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ABSTRACT OF THE THESIS

Analysis of Large-Scale Genetic Perturbation

with Linear Regression of Microarray and Bayesian Networks

by

Ruifu Jiang

Master of Applied Statistics

University of California, Los Angeles, 2018

Professor Qing Zhou, Chair

This paper aims to examine how large-scale genetic perturbations reveal regulatory network

and an abundance of gene-specific repressors by analyzing data from a published paper

(Kemmeren et al., 2014) [35]. The main goal is to uniformly determine the effect of different

components on the expression of all other genes. The idea of their experiment is doing gene

deletion of one-quarter of yeast genes individually and then observing the mRNA expression

genomewide. Then genetic perturbation would be resulted, which also shows some properties

including the architecture of protein complexes and pathways, identification of expression

changes compatible with viability, and the varying responsiveness to genetic perturbation.

And all data collected from this experiment is constructed as a genetic perturbation network

which present a varying connectivities among regulators. Finally it provides a regulation

network with analysis result from R package limma and sparsebn.

ii



The thesis of Ruifu Jiang is approved.

Nicolas Christou

Ying Nian Wu

Qing Zhou, Committee Chair

University of California, Los Angeles

2018

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.0.1 Limma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.0.2 Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Data Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Analysis of Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.0.1 Limma Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.0.2 Bayesian Networks Learning . . . . . . . . . . . . . . . . . . . . . . . 19

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



LIST OF FIGURES

2.1 Experiment design (Kemmeren et al., 2014) [35]. . . . . . . . . . . . . . . . . . . 4

3.1 The limma workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Timing comparison (in second). C (solid black line) is for sparsebn. P(dashed

blue line) is for pcalg, and M (dotted green line) is for bnlearn (Aragam et al.,

2017)[36]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Two-color microarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



CHAPTER 1

Introduction

As it is well-known, cell function is performed by plenty of molecular interactions. Studying

those interactions on how to affect the cell function in molecular-wide is still one of the

toughest part nowadays (Ideker et al., 2001) [1]. Effort on this study is quite urgent as people

realize that combination by few simple interaction would result in complicated properties.

All interaction mainly divided into two categories, one is physical interaction which is easily

observed, e.g. protein-protein interactions (Walhout and Vidal, 2001) [2], another is abstract

interaction which is harder to study, e.g. genetic interactions (Costanzo et al., 2010) [3].

Both type interactions provide important information to studying the individual function

or system properties. Hence in the past few years, a bunch of dataset were created rapidly.

Particularly among these dataset, one related to mRNA expression is generally used to study

how regulatory network rely on mRNA expression based on analyzing how mRNA expression

influenced by cellular components genome-wide.

It is generally agreed that analysis of individual perturbation on genome-wide expression

would go further reveal the deeper function of the entire system (DeRisi et al., 1997) [4].

In order to study the function among different component, regulatory pathways (Roberts et

al., 2000) [5] and protein complexes (van de Peppel et al., 2005) [6] would be used due to

less difficulties to solve and more unexpected results revealed. For example, one study of

276 mutants in the yeast Saccharomyces cerevisiae provided a result revealing a quite larger

combination of genetic perturbation expression signatures (Hughes et al., 2000) [7]. This is

a very complicated study as it analyzed individual factors, entire dlasses of regulators, (Hu

et al., 2007) [8] and incorporation with other types of perturbation (Chua et al., 2006) [9].

According to the first compendium (Hughes et al., 2000) [7], although a large number of
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such studies has been done in recent years, the result of genetic perturbations analysis did

not expand as much as we expected. Within those genetic perturbations analysis, analysis

of entire system is still a tough part as it is difficult to compare gene expression data gen-

erated across the different conditions, genetic backgrounds, technology platforms, types of

controls, and degrees of replication in different studies. This paper will analyze the genetic

perturbation to determine the properties of regulatory system.
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CHAPTER 2

Experiment Design

Due to the complexity of processing nucleic acid microarrays, it is crucial to design an ap-

propriate experiment in order to generate the most accurate measurements of the genes.

This experimental design used microarrays, which are widely used in simultaneously ana-

lyzing the expression of thousands of genes. These microarrays can hold a large quantity of

nucleic acid fragments, and are capable of providing information on gene expression levels

or measuring specific genetic variations. The technology of microarray utilizes the action

of hybridization, or the formation of double-stranded RNA by base pairing between the

complementary sequences of nucleic acid molecules. Two-channel (two-color) microarrays

containing pairs of separately labeled nucleic acid samples on the same array were used in

this design. These two-channel microarrays can measure the difference in gene expression

between pairs of competitively cohybridized nucleic acid samples.

A common reference experiment design was chosen for the microarrays. To prepare sam-

ples for the microarrays, a large quantity of RNA was extracted from the wild-type yeast

strain cultures as the reference RNA. The reference RNA sample was placed in a channel

on the arrays for each hybridization. The average expression levels for each mutated gene

relative to the wild-type expression were statistically obtained from the reference RNA sam-

ple. Pairs of independent samples were hybridized separately on different arrays. As shown

in Figure 2.1, the hybridization of the two mutants (mt 1, mt 2) and the wild-type control

sample (wt) was carried out by base paring a Cy5 (red fluorescent dye) labeled mutated

RNA sequence to a Cy3 (green fluorescent dye) labeled complementary sequence from the

wild-type reference sample (unmutated). These pairs of separately labeled sequences can

hybridize to form new double-stranded RNA, measurements were taken from the products
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of the hybridization on the microarrays. In this experiment design, each sequence pair had

a replication with switching the dyes of the sequences. Therefore, every mutated gene was

hybridized twice, leading to a total of 4 measurements for each mutated gene on the mi-

croarrays. As the control, the microarrays also contained hybridized RNA samples of the

wild-type cultures from the same day to eliminate day-specific factors that influence the

results.

Figure 2.1: Experiment design (Kemmeren et al., 2014) [35].
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CHAPTER 3

Methodologies

3.0.1 Limma

The first methodology used is ”limma” which is linear model for microarray or RNA-Seq

Data. This R package is a response to the rapid increasing on data related to microarray

or RNA-Seq. It’s popular also for its stability while analyzing small number of arrays. It

shows a good capacity as well on dealing with complicated experiment with larger number of

predictors and response variables. As it is widely used nowadays, two main trends have been

divided for different purpose. Comparing to the past tools of analyzing only microarray,

limma would also provide efficient analysis on RNA sequencing data as well. For users, it is

a great choice to use the similar method and procedure to analysis the an essential dataset

that previous downstream analysis tools unable to do. Another features is that, limma can

provide much more ways of analyzing gene expression than traditional analysis. For example,

it can abstract the gene expression into a higher-order expression signature, which make it

possible to interpret the gene expression differences in biological perspective (Matthew et

al., 2015) [10].

Limma’s primary capabilities fit this experiment quite well. In general, tools for gene

expression analysis are used regularly to determine how gene expression changes under some

certain treatments or conditions. And these changes usually bring some perturbations as

well. Such studies go with many observations, and also include a big number of different

effect result and covariates. The harder part is that the number of replicates is much smaller

than those influence factors. Dataset with big number of variables and small of observation

is always tough to analysis, which inspire people to use some more special statistical method

to encounter such situation. After developed limma with many generations, limma package
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has become a very powerful tools to process more kinds of microarray data using various

flexible statistical methods.

The basic idea of limma is doing linear regression on a gene expression matrix. Each row

of the matrix is a gene we interested in the study, and each column is one observation, and

fill up the matrix with an expression value respectively. Then each row could generate a

linear model, and combine those feature model with weights in some ways. It use the result

from gene-wise models and abstract their result to determine the nature of genomic data,

which make the conclusion convincing even though small number of samples are observed.

Distinct to single linear model, limma use aone linear model to analyze the integrated

matrix as a whole rather than treat each gene row separately. The different part is that,

rows are not compared individually, they are more like contacting each other and share all

information together. This would give us an advantage to find whether correlations exist

between genes.

This approach make it flexible for further adjustment. For example, researchers can

extract any pair of two gene and test whether they are independent or dependent. This

implies that assumptions for this test is not as strict as comparison test. It is loose enough

to allow more flexible test like interaction effects or multiple comparisons.

One key method limma uses is global parameter. It is estimated maybe from the entire

dataset which include all genes in the experiment and available for single linear model build

on each gene. This is possible due to the big linear model among all genes, and each gene in

the big model share information together. The global parameter or global hyper-parameter

has the same effect as correlation, it can be used as correlation or variation between genes.

A special statistical method is parametric empirical Bayes which allow information be-

tween genes to be used in an efficient way (Efron and Morris, 1973) [24]. Each linear model

of single gene has a residual variance and the model is improved by adjusting the residual

variance. However, the residual variance is not adjusted individually, it has to consider the

residual got from the global model involving all genes. By modifying in this way, the degrees

of freedom is more effective. And further help the model have a higher reliability to process

6



data with small number of samples (Smyth, 2004) [25].

As long as the empirical Bayes applied in limma, more powerful results are exposed

which make empirical Bayes procedure mare reliable. As explained above, each model gives

a residual variance and combining them together will get a variance trend which called mean-

variance trend. Since the global variance are affected by those single variances, they all are

not isolated but cooperate with each other. This make limma more special and reliable on

processing data with small number of replicates while other gene expression tools fail to

do. What’s more, the relative weighting of single gene and the global are not necessary

to be same any more. This permits the feasibility of a more robust procedure that helps

researchers to find hyper-variables genes which has to be treated separately (Phipson et al.,

2013) [26]. This is how one of the special statistical methods mentioned earlier works to help

limma build a good reputation on generating reliable reference in flexible ways.

Another special statistical method limma uses is quantitative weight. It is very flexible

that can be used in any part of the analysis. For example, it can be used in normalization

in order to control probes with more emphasis. There isn’t a strict rule for setting weights,

it could be set from any quality information even beyond the experiment or estimated from

the dataset (Ritchie et al., 2006)[27].

As limma getting more and more widely used, it has been explored to analysis high-

level expressin signatures involving genes regulating each other. Instead of using expression

matrix, the data includes interesting genes and and their log-fold changes. Then use ro-

tation test to test the significance based on linear regression model of those genes (Wu et

al., 2010)[28]. The rotation test allow it to combine the information like direction of the

expression signature with the contribution of each gene to the expression signature, which

means limma link the new expression data with the previous experimental data.

The expression data are collected as intensities, which means each microarray has to do

related correction and normalization before doing any analysis. ANd limma includes various

type of method to do this procedure, for example maximum likelihood and quantitative

weights.

7



The steps of using limma is first importing data and preprocessing including correction

and normalization, then analyzing with linear modeling or differential expression, and finally

testing model. Figure 3.1 is a clear limma workflow.

Most microarrays are generated by image analysis program including Agilent Feature

Extraction, ArrayVision, BlueFuse, GenePix, and so on. Limma use function read.maimages

to read output images with format from prior programs or Stanford Microarray Database.

Usually, when a microarray image is readm the foreground and background intensities

are also read automatically. The background correction is removing those non-specific back-

ground intensities from the foreground intensities. Background correction is not directly

removing all background from foreground intensities, but uses a wise method based on nor-

mal distribution convolutionand normal-exponential convolution.

In order to set all samples in the same measurement scale as possible as it could be,

normalization is implemented after background correction. The ideal result of doing normal-

ization is remaining the biological differences only by removing other systematic differences.

Some methods for normalization can be called by using functions like normalizeWithinAr-

rays, normalizeBetweenArrays, and so on.

After data pre-processing, plotting some diagnostic graphs usually help researchers have

a brief inspect on the data. For example, using function plotMA with some sample genes

by comparing the log-expression for a mean-difference plot tells us the trend of intensity-

dependent .

Major analysis starts from determining the differential expression (DE) of genes. Plotting

the realtive differences between samples with plotMDS function usually show a obvious result.

The next step and the most important step is building a gene-wise linear model. Similar

to general linear model, the gene-wise linear model is to estimate the log-ratio if data is two

channel or log-intensities if data is single channel among samples simultaneously.

The formula is

Yij = µj + εij
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Figure 3.1: The limma workflow.
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Yij is the expression value, µ is the mean, ε is the error term, i is the ith sample, j is the

jth treatment.

Each linear regression start within an expression matrix with rows for genes and columns

for samples, and stored in a row wise fashion with related regression coefficients and errors.

By comparison among interested samples, statistics are obtained for further gene ranking.

Correlation between samples are inevitable, limma uses the random effect model with all

genes constrained to hold the same intrablock correlation.

Based on linear model of gene expression, more and more higher-level analysis is exploited

like interaction or independence with multiple genes and molecular pathways decomposed

from gene signatures.

3.0.2 Bayesian

The second methodology is Bayesian network. Bayesian network is a type of probabilistic

graphical model that represents a set of variables and their conditional dependencies via a

directed acyclic graph (DAG). And the package related to Bayesian network algorithm is

called ”sparsebn” (Aragam et al., 2017)[36]. The basic model is a p-dimensional random

vector X with joint distribution P. The distribution X follows a multivariate Gaussian distri-

bution if the data is continuous, or it would be assumed that each X is a factor with r levels.

For more details about the methods in this package, see Fu and Zhou (2013) [37], Aragam

and Zhou (2015) [38] and Gu et al (2018)[39] .

The traditional methods of Bayesian networks is developing algorithms from a graph-

theoretic perspective based on its definition (Spirtes and Glymour 1991)[29]. In order to

follow that approach, we usually have to hold its restrictive assumptions such as strong

faithfulness (Uhler et al., 2013[30]; Zhang and Spirtes, 2002[31]), which make it uneasy to

practice. Refer to the main idea of package sparsebn, a more general approach is adopted

via structural equation models. In this approach, each conditional probability distribution

(CPD) is directly modeled via a generalized linear model.

For continuous data
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X = BTX + ε

This is called a structural equation model for X. B is the weighted adjacency matrix of

a directed graph by writing B = |β1| · · · |βp| ∈ Rp×p and ε ∼ N(0, w2
j ). In this approach, we

have to make sure the adjacency matrix B to be acyclic.

For discrete data

P (Xj = l|z) =
exp(zT βlj)∑rj

m=1 exp(z
T βmj)

, l = 1, ..., rj

where β ∈ Rd is the coefficient vector for X.

This is the conditional distribution under the parametrization. Instead of traditional

product multinomial modelfor discrete data, sparsebn takes a multi-logit model. In the

multi-logit model, each X is encoded by dj = rj − 1 dummy variables, and a vector of

dummy variables zj = (zjk, k = 1, ..., rj − 1) ∈ {0, 1}dj

Algorithms for building Bayesian network are generally divided into three type: constraint-

based methods, score-based methods and hybrid methods.

The basic idea of constraint-based methods is learning the structure of a network via

repeated conditional independence test to determine edges that would not exist in a DAG.

This procedure would always satisfied as long as faithfulness assumption holds. The building

steps are first sketch the skeleton of the network with independence tests and then enrich

the edges with v-structures (Koller and Friedman, 2009)[32].

Comparing to constraint-based methods, the score-based methods use kinds of scoring

functions, e.g. log-likelihood. By optimizing a certain scoring function, a DAG would be

found. This algorithm is usually faster, but also likely to predict too many edges in high-

dimensional setting (Cooper and Herskovits 1992) [33].

The last hybrid method is a combination of constraint-based and score-based methods.

The procedure of hybrid method is that first create a search space with constraint-based

method and then get the optimal DAG structure with score-based method (G amez, Mateo,

and Puerta 2011)[16].

Learning Bayesian network usually start from learning using a score-based method by
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regularizing the maximum likelihood estimation. Assuming an observed matrix without any

missing value is X ∈ Rn×p and l represent the negative log-likelihood and ρλ is regularizer.

minB∈D l(B;X) + ρλ(B)

assuming D ∈ Rn×p are some weighted adjacent matrices. This formula contains the

nonconvexity resulted from the constraint D, loss function l, and regularizer ρλ

If the data is continuous, the loss function l should be combined with a Gaussian likeli-

hood got from the structural equation model mentioned earlier. If the data is discrete, the

lasso penalty group should be combined with a multi-logit model got from the conditional

distribution under z parametrization. Suppose M ⊂ (1, ..., p) is a subset of variables under

the intervention, which follow the distribution that:

P (X1, ..., Xp) ∝
∏
i 6∈M P (Xi|pa(Xi))

By setting Li as the row index of matrix X, and Oj = 1, ..., n − Lj as the subset of

observation that not under the intervention, the negative log-likelihood factorization is:

l(B;X) = −∑p
j=1

∑
h∈Oj

logfβi(Xhj|pa(Xhj))

Where B is a set of β, fβi is the conditional density in jth node, and the Xhj is the hth

value of Xj. By using this factorization, the orientation of the edges in Bayesian network is

completed.

The algorithm of above procedure is:

1. Build up a outer loop in which:

a. Tuning (βkj, βjk) where j 6= k to minimizing minB∈D l(B;X) + ρλ(B) while other

parameters are fixed.

b. If there is cycle in the edge between j and k, update β as 0.

c. Run inner loop

2. Build up an inner loop that minimizing minB∈D l(B;X) + ρλ(B) with edge weights

βkj for (k, j) ∈ E where E is the fixed edge set get from outer loop.

3. Run outer loop until meeting a certain stopping criterion set prior.

12



As we can see from the main formula used in above algorithm, the value of λ has to be pro-

vided before any action. A common way of solving this is using an algorithm named solution

path instead of single DAG estimate, which is also known as regularization path(Friedman

et al., 2010)[34].

Hence when the algorithm is implemented, some steps with methods of coordinate descent

are added to accelerate the running speed.

1. Once the β̂(λl−1) got from previous solution path, it would be used as an initial guess

for next iteration on calculating β̂(λl). This is why λ0 is chose for β̂(λ0) = 0 as default in

package sparsebn.

2. Rewrite the inner loop for updating βjk, βkj at the same time rather than updating

only one of them each time. This needs a conditional that neither βjk nor βkj is 0.

3. A special structure named sparse data structure is used to store the result, which

saves more memory and shortens the time of calculation at each iteration.

The next mission after learning Bayesian network structure is estimating parameters

of conditional distribution. Those parameters decide how larger the effect size is between

parents and children.

Method of least squares regression is used to regress between node and its parent if the

data is continuous. This method need a precondition that the number of parents is no more

than n. To improve this, let B̂ = (β̂j) as a weighted adjacent matrix like before, and use it

to estimate the conditional variance by given formula:

(ŵj)
2 = var(xj −Xβ̂j)

Apply Ω̂ = diag(ŵ2
1, ..., ŵ

2
p) as a variance matrix and combining (B̂, Ω̂) to calculate the

variance covariance matrix Σ.

Multi-logit regression is used to regress between node and its parent if the data is discrete.

The different part is a four way array B̂ is obtained rather than a coefficient matrix for

continuous dataset.

For this experiment, sparsebn package is used to build a Bayesian network for its various
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Figure 3.2: Timing comparison (in second). C (solid black line) is for sparsebn. P(dashed

blue line) is for pcalg, and M (dotted green line) is for bnlearn (Aragam et al., 2017)[36].

features. Sparsebn shows a great advantage on speed while processing large-scale dataset

with even thousands nodes (Aragam et al., 2017)[36]. Comparing to other two popular pack-

age pcalg and bnlearn, it run much faster even when the number of nodes p increased greatly.

Figure 3.2 shows the timing comparision of three package while processing continuous data.

Another feature sparsebn presents is its capability for dealing with data mixed with

the observational and the experimental. Adding experimental interventions enhance the

significance of observational DAGs and further make the true causal DAG more obvious.

That means sparsebn has the power to improve the estimation of true causal DAG with

experimental interventions involved.
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CHAPTER 4

Data Treatment

The dataset consists of approximately 40 million expression measurements. The data is

a bunch set of two color microarray. It looks like a black test board filling with color

points(Figure 4.1). Each point represent a value of expression.

Figure 4.1: Two-color microarray

First read all those image format data in to R with limma package and transform them

into a numerical form. As discussed in methodology part, dataset has to be done with back-

ground correction and normalization before any analysis. Use print-tip LOESS to perform

the microarray data normalization on mean intensity and run in R with package named

marray (Yang et al., 2002)[17]. And then use R package dyebias to correct the Gene-specific

dye bias(GSDB) after the LOESS normalization. The correction consists of two parts: the

intrinsic dye bias of a specific probe and the degree of dye bias observed in a specific slide.

The correction formula is : M∗
ij = Mij +GSDBij = Mij + iGSDBi × Fj

15



M∗
ij is the log2 fold-change of gene i in hybridization j, which is biased and Mij is the

unbiased one. GSDBij is the gene-specific dye bias component of M∗
ij. Fj is the slide

bias of hybridization j. Then calculate the corrected log2 fold-change Mij with the formula

Mij = M∗
ij − iGSDBi × Fj.

After doing linear regression of micoarray, extract all statistical significant gene and

create a new expression matrix for further analysis with Bayesian network. The expression

matrix has 6170 columns each represents for interested deletion gene, and 1320 rows each

for affect gene, and the filled up with expression values corresponding to each pair of genes.
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CHAPTER 5

Analysis of Result

5.0.1 Limma Analysis

Each time a mutant was applied to replicate hybridizations, it was treated with two inde-

pendent cultures and compared to WT culture, and they were all tested at the same day in

order to control for day-specific effects. As the MATalpha mutants grown in the plate shaker

with Tecan, the WT pool involved 200 MATalpha replicates. As the MATa mutants grown

in the plate shaker of Tecan, the WT pool involved 20 WT-MATa replicates. As mutants

grown within Erlenmeyers, the MATalpha WT pool involved 200 WT-MATalpha replicates.

As MATa mutants grown within Erlenmeyers, the WT pool involved 8 WT MATa replicates.

Use R package limma to get the p-values after the Benjamini-Hochberg FDR correction.

If the fold-change is greater than 1.7 and the p-value is less than 0.05, then we believe genes

have a significant change after a certain mutant added. Though some changes are statistical

significant, they are not considered as the change respective of the targeted mutant by

applying the 200WT versus WT comparisons of the two large WT MATalpha replicate pools

(ArrayExpress accession E-TABM-773 and E-TABM-984). Then omit the top 5 percent of

expression outliers, the WT variable gene list is : AI1, AI2, AI4, AI5-ALPHA, AI5-BETA,

ATP8, BIO3, BIO4, BIO5, BSC1, DDR2, FIT2, GLK1, GSY1, HSP12, HSP30, HSP42,

HXK1, NCE103, OLI1, PHO84, PRM7, SOL4, SPL2, SRO9, STP4, TPS2, TSL1, VAR1,

VTC3, YDL038C, YDR170W-A, YDR210C-C, YIG1, YJR154W, YKR075C, YNL284C-A,

YOR343W-B, yrO2, ZEO1, AIM33, CTR1, GPD2, GPH1, PHO12, PKH2, RIF2, RTC3,

RTC4, VTC1, YDL177C, YDR210W-B, YER053C-A, YFL002W-B, YMR046C, YPR158W-

A, ZRT1. All those genes in the list would be removed for further analysis.
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In order to determine a threshold to test whether mutants affected mRNA expression

significantly, all deletion mutants and the WT cultures grown under the same condition

were ranked according to the number of genes changed significantly. The percentage of

WTs that had greater than 3 changing genes is less than 6 percent. With the help of this

percentage, threshold was set as 4 which means if the deletion mutants had more than 4

changing genes, they were marked as responding, or they were marked as nonresponding.

Based on those settings, Limma was applied for further analysis and got the analysis results.

After classification of responding mutants, all responding mutants were extracted and

knitted as a gene expression matrix. Then used the gene expression matrix to plot a network

graph which consisted of edges and nodes. Nodes means each kind of deletion mutant and

edges are are the significant changing between each pair deletion mutants.

As the publisher did not provide the data of tow-color microarray, we can not redo the

limma analysis. And getting some new result with Bayesian method is much meaningful than

repeating past analysis. But according to the original paper, we still could have a glance of

the result from original paper (Kemmeren et al., 2014)[35]. A brief result of original paper

is attached below.

Other complicated motifs can be found in the regulatory system in addition to the nested

effects. One category of these motifs is feed-forward loops (FFLs) which have eight subtypes.

Previous studies do not provide enough information for large-scale analyses of these FFLs.

Thus, the FFLs were identified from the genetic perturbation network. For example, the

incoherent 2 FFL is recognized from the overlapping in genes (X and Y) with upregulation

due to the deletion of two genes. In this case, one of the deleted genes can also be upregulated

due to the deletion of the other gene. To assure that the chosen FFLs are the most consistent

ones, only X-Y gene pairs with a considerable overlap in the downstream effective genes

(Z) were included. For the following network sketching, distinct X-Y FFL pairs were only

considered once instead of more than one times for every mutual downstream gene. By

combining 1,120 X-Y FFL pairs, an easily comprehended network graph was generated with

different colors indicating different subtypes of FFLs.
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After the removal of the nested effects, the relative frequencies of 4 FFL types are cal-

culated. The incoherent type 2 has the highest frequency compared to the other types. It

also shows the quantity of the different families of genes that participate in the 4 FFLs

types, and identifies them as the upstream (X) or the downstream (Y) gene. Regulators of

chromatin are usually found as upstream participants in coherent FFL types. This implies

that the cooperation with downstream participants could enhance the expression of certain

genes. Additionally, a noteworthy finding is that the incoherent 2 FFLs showed higher ac-

tivities in metabolic pathways. On one hand, a large portion of genes that participate in

small-molecule metabolic pathways were identified as downstream Y nodes. On the other

hand, downstream Y genes were also found to be highly represented in incoherent 2 FFLs.

5.0.2 Bayesian Networks Learning

For further analysis, we analyzed the gene expression matrix the publisher provided (Kem-

meren et al., 2014) with sparsebn R package. The main procedure is represented below.

In order to use sparsebn package, we have to import the original data into a special

frame in which related support information nested, which aims to provide the discernibility

on different types of data. We can easily use rcode sparsebnData() on the raw data, but

some components in this code have to be specified. The first one is setting the data type

as ”continuous” or ”descrete”, or it will be set as ”discrete” as default. Another one is the

interventions are extracted for each row (observation). After transformation, there are 1320

total rows with 1310 rows omitted.

R> ivn27 <− as . l i s t (rownames( dat27 ) )

R> dat <− sparsebnData ( dat27 , type = ” cont inuous ” , ivn = ivn27 )

R> dat

When data is loaded in a proper way, the next step is structure learning. In R, we usually

use estimate.dag() based on the algorithm explained in methodology part. The rcode below

is a simple example of Bayesian structure leaning with default parameters.

R> gene . l e a rn <− es t imate . dag (data = dat )
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R> gene . l e a rn

In terms of tuning, two main parameters are frequently adjusted to improve the model.

One is the regularization parameter λ which can be set by length with lambdas.length() or

by grid. There are two ways of setting grid, one is use linear scale, another is using log scale.

A better grid of lambdas could improve the algorithm obviously as discussed in methodology

is also explained in methodology part.

R> sca le lambdas <− generate . lambdas ( lambda .max = 10 ,

lambdas . r a t i o = 0 .001 , lambdas . length = 10 , scale = ” l i n e a r ” )

R> sca le lambdas

[ 1 ] 10 .00 8 .89 7 .78 6 .67 5 .56 4 .45 3 .34 2 .23 1 .12 0 .01

R> sca le lambdas <− generate . lambdas ( lambda .max = 10 ,

lambdas . r a t i o = 0 .001 , lambdas . length = 10 , scale = ” log ” )

R> sca le lambdas

[ 1 ] 10.00000000 4.64158883 2.15443469 1.00000000 0.46415888

[ 6 ] 0 .21544347 0.10000000 0.04641589 0.02154435 0.01000000

Another parameter is the threshold of edges, which give the algorithm a threshold which

once touched by the number of edges, the algorithm will stop immediately and provide the

result. Considering these two parameter, we got an improved result by setting these two

parameters with appropriate numbers.

R> BN<− es t imate . dag (data = dat ,

lambdas = scale lambdas , edge . th r e sho ld = 2∗ncol ( dat27 ) )

Sometimes, researchers may know the relationship between a certain pair of genes prior

the analysis. Then they can use whitelists() to link these tow genes while doing the structure.
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On contrast, they can also set a certain pair of genes unlinked with blacklists() if they was

known to have no relationship.

The output of the structure is a collection of solution paths. We can easily use index to

view a path graph. For example, the third index graph shows that there is 6170 nodes and

6167 edges. We even can use show.parents() to show parents of certain child genes.

R> BN [ [ 3 ] ]

CCDr es t imate

1320 obs e rva t i on s

lambda = 2.15443469003188

DAG:

Directed graph with 6170 nodes and 6167 edges .

However, all result we got above are only structure paths involving path graphs. The next

step is to find the parameters with estimate.parameters(). The output is a list combining

weighted adjacent matrices of coefficients and diagonal matrices of conditional variances.

Similar to the solution path, we still can use index to view detail results. Then we can use

select.parameter()t to get the optimal parameter with the output of an index number. For

this data, the best case is the 4th. By using the index number 4 we will get the optimal

matrix of parameters which is omit to show here as it’s too big like 6170 x 6170.

R> param<− es t imate . parameters (BN, data = dat )

R> optimallambda<− s e l e c t . parameter (BN, dat )

R> param [ [ optimallambda ] ] $ c o e f s

Finally plot the graph of solution paths with the optimal parameters. Used the rcode

below and got the plot shown in Figure 5.1.

R> plot (BN[ [ optimallambda ] ] , ve r tex . s i z e = 2 , edge . lwd = 0 . 1 ,

ve r tex . l a b e l = NA, layout=layout components )
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Figure 5.1: Bayesian Network
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CHAPTER 6

Discussion

The data after treatment would be a good tool to analyze various properties of mRNA ex-

pression, the regulatory, and the genetic perturbation network. In addition to the properties

of the network, the regulatory networks are highly interrelated, suggested by the number of

straight and cyclic pathways, nested effects, and FFLs. These results are consistent with a

number of previous studies on the patterns of protein and genetic interactions (Breitkreutz

et al., 2010)[18]. The gene types having effects on transcription related to viability, the

pattern of various types of FFLs in the network, and the properties of nonresponsive dele-

tions were revealed in this study. The perturbation signatures showed the complexity of the

structures of protein complexes and pathways. This result provides an insight into complex

gene expression studies in the future.

In this study, gene-specific transcription factors (GSTFs) were thoroughly analyzed. The

results showed a surprisingly high abundance of gene-specific repressors. This was unex-

pected since some studies suggested that the majority of eukaryotic GSTFs were activators

(Fuda et al., 2009[19]). The results showed that these repressors have a high prevalent activ-

ity. This is consistent with the distributive transcription of the eukaryotic genome (David et

al., 2006[20]), suggesting that the chromatin is not solely restricting to transcription. These

results agree with previous studies which indicated that transcription often requires factors

to avoid unwanted gene expression (Spitz and Furlong, 2012)[21]. The repression of tran-

scription by the actions of GSTFs may also lead to upregulation of certain genes due to the

inactivation of their repressors. It is unclear whether the abundance of gene-specific repres-

sors suggests that gene-specific activators are unnecessary for transcription in eukaryotes. It

is possible that the activators are not always needed. It would be useful to analyze GSTFs
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together with other classes of regulators (e.g., chromatin factors) in the future. A general

classification of GSTFs has not been attempted. Previous large-scale data also need to be

revisited and revised. The modified genetic location data and studies revealing the correla-

tion between activators and repressors will likely provide more information into building a

classification system.

Overall, the data indicated that unexpected results can be observed from genetic pertur-

bation. Future studies on characterizing uniformly acquired perturbation datasets can be

conducted. It would be critical to measure, analyze and classify the effects of each individ-

ual gene deletion, and integrate these data into the overall picture of a large-scale genetic

perturbation.
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