner’s home; Site 4: well pump station, drainage pipe culvert, small guest house.
gSeveral WR carcasses were found on the north edge of the trapping grid during the August trapping session, and it was discovered that a neighbor was using

rodenticide in a shed close to the property fence line.
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structure. The trapping grids on these 2 properties were

separated by more than 40 m, allowing us to evaluate these

sites as separate entities.

Trapping Results

Across all trapping grids and sessions (2250 trap nights),

there were a total of 89 woodrat captures, representing 40

individual woodrats. Nine additional woodrats were cap-

tured at targeted lodges beyond the trapping grid boundaries.

Table 1 provides details on woodrat captures by site. Of the

18 woodrats captured at multiple trap stations, the greatest

travel distance was 30.5 m with an average distance of

18.6 m. There was no overlap between woodrats captured on

the upper and lower portions of the grid at Site 1, indicating

that woodrats likely avoidedmoving across the bare swath of

ground dividing the grid. Similarly, there was no overlap in

individual woodrats captured at adjacent Sites 3 and 4.

Microhabitat

Woodrat captures were significantly associated with under-

story but not with canopy cover (Table 2). There was a

striking 24-fold increase in the odds of a woodrat being

captured at a trap station with understory coverage of >75–

100% as compared to the reference category of 0–25%.

Laboratory Results

Seven of the 49 (14.3%) individual woodrats tested positive

for T. cruzi (6 via the nuclear TcZ1/TcZ2 and 7 via the

kinetoplast 121/122 assay). Notably, of the 2 positive

woodrats that were captured across trapping sessions, both

were positive in August but negative when recaptured in

October. An IRBP band was visible for all samples indi-

cating that we obtained good quality DNA. The use of BSA

(n = 17) or diluted DNA template (n = 12) did not alter

the negative outcome of the initial PCR assays. Nuclear

DNA sequences from 3 positive woodrats (GenBank

accession numbers KM657483–KM657485) confirmed the

presence of T. cruzi with up to 99% sequence identity

(GenBank accession number HM015642).

DISCUSSION

T. cruzi Findings

Reported research on T. cruzi in northern CA wildlife is

nonexistent, with one exception. In 1982, a locally acquired

human case of Chagas disease occurred in Tuolumne

County, about 65 km south of our study area. During

follow-up investigations, 28 rodents were tested for T. cruzi

(Navin et al. 1985). Five woodrats and 4 deer mice (Per-

omyscus maniculatus) were negative, but 2 of 19 ground

squirrels (Otospermophilus beecheyi) tested positive. Our

study identified woodrats as T. cruzi reservoirs (14% of 49

woodrats tested positive) in the foothills of Calaveras

County, northern California. In complementary research,

Shender et al. (2016) performed genotyping and phyloge-

netic analyses of T. cruzi detected in Tr. protracta specimens

obtained from the same private properties on which we

conducted our rodent trapping. In fact, some of the T. cruzi

positive vectors were collected directly from excavated

woodrat lodges that housed positive woodrats in this study.

Table 2. Vegetation Cover as Predictors of Woodrat Capture Success at Individual Trap Stations (n = 164), Based on Mixed-Model

Logistic Regression with Study Site as a Random Effect Variable.

Variablea Factor level (%) ORb 95% CIc AICd

Continuous understory n/a 1.05 1.027–1.063 149.38

Continuous canopy n/a 1.01 0.998–1.022 179.33

Categorical understory 0–25 Ref n/a 150.86

>25–50 3.2 1.1–9.1

>50–75 9.8 3.1–30.8

>75–100 24.3 5.2–112.7

aUnderstory defined as downed wood and vegetation (excluding grasses) �1 m; Canopy defined as vegetation �3 m.
bOdds ratios. For continuous variable models, the ORs indicate the increased likelihood of woodrat capture success for each 1% increase in canopy or

understory coverage. For the categorical model, the ORs represent the increase in odds as compared to the reference category of 0–25% understory.
cIntervals that do not contain the value 1.0 indicate variable significance.
dAkaike information criterion. The lowest AIC value indicates an improved model fit for the evaluation of comparable models.
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Although the virulence of local T. cruzi strain(s) is com-

pletely unknown and although proven cases of local

transmission have been exceedingly rare (Bern et al. 2011),

rural residents should be cognizant of the potential risk of

Chagas disease associated with these rodents and the con-

enose bugs that inhabit their nests.

Although a T. cruzi prevalence of 14% in N. macrotis is

not inconsequential, it is lower than previously reported for

southern plains woodrats (N. micropus) in Texas (Pinto

et al. 2010; Charles et al. 2012). However, we suspect that

the true prevalence in our study area could be higher, since

2 of the woodrats were positive when first captured, but

negative upon recapture 2 months later. Trypanosoma cruzi

is presumed a life-long infection, not cleared by the host’s

immune system (Yabsley et al. 2001). It is therefore prob-

able that these 2 woodrats were initially sampled during the

acute phase of infection, when parasitemia levels were high

enough for efficient PCR detection of T. cruzi DNA in

peripherally collected blood samples. The second sampling

of these animals probably occurred during the chronic

phase, characterized by parasite pseudocysts in cardiac

muscles and other tissues and a relatively low level of

parasitemia (Yabsley et al. 2001), thereby reducing the

efficiency of T. cruzi PCR detection. This finding suggests

that other woodrats sampled in our study area also likely

had chronic infections, and thus escaped detection via our

sampling methods. This reasoning is supported by research

in Texas, in which sampling protocols included rodent

euthanasia, allowing for collection of maximum quantities

of blood and the performance of multiple diagnostic assays

(Charles et al. 2013). These authors found that the overall

T. cruzi prevalence in N. micropus was 66% based on a

combination of 4 diagnostic techniques (PCR, serology,

blood smears, and culture), but only 22% when PCR alone

was considered (Charles et al. 2012). Our priority was to

obtain a cross-sectional prevalence of woodrats with cir-

culating T. cruzi organisms (i.e., the percent of the woodrat

population that could efficiently transmit T. cruzi to

uninfected conenose bug vectors). Therefore, PCR of blood

samples was considered to be the optimal diagnostic assay

for our study, in which live-capture methods necessitated

collection of smaller quantities of blood than would have

been possible had we followed a euthanasia protocol.

Management Recommendations

The presence of T. cruzi in big-eared woodrats and the

potential for pathogen transmission to humans and

domestic pets underscore the necessity for mitigation of

human exposure to both woodrats and conenose bugs.

Prevention strategies to decrease in-home exposure to

western conenose bugs (e.g., minimizing outdoor lighting,

closing curtains in lighted rooms during times of bug dis-

persal) are available for those who are knowledgeable about

the risks and aggressively seek them out (California

Department of Public Health Division of Communicable

Disease Control 2010). Targeted control of woodrats has

focused on methods to exclude these rodents from the

home, such as sealing potential entry points to protected

nesting environments (i.e., attics, crawl spaces, etc.) with

rodent-proof material (California Department of Food and

Agriculture 2009). The results of our research suggest that

upstream control via careful vegetation management could

serve as an additional means to discourage woodrats from

constructing lodges in and around human residences.

In our study region, N. macrotis preferentially use

microhabitats with densely vegetated understory. A dense

understory promotes habitat use and favors woodrat sur-

vival by offering woodrats shelter from predators and

providing sturdy scaffolding upon which to construct their

lodges (Cranford 1977; Sakai and Noon 1997). Downed

pieces of wood (e.g., fallen branches and chunks of tree

bark) are used both as building material and as on-the-

ground ‘‘quiet roadways’’ to minimize noise created when

moving through leaf litter and decrease predator auditory

detection (Innes et al. 2007).

As opposed to understory density, canopy cover was

not significantly associated with woodrat capture success in

our study. In contrast, some other studies have found ca-

nopy to be significantly associated with woodrat activity

and lodge location (Gerber et al. 2003), demonstrating that

in some regions, canopy cover might be equally important

to woodrat survival. A thick overhead canopy provides

woodrats visual protection from aerial predators, an escape

route from terrestrial predators, and corridors to move

across patchy areas of habitat with little understory growth

(Laudenslayer and Fargo 1997). However, as it appears that

regional differences exist with respect to the importance of

canopy cover, understory modification should be most

strongly considered in management practices.

Our study was unique in that it was conducted on

private property with anthropogenic influences, such as the

presence of ornamental plants, livestock, domestic pets, and

human structures. Therefore, a valuable outcome was the

discovery that woodrat habitat use on rural private prop-

erties was similar to the habitat use in more pristine
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(Cranford 1977; Sakai and Noon 1997) areas. As this study

and others have shown, woodrats tend to avoid open

habitat patches where the rodents are more prone to pre-

dation (Cranford 1977; Sakai and Noon 1997). For exam-

ple, Cranford (1977) determined that woodrats seldom

used areas of 0–25% vegetation cover and that woodrat

biological centers of activity were always within habitat

containing �50% vegetative cover.

During our 4-day trapping period, the maximum

movement distance of an individual woodrat was approxi-

mately 30 m. Similarly, 32 m was the greatest movement

distance observed for any individual woodrat captured from

the same nest in rural canyons of San Diego County, Cali-

fornia (Smith 1965). The woodrat movement data observed,

as well as statistical habitat analyses performed in this and

previous research, provide quantitative data to guide vege-

tation modifications aimed at reducing woodrat activity

around human homes. We therefore conjecture that data

from our study and others may be applied by residents to

either exclude woodrats from, or direct their presence to,

particular areas of the rural property. For example, landscape

might be managed to create islands of suitable (i.e., woody

understory) or unsuitable (e.g., open areas such as grasses,

flower and vegetable gardens, and patios) habitat. Specifi-

cally, landscape features such as stumps and logs can favor

woodrat lodge construction, while rocks, bare ground, and

mat-forming shrubs may be negatively associated with

woodrat lodge presence (Innes et al. 2007).

However, we do not condone the complete elimination

of woodrats, and the destruction of all woodrat lodges on

rural property is inadvisable for several reasons. First, adult

Triatoma spp. dispersal is strongly hunger driven (Sjogren

and Ryckman 1966; Ekkens 1981; Lehane and Schofield

1982), so complete rodent removal could force conenose

bugs to seek alternative blood sources, placing humans

more at risk for allergic reactions from bites and disease

Figure 1. Suggested guidelines for habitat modifications to deter big-eared woodrats (Neotoma macrotis) from constructing lodges near human

homes located on rural properties in the foothills of northern California.
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transmission (Cordell and Baker 1999). Secondly, the

presence of woodrats provides many ecosystem benefits.

The lodges offer shelter and feeding grounds for multiple

wildlife taxa, including reptiles, amphibians, and birds, as

well as other small mammals (Wood 1934; Vestal 1938),

and the woodrats themselves are prey for numerous

predator species (Sakai and Noon 1997; Gerber et al. 2003).

Because woodrats play an important role in community

dynamics and increase species biodiversity (Innes et al.

2007), we contend that conditions should be created to

promote harmonious coexistence with these rodents, while

minimizing the risk of human exposure to T. cruzi and

conenose bugs. Genetic research on local T. cruzi strains is

needed to provide insight on their relationship to those

strains found in Latin America known to cause human

disease. Until the potential virulence of California T. cruzi

strains is better understood, property owners should work

to modify their landscape to balance woodrat population

control with natural ecosystem processes.

CONCLUSION

This study complements simultaneous research by Shender

et al. (2016) on T. cruzi in the vector Tr. protracta, and

demonstrates for the first time that the Chagas disease-causing

pathogen is harbored by woodrats in California as far north as

Calaveras County. In addition, our data combined with those

from previous studies, indicate that landscape vegetation

management at the individual property level might influence

the pattern of woodrat peri-urban habitat use. Thus, we be-

lieve that data-supported landscapemanagement tools should

be considered by public health representatives who provide

written and verbal advice regarding methods to discourage

woodrats from building lodges near human homes in Cali-

fornia foothill counties. The careful application of concentric

buffers aroundhuman residences, in combinationwith typical

rodent exclusion methods, might greatly reduce woodrat

activity adjacent to human homes.

Residents who live on large rural properties with an

abundant woodrat population, and who seek additional

methods to control the activity of these rodents, might try

surrounding the home with a patchy gradient of vegetation

(see Fig. 1). Specifically, we suggest that within the first 20 m

of the home, the density of shrubby understory be less than

25%. Ideally, vegetation in this first buffer ring wouldmainly

consist of nonwoody plants, such as mat-forming ground-

cover and grasses. A second buffer ring should extend 20–

40 m from the home, with no more than 50% ground cov-

erage of woody vegetation. Large tree stumps and downed

logs should be removed from the designated buffer areas.

Shade trees, if present, should preferably be species possess-

ing a single trunk (i.e., without low-level secondary

branching or forked bases) and be spaced to avoid forming a

connecting canopy. The implementation of these habitat

modifications, which partially align with California fire

prevention laws for the creation of a ‘‘defensible space’’

(California Department of Forestry and Fire Protection CAL

FIRE 2007), could create a zone of suboptimal habitat for

woodrats. The proposed habitat modifications should result

in decreased woodrat activity and an absence of (or far fewer)

woodrat lodges in close proximity to human homes. Despite

the ability of triatomine bugs to disperse >40 m, eliminat-

ing woodrat lodges within this buffer zone, along with

reducing outdoor lighting during times of bug dispersal,

should greatly decrease human exposure to the western

conenose bug (Tr. protracta) and the accompanying risk of

anaphylaxis and T. cruzi transmission.
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