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ABSTRACT OF THE DISSERTATION

High-dimensional Inferences

via Estimator Augmentation:

Post-selection and Group Structure

by

Seunghyun Min

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Qing Zhou, Chair

Making statistical inference on high-dimensional data has been an interesting topic in recent

days. To support this theme, this dissertation consists of three main components; (1) a new

post-selection inference method, (2) group inference methods, and (3) a new R package.

First, a new method to construct confidence sets after lasso variable selection is developed,

with strong numerical support for its accuracy and effectiveness. A key component of my

method is to sample from the conditional distribution of the response y given the lasso active

set, which, in general, is very challenging due to the tiny probability of the conditioning event.

This technical difficulty is overcome by using estimator augmentation to simulate from this

conditional distribution via Markov chain Monte Carlo given any estimate µ̃ of the mean µ0

of y. A randomization step for the estimate µ̃ is then incorporated in my sampling procedure,

which may be interpreted as simulating from a posterior predictive distribution by averaging

over the uncertainty in µ0. My Monte Carlo samples offer great flexibility in the construction

of confidence sets for multiple parameters. Extensive numerical results show that my method

is able to construct confidence sets with the desired coverage rate and, moreover, that the

diameter and volume of my confidence sets are substantially smaller in comparison with a

state-of-the-art method.

Second, the advantages of grouping variables are advocated by presenting extensive nu-
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merical results. The parametric bootstrap with refitted thresholded group lasso estimator is

compared with competitor methods. Then applications of estimator augmentation in group

lasso are introduced which includes importance sampler and de-biased parametric bootstrap.

The importance sampler introduced is shown to outperforms sampling directly from the tar-

get distribution by several orders.

Lastly, an R package EAinference which stems from estimator augmentation methods is

introduced. The package contains a parametric bootstrap, an importance sampler, Metropo-

lis Hastings sampler and many related simulation-based inference tools. The package is

available on CRAN.
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CHAPTER 1

Introduction

Technological advances in data processing, collection, and storage have led to torrential

streams of data worldwide on unprecedented scales. Accordingly, high-dimensional data has

become very common for exploring interesting and complex phenomena not possible before.

Aligning with this trend, the importance of high-dimensional statistics has risen due to the

complexity of data nowadays. Suppose the model of interest is:

y = µ0 + ε, ε ∼ N (0, σ2In),

where y ∈ Rn is the response variable. Often, µ0 is assumed to be a form of a linear

combination of explanatory variables Xi for i = 1, . . . , p, i.e. µ0 = Xβ0 , where X = [X1 |

· · · | Xp] ∈ Rn×p is the design matrix and and β0 ∈ Rp is the coefficient vector. Naturally,

estimating β0 has always been one of the most classical topics in statistics. However, under

the high-dimensional setting when the number of samples are smaller than the number

of variables, conventional methods like a least square estimation cannot be used due to

the unidentifiable issue. To overcome this issue, penalization models has been extensively

studied; see Tibshirani (1996), Fan and Li (2001), Efron et al. (2004), Zou and Hastie (2005)

and Zhang (2010). These methods combine different penalty functions with the loss function

of the least squares to define a sparse estimator. Hastie et al. (2015) provides a thorough

summary of these penalized methods.

Recently, people’s attention has moved to inference on sparse estimation. Beyond pro-

viding an estimator, studying the distribution of an estimator or quantifying uncertainty of

an estimator becomes an important challenge.
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In order to test the significance of each component of β0, Wasserman and Roeder (2009)

and Meinshausen et al. (2009) proposed a data splitting approach which uses half the data to

select covariates and uses the other half to compute the p-value so that the variable selection

procedure is independent from the inference procedure.

Another group focused on adjusting the bias of lasso and deriving the asymptotic distri-

bution of the debiased lasso estimator. Zhang and Zhang (2014), Javanmard and Montanari

(2014), and van de Geer et al. (2014) showed that the de-biased lasso estimator is asymptot-

ically unbiased to β0 and its asymptotic distribution is a normal distribution. This idea is

further extended to the group lasso and the scaled group lasso by Mitra and Zhang (2016).

With a similar logic, van de Geer and Stucky (2016) proposed a method to construct a

confidence set for a subset of β0 using the de-biased square-root lasso.

Bootstrap also has been a popular method to infer β0. Chatterjee and Lahiri (2011)

proposed using a modified bootstrap with thresholded lasso estimator. Zhou and Min (2017b)

used a similar idea with group lasso to measure the significance of each group of variables.

Zhang and Cheng (2017) and Dezeure et al. (2017) integrated bootstrap step to the de-biased

lasso for a simultaneous inference.

Another group focuses on testing the significance of the additional variable from the

sequential regression. Lockhart et al. (2014) developed a test statistics for a lasso solution

path so that one can test whether to include more variables or not. This is further generalized

to lars and forward stepwise regression by Tibshirani et al. (2016).

Another big stream of high-dimensional inference is post-selection inference. It focuses on

the inference of the least square estimation when the explanatory variables are selected via

penalized methods (Berk et al., 2013; Lee et al., 2016; Liu et al., 2018; Taylor and Tibshirani,

2018). Thus, the target interest becomes

X+
Aµ0 = argmin

β
E‖y −XAβ‖2,

where A is selected variable indices, XA = (Xi)i∈A ∈ Rn×|A| is a subset of X which consists

of selected covariates and X+
A ∈ R|A|×n is Moore-Penrose pseudo inverse matrix. Unlike
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conventional inference methods, inference is studied conditioned on the selection event. This

is because the same dataset is used for the selection procedure and also for inference. More

detailed review in post-selection inference will be done in Chapter 2.

Zhou (2014) derives the density of the augmented estimator, the lasso estimator and its

subgradient, given a point estimate of β0. Zhou and Min (2017a) generalized this idea to

block lasso. Knowing the density of augmented estimator gives great flexibility in developing

applications such as importance sampler and Markov chain Monte Carlo sampler.

1.1 Notation

Notation used throughout the dissertation is defined here. Let Nk denote the set {1, · · · , k}

and 1[k] be a k-vector of ones. Denoted by Zi the i-th column or the i-th component of

Z when Z is a matrix or a vector, respectively. Correspondingly, I define ZA := (Zi)i∈A

and Z−i := (Zj)j 6=i. For a matrix Z, let ZAB be the submatrix consisting rows in A and

columns in B. Denote by row(Z) and null(Z) the row space and the null space of a matrix

Z, respectively. The superscript + is used for Moore-Penrose inverse.

Let n and p be a number of samples and a number of covariates, respectively. Denote

lasso-type estimators and corresponding subgradients by β̂ and S, respectively. Denote a

group structure by G = {Gj}Jj=1 with J as the number of groups where each Gj is a set of

non-overlapping indices such that ∪Jj=1Gj = Np. Let pj be the number of indices in j-th

group, i.e. pj = |Gj|. Given the group structure G, let GB = ∪j∈BGj ⊂ Np for B ⊂ NJ . For

a vector v = (vj)1:p, define v(B) = vGB and, in particular, v(j) = vGj .

1.2 Review : Estimator Augmentation

The lasso type estimators can be defined by concatenating the least square loss and a regu-

larization term. I will be using four lasso estimators; the lasso, the group lasso, the scaled

lasso, the scaled group lasso. Since the lasso and the scaled lasso are the special cases of the

group lasso and the scaled group lasso, respectively, instead of going over all four estimators,
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only the group lasso and the scaled group lasso are reviewed.

Given a group structure {Gj}Jj=1, the group lasso estimator (Yuan and Lin, 2006) is

defined

β̂ ∈ argmin
β∈Rp

{
1

2
‖y −Xβ‖2

2 + nλ

J∑
j=1

wj‖β(j)‖2

}
, (1.1)

where wj > 0 and are set to 1 by default.

The scaled group lasso (Sun and Zhang, 2012) is a variation of the group lasso which

is scale invariant and which simultaneously estimates σ2 along with β̂. It is often used to

estimate the variance of the error term ε in a high-dimensional setting. Again, given a group

structure {Gj}Jj=1, the scaled group lasso estimator is defined

(β̂, σ̂) ∈ argmin
β∈Rp, σ∈R+

{
1

2σ
‖y −Xβ‖2

2 +
σ

2
+ nλ

J∑
j=1

wj‖β(j)‖2

}
. (1.2)

By letting pj = 1 for every j, the group lasso and the scaled group lasso reduce to the lasso

(Tibshirani, 1996) and the scaled lasso, respectively.

The method of estimator augmentation links the distribution of ε and that of the aug-

mented estimator (β̂, S). For the computational efficiency in Metropolis Hastings samplers

which will be introduced in Chapter 2, I review both estimator augmentation in lasso and

estimator augmentation in group lasso.

1.2.1 Estimator augmentation in lasso

Let Ψ = XTX/n and β̂ be the lasso estimator defined in (1.1) by letting pj = 1 for every j.

I start from the Karush-Kuhn-Tucker (KKT) condition for the lasso,

1

n
XTy = Ψβ̂ + λWS, (1.3)
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where W = diag(wi)
p
i=1 and S is the subgradient of the `1 norm at β̂:


Si = sgn(β̂i) if β̂i 6= 0,

Si ∈ [−1, 1] otherwise.

(1.4)

Zhou (2014) inverted the KKT condition to find the sampling distribution of the so-called

augmented estimator, (β̂, S), linking its density to that of XTy. Let U = 1
n
XTε and Θ =

(β̂A, SI), where both A = supp(β̂) and I = Np \ A are random as functions of β̂. Note that

(Θ,A) gives a parameterization of (β̂, S) due to the definition of the subgradient S. The

KKT condition can be rewritten,

U = Ψβ̂ + λWS − 1

n
XTµ0 := H(Θ,A;µ0, λ). (1.5)

Unless otherwise noted, I assume that n < p and X has full row rank, i.e. rank(X) = n.

Under this setting, the vector U ∈ row(X), an n-dimensional subspace of Rp. Let V be a

p × p orthogonal matrix such that (i) the first n columns of V , indexed by R = {1, . . . , n},

consist of n orthonormal eigenvectors associated with the positive eigenvalues of Ψ, and (ii)

the last p−n columns, indexed by N = {n+1, . . . , p}, are a collection of orthonormal vectors

that forms a basis of null(X). Then U can be re-expressed by its coordinates with respect

to VR as

R = V T
R U ∼ Nn(0, σ2Λ/n), (1.6)

where Λ = diag(Λi)
n
i=1 and Λi’s are the positive eigenvalues of Ψ. Let fR be the density of

R. Equation (1.5) enforces a set of constraints on the p-vector S, i.e. V T
NWS = 0, since

WS must lie in row(X). Denote the value of the random vector (β̂, S) by (b, s) and the

corresponding value of (Θ,A) by (θ, A) = (bA, sI , A), where A ⊂ Np and I = Np \ A. Then
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θ must satisfy the constraints

V T
ANWAA sgn(bA) + V T

INWIIsI = 0, (1.7)

‖sI‖∞ ≤ 1. (1.8)

Let q = |A| ≤ n (Remark 1). Differentiating (1.7), one sees that dsI ∈ null(V T
INWII), which

is an (n − q)-dimensional subspace of R|I|. Thus sI can be parameterized by sF ∈ Rn−q

such that dsI = B(I)dsF , where F is a size-(n − q) subset of I and B(I) ∈ R|I|×(n−q) is an

orthonormal basis of null(V T
INWII). Under mild conditions H defined in (1.5) is a bijection

(Lemma 3 in Zhou (2014)), which is used to derive the distribution for (Θ,A) from the

density fR. To ease my notation, let dθ := dbAdsF be a differential form of order n. Zhou

(2014) showed that the distribution of (Θ,A) can be represented by such n-forms:

Theorem 1 (Theorem 2 in Zhou (2014)). Assume p > n and that every n columns of X

are linearly independent. If y ∼ Nn(µ0, σ
2In) and λ > 0, then the joint distribution of

(Θ,A) = (β̂A, SI ,A) is given by

PΘ,A(dθ, A) = fR
(
V T
RH(θ, A;µ0, λ);σ2

)
| detT (A;λ)|dθ (1.9)

for (θ, A) satisfying (1.7) and (1.8), where fR(•;σ2) is the density of the distribution in (1.6)

and T (A;λ) = [V T
R ΨA|λV T

IRWIIB(I)] ∈ Rn×n.

Remark 1. The right side of (1.9) defines a joint density of (Θ,A) with respect to the

parameterization (bA, sF ) for θ. This density will be used to develop an MCMC algorithm

for my conditional sampling step. It is a quite mild assumption that every n columns of X

are linearly independent: If the entries of X are drawn from a continuous distribution over

Rn×p, then this assumption will hold almost surely. This assumption also guarantees that

the lasso solution is unique and |A| ≤ n for every y ∈ Rn (Tibshirani, 2013). Hereafter,

when conditioning on A = A I always assume that |A| ≤ n.
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1.2.2 Estimator augmentation in the group lasso

Given the group structure, the KKT condition for the group lasso estimator (1.1) is

1

n
XTy = Ψβ̂ + λWS, (1.10)

where W = diag{wiIpi}Ji=1 and S is its subgradient:


S(j) = β̂(j)/‖β̂(i)‖2 if β̂(j) 6= 0,

‖S(j)‖2 ≤ 1 otherwise.

(1.11)

Or equivalently (1.10) can be rewritten as follows:

1

n
XT

(j)y =
1

n
XT

(j)Xβ̂ + λwjS(j) for j ∈ NJ . (1.12)

Let M = G(β̂) ⊂ NJ represent the active group indices and define γ̂j = ‖β̂(j)‖2 . Rewriting

the KKT condition gives

1

n
XTε =

∑
j∈M

γ̂jΨ(j)S(j) + λWS − 1

n
XTµ0 := H ′(γ̂M, S,M;µ0, λ). (1.13)

Note that, β̂(j) = γ̂jS(j) and thus (γ̂, S) is a equivalant representation of (β̂, S). Moving

XT/
√
n to the r.h.s to further define H̃(γ̂M, S),

E = ε/
√
n =
√
n(XT)+H ′(γ̂M, S,M;µ0, λ) := H̃(γ̂M, S,M;µ0, λ). (1.14)

The goal is to derive the distribution of (γ̂M, S,M) from that of E. Let fE be the distribution

of E which is Nn(0, σ2In/n) under the normal error assumption.

(1.10) forces S ∈ row(XW−1). Together with (1.11), S lies in (n − |M |) dimensional

manifold in Rp,

SM =
{
v ∈ row(XW−1) : ‖v(j)‖2 = 1 ∀j ∈M and ‖v(j)‖2 ≤ 1 ∀j /∈M

}
. (1.15)
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Thereby, s ∈ SM needs to satisfy

QTs = 0,

||s(j)||2 = 1 ∀j ∈M, (1.16)

where Q is an orthonormal basis of null(XW−1). Differentiate (1.16) with respect to s gives,

QTds = 0,

〈s(j), ds(j)〉 = 0 ∀j ∈M. (1.17)

With these constraints, s can be parameterized by sF ′ ∈ Rn−|M |, where F ′ ⊂ Np and |F ′| =

n− |M |. In other words, there exists a mapping T (s,M) such that ds = T (s,M)dsF ′ .

Let Θ = (γ̂M, S) and θ = (rM , s) be the value of Θ. Analogous to Zhou (2014), Zhou and

Min (2017a) show that under mild conditions H̃ is a bijection (Lemma 3.1 in Zhou and Min

(2017b)) that maps (Θ,M) onto Rn. Using the (drM , dsF ′) representation, the complete

density of (Θ,M) is given as follows:

Theorem 2. (Theorem 3.3 in Zhou and Min (2017a)) The distribution of (Θ,M) is given

by

PΘ,M(dθ,M) = fE
(
H̃(rM , s;µ0, λ)

)∣∣ det JM(rM , s;λ)
∣∣dθ,

where



JM(rM , s;λ) =
[√

n(XT)+
[
(Ψ ◦ s)M |(r ◦Ψ + λW )T (s,M)

]]
,

Ψ ◦ s =
[
Ψ(1)s(1)

∣∣ · · · ∣∣Ψ(J)s(J)

]
,

r ◦Ψ =
[
r1Ψ(1)

∣∣ · · · ∣∣rJΨ(J)

]
,

|M | ≤ n.
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1.2.3 Estimator augmentation in the scaled group lasso

The KKT condition of the scaled group lasso which corresponds to (β̂, σ̂) from (1.2) is

1

n
XTy = Ψβ̂ + λσ̂WS, (1.18)

σ̂ = ‖y −Xβ̂‖2/
√
n (1.19)

where W = diag{wiIpi}Ji=1 and S is the same as in (1.11). With little algebra, from (1.18)

and (1.19), one can see that S needs to satisfy λ
√
n||(XT)+WS||2 = 1. Taking derivative

with respect to s gives

sTWXT(XXT)−2XWds = 0.

Due to this additional constraint, s now stays in Rn−|M |−1 manifold in Rp and thus it can be

parameterize by sF̃ such that ds = T̃ (s,M)dsF̃ , where T̃ (s,M) ∈ Rp×(n−|M |−1).

Let Θ = (γ̂M, S, σ̂
2) and θ = (rM , s, σ̌

2) be the value of Θ. Using the (drM , dsF̃ ) repre-

sentation, the complete density of (Θ,M) can be shown as Theorem 3.

Theorem 3. (Theorem 5.2 in Zhou and Min (2017a)) The distribution of (Θ,M) is given

by

PΘ,M(dθ,M) = fE
(
H̃(rM , s; β0, λσ̌)

)∣∣∣ det JM(θ;λ)
∣∣∣dθ,

where



JM(rM , s;λ) =
[√

n(XT)+
[
(Ψ ◦ s)M

∣∣(r ◦Ψ + λσ̌W )T̃ (s,M)
∣∣λWs

]]
,

Ψ ◦ s =
[
Ψ(1)s(1)

∣∣ · · · ∣∣Ψ(J)s(J)

]
,

r ◦Ψ =
[
r1Ψ(1)

∣∣ · · · ∣∣rJΨ(J)

]
,

|M | ≤ n− 1.

1.3 Review: The de-biased lasso

The debased lasso, or the desparified lasso, was developed by three groups (van de Geer

et al., 2014; Zhang and Zhang, 2014; Javanmard and Montanari, 2014) around the same

time. The key idea is to adjust the bias of the lasso estimator. Here, I review van de Geer
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et al. (2014).

Assume that y = Xβ0 + ε and ε ∼ Nn(0, σ2In). Let Ψ̂ be a relaxed inverse matrix of Ψ.

From the KKT conditions of the lasso estimator (1.3) can be rewritten as

β0 = β̂ + λΨ̂WS − 1

n
Ψ̂XTε− ∆√

n
,

where

∆ =
√
n(Ψ̂Ψ− In)(β̂ − β0). (1.20)

By Theorem 2.2 in van de Geer et al. (2014), ∆ is proven to be negligible which justifies the

de-biased lasso estimator b̂ to be defined as

b̂ := β̂ + λΨ̂WS. (1.21)

As a result, the asymptotic distribution of
√
n(b̂− β0) becomes

√
n(b̂− β0) ∼ Np(0, σ2Ψ̂ΨΨ̂),

which is used to generate the confidence interval of β0,j for each j ∈ Np.

1.4 Review: Lee’s method

Lee’s method (Lee et al., 2016) generates confidence intervals of post-selection estimators

when the selection event is given as A = A via lasso. Denoted by νj the j-th component of

X+
Aµ0. The goal is to find a confidence interval Îj of νj

P(νj ∈ Îj | A = A) ≥ 1− α.

Assume y ∼ Nn(µ0, σ
2In). Given active set A, decomposing the KKT condition of lasso
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estimator (1.3) into an active part and an inactive part gives

X>A (XAβ̂A − y) + nλSA = 0,

X>I (XAβ̂A − y) + nλSI = 0,

where ‖SI‖∞ < 1. Looking (β̂A, SI) as random variables while fixing A = A and SA = sA,

one can see the event {A = A, sgn(β̂A) = sA} is equivalent to imposing polyhedral constraints

on y. Denoted a projection matrix onto XA by PA.

{A = A, SA = sA} = {Q1(A, sA)y ≤ Q2(A, sA)}, (1.22)

where Q1(A, sA) =


X>−A(In − PA)/nλ

−X>−A(In − PA)/nλ

− diag(sA)(X>AXA)−1X>A

 ,

and Q2(A, sA) =


1p−|A| −X>−A(X>A )+sA

1p−|A| +X>−A(X>A )+sA

−nλ diag(sA)(X>AXA)−1sA

 .

For η ∈ Rn, let c := η(ηTη)−1 and z := (In − cηT)y. The polyhedral constraints on y

(1.22) can be transform to derive the feasible interval of ηTy.

{Q1(A, sA)y < Q2(A, sA)} =
{
V −sA(z) ≤ η>y ≤ V +

sA
(z)
}
,

where


V −sA(z) = maxj:(Q1c)j<0

Q2,j−(Q1z)j
(Q1c)j

,

V −sA(z) = minj:(Q1c)j>0
Q2,j−(Q1z)j

(Q1c)j
.

Taking union over all the possible sign patterns of SA gives

{A = A} =
⋃

sA∈{−1,1}|A|

{V −sA(z) ≤ η>y ≤ V +
sA

(z)}. (1.23)
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With (1.23) and fix z with its observed value zo, one can see

[ηTy | A = A, z = zo] ∼ T N

(
ηTµ0, σ

2‖η‖2,
⋃
sA

[V −sA(zo), V +
sA

(zo)]

)
,

where T N (µ, σ2,V) is N (µ, σ2) truncated to the set V . The condition z = zo can be removed

from the independency between z and ηTy. Fianlly, letting ηT = eTjX
+
A for j ∈ N|A| gives

[ejX
+
Ay | A = A] ∼ T N

(
ejX

+
Aµ0, σ

2‖ejXA‖2,
⋃
sA

[V −sA(zo), V +
sA

(zo)]

)
. (1.24)

Confidence intervals of ejX
+
Aµ0 for j ∈ N|A| can be constructed with (1.24).

1.5 Outline

Chapter 2 introduces a new post-selection inference method which uses a simulation approach

to draw samples from the conditional distribution of the response variable y. I introduce how

to construct confidence sets and intervals of post-selection estimators and show the benefit

of out methods over Lee’s method. In Chapter 3, the focus moves to inference methods for

data with a group structure and advocate the effectiveness of grouping by showing extensive

numerical results. An R package which contains sampling and inference methods for lasso-

type estimators is then introduced in Chapter 4. Lastly, the dissertation is concluded with

summary and future directions in Chapter 5.
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CHAPTER 2

Post-selection Inference

2.1 Introduction

Assuming that a random vector y ∈ Rn follows a multivariate Gaussian distribution,

y = µ0 + ε, ε ∼ Nn(0, σ2In), (2.1)

I wish to make inference on the unknown mean vector µ0 ∈ Rn after observing y. Given a

set of p covariates X =
[
X1| · · · |Xp

]
∈ Rn×p, a common approach is to approximate µ0 with

a linear combination Xβ for β ∈ Rp. When the number of covariates is large, I often face the

situation that only some of them can be included in the linear approximation. They may be

selected manually or by a certain model selection method. Let A ⊂ {1, · · · p} be the set of

selected covariates. After the selection step is done, my goal shifts to constructing a linear

model that can best approximate µ0 with only the selected covariates XA = (Xj, j ∈ A).

Then the parameter of interest

ν := X+
Aµ0 = argmin

β∈R|A|
‖µ0 −XAβ‖2

2 (2.2)

is defined by the projection of µ0 onto the space spanned by XA. Inference on ν is called

post-selection inference (Pötscher, 1991). In large-scale analysis, model selection is usually

applied as an initial screening for important variables or features. In these applications,

naive methods based on the standard t-statistic or interval will not provide valid inference

for the selected variables due to selection bias in the screening step (Tibshirani et al., 2016;

Liu et al., 2018). By conditioning on the model selection event, post-selection inference
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provides reliable quantification of the significance of a selected variable, which is critical for

follow-up investigations. Another appealing feature for post-selection inference is that it is

valid without assuming a true linear model for y, only regarding the selected model as an

approximation for µ0 (Berk et al., 2013), which greatly relaxes its model assumptions.

When the selection step is done independently from y, for example by using another

independent dataset or by pre-given information, inference on ν can be easily done with

conventional methods. The distribution of the least-squares estimator ν̂ = X+
Ay simply

follows a Gaussian distribution. However, the problem becomes much more challenging

when the selection step is data-driven and uses the same y. In such a case, conditioning

on the selected active set A, the sampling distribution of y is restricted to a potentially

irregular subset of Rn. This problem is further complicated for high-dimensional data with

p > n. Several lines of recent work have laid down the theoretical foundations and developed

novel methods for post-selection inference on high-dimensional data. Tibshirani et al. (2016)

develop a truncated Gaussian statistic to test the significance of an entering variable in each

step of a sequential regression method, which generalizes the earlier work by Lockhart et al.

(2014). Tibshirani et al. (2018) establish uniform convergence properties of this statistic,

without normal assumption, as n → ∞ and p stays fixed. Lee et al. (2016) build exact

confidence intervals for individual components νj of ν in (2.2), where the set A is the support

of the lasso (Tibshirani, 1996), which I reviewed in Section 1.4. The authors show that

conditioning on the active set of the lasso is equivalent to imposing polyhedral constraints

on y, a key idea used in Tibshirani et al. (2016) as well. Tian and Taylor (2017) have

established asymptotic results for Lee’s method without imposing Gaussian assumption.

Taylor and Tibshirani (2018) further generalize Lee’s method to generalized linear models,

Cox’s proportional hazards model and Gaussian graphical models. By conditioning on a

smaller and more robust subset of the lasso active set, Liu et al. (2018) develop a more

efficient method that produces shorter intervals.

In this chapter, I seek to make inference on ν (2.2) with the model selected by the lasso.
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That is, the set A is the support of

β̂(y) := argmin
β∈Rp

1

2n
‖y −Xβ‖2

2 + λ

p∑
i=1

wi|βi|, (2.3)

where wi > 0 and are set to 1 by default. However, in contrast to Lee et al. (2016) and

the other methods reviewed above, I aim at constructing not only confidence intervals for

an individual νj, but also confidence sets for νB, where B contains an arbitrary subset of A.

To the best of my knowledge, methods for constructing confidence sets after model selection

have not been proposed in the literature. Although one might consider simultaneously

covering all νj, j ∈ B by controlling family-wise error rate, such an approach would be very

stringent for large B, as verified numerically in comparison to my proposed method. On the

other hand, the method of Lee et al. (2016) critically relies on the cumulative distribution

function of a univariate Gaussian distribution truncated to the union of 2|A| intervals. It

seems highly intractable to generalize their technique for joint inference on a potentially large

set of νj. Moreover, although Lee’s method preserves the coverage rate at a desirable level,

their confidence intervals are not always informative. In particular, their method sometimes

produces infinite intervals with ∞ or −∞ as the upper or lower bound, severely limiting its

practical applications. Kivaranovic and Leeb (2018) show that the expected interval length

of Lee’s method can be infinity under certain condition, which is frequently satisfied in their

simulation study.

A key difference between my method and the existing ones is that ours is built upon

sampling of y∗ that leads to the same active set of the lasso, i.e. [y∗ | supp(β̂(y∗)) = A],

where A = supp(β̂(y)) is computed from the observed data (X, y). This sampling-based

approach allows for the construction of confidence sets for joint inference on any subset of

the parameter vector ν. It also offers great flexibility in choosing the statistic for inference, as

the distribution of any function T (y∗) can be readily approximated from a large sample of y∗.

However, this conditional sampling is a challenging computational problem, since the event

{supp(β̂(y∗)) = A} is in general a rare event, especially when p is large. To complete this

difficult task, I develop a novel conditional sampler via the method of estimator augmentation
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which I reviewed in Chapter 1.2.1 (Zhou, 2014), given a point estimate µ̃ of µ0. To protect

my method from a poor estimate µ̃, I introduce a randomization step to draw a uniform

sample of µ̃ from a set Ĉ, which in conjunction with my conditional sampling of y∗ produces

an efficient and accurate tool for joint inference after lasso selection. The set Ĉ can be seen

as a way to incorporate the uncertainty in estimating µ0 from y, prior to or unconditional on

model selection, which allows for an adaptive and robust approximation of the distribution

[y∗ | supp(β̂(y∗)) = A]. When used for inference on individual parameters, my method often

builds much shorter confidence intervals than Lee’s method, while achieving a comparable

coverage rate. Furthermore, my method, by design, does not produce infinite intervals or sets.

my post-selection inference method has been implemented in the R package EAinference,

which will be introduced in Chapter 4.

The rest of this chapter is organized as follows. In Section 2.2, I introduce the key in-

gredients of my method: how to build confidence sets via conditional sampling and how

to implement the randomization step. Section 2.3 develops a Markov chain Monte Carlo

(MCMC) algorithm for the conditional sampling. Section 2.4 demonstrates empirically the

effectiveness and accuracy of the confidence sets constructed by my method, including com-

parisons with Lee’s method. I conclude the chapter with some remarks and discussion in

Section 2.5. Proofs of technical results are provided in Section 2.6.

2.2 Post-selection inference

2.2.1 Basic idea

For the lasso estimate β̂(y), let A(y) = supp(β̂(y)) be the set of active variables. Given the

active set A(y) = A, the parameter of interest ν = X+
Aµ0 (2.2) is the coefficient vector for

the projection of µ0 = E[y] onto span(XA). my goal is to construct a confidence set ÎB(α)

such that

P
{
νB ∈ ÎB(α)

∣∣∣A(y) = A
}
≥ 1− α for B ⊂ N|A|, (2.4)
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where the probability is taken with respect to y ∼ Nn(µ0, σ
2In). In particular, when B = {j},

ÎB(α) is a confidence interval for νj, which I denote by Îj(α). A natural choice for the center

of the confidence set is ν̂B := [X+
Ay]B. This problem is, however, more complicated than it

may look. Since I have selected variables using lasso, the distribution of X+
Ay given A(y) = A

is no longer a Gaussian distribution, as the support of y is now only a proper subset of Rn.

I will develop a simulation-based approach. Note that the conditioning event {A(y) = A}

restricts my sampling to those y for which the lasso β̂(y) selects exactly the same variables in

A, which is usually a rare event. Thus, it is almost impossible to use bootstrap to draw from

[y∗ | A(y∗) = A], where y∗ denotes a sample drawn from an (estimated) distribution of y.

However, estimator augmentation (Zhou, 2014) enables us to simulate from this conditional

distribution, with a point estimate µ̃ for µ0, by an MCMC algorithm; see Section 2.3.2 for

the details.

Suppose I have drawn a large sample of y∗ by this Monte Carlo algorithm. One could

use [X+
A (y∗ − µ̃) | A(y∗) = A], which can be easily estimated from the samples of y∗, to

approximate [X+
A (y − µ0) | A(y) = A] and build a confidence set for νB. In practice, a

poor choice of µ̃ often results in poor coverage. To overcome this issue, I develop a robust

method which randomizes the plug-in estimate µ̃. As it will become clear, I do not attempt

to estimate the conditional distribution [X+
A (y− µ0) | A(y) = A], instead my approach is to

bound the relevant quantiles of this distribution in order to perform conservative inference

as stated in (2.4).

2.2.2 The randomization step

I will first develop my method for constructing confidence intervals for νj, which will be

generalized in Section 2.2.3 to joint inference on νB. Let qj,γ(µ) be the γ-quantile of the

distribution

[{X+
A (y∗ − µ)}j | A(y∗) = A], (2.5)
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where y∗ = µ+ ε∗ and ε∗ ∼ Nn(0, σ2In). For γ ∈ (0, 1), construct an interval

ξj(µ, γ) :=
[
ν̂j − qj,1−γ/2(µ), ν̂j − qj,γ/2(µ)

]
.

By definition, the coverage rate of ξj(µ0, γ) is 1 − γ. Call ξj(µ0, γ) the oracle interval. Of

course, µ0 is unknown so I need an estimate µ̃ in place of µ0 to construct a practical interval

ξj(µ̃, γ). One problem is that the conditional distribution in (2.5) depends on µ due to the

selection event and qj,γ(µ̃) is not guaranteed to converge uniformly to qj,γ(µ0). To alleviate

this issue, I propose a method to randomize the point estimate µ̃, which is motivated by the

following conservative construction.

Suppose I have a set C ⊂ Rn such that µ0 ∈ C. For γ < 1/2, define

q∗j,1−γ(C) = max
µ∈C

qj,1−γ(µ), (2.6)

q∗j,γ(C) = min
µ∈C

qj,γ(µ). (2.7)

Then it follows that the coverage rate of the interval [ν̂j−q∗j,1−γ/2(C), ν̂j−q∗j,γ/2(C)] is at least

1−γ. A possible choice for the set C is a confidence set Ĉ for the mean µ0, unconditional on

the selected model. I have the following result about using such an interval for a conservative

coverage. Recall ν = X+
Aµ0 and ν̂ = X+

Ay.

Proposition 4. Suppose y ∼ Nn(µ0, σ
2In) and Ĉ is a 1 − α/2 confidence set for µ0, inde-

pendent of y. Let ξ∗j (Ĉ) = [ν̂j − q∗j,1−α/4(Ĉ), ν̂j − q∗j,α/4(Ĉ)]. Then I have

P
{
νj ∈ ξ∗j (Ĉ)

∣∣∣∣A(y) = A

}
≥ 1− α. (2.8)

Proposition 4 shows that I can construct a valid confidence interval for post-selection

inference, provided a (1 − α/2) confidence set Ĉ for µ0. Since its length is determined by

the worst scenarios over all µ ∈ Ĉ as in (2.6) and (2.7), the confidence interval ξ∗j (Ĉ) can

be overly conservative, as shown by my numerical results in Section 2.4.1. Moreover, the

assumption that Ĉ is independent of y can be strong unless I use sample-splitting, which
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does not align well with the purpose of post-selection inference. However, it provides good

intuition for the use of the set Ĉ in my proposed randomization step, as described in what

follows.

Suppose that µ̂ is the center of Ĉ = Ĉ(y) constructed from y. Let µ̃ be uniformly

distributed over Ĉ, i.e. µ̃ ∼ U(Ĉ), and qj,γ(Ĉ) be the γ-quantile of the distribution

[{X+
A (y∗ − µ̂)}j | A(y∗) = A], (2.9)

where y∗ = µ̃+ ε∗ and ε∗ is independent of µ̃. Construct an interval ξj(Ĉ) with qj,γ(Ĉ) as

ξj(Ĉ) := [ν̂j − qj,1−α/4(Ĉ), ν̂j − qj,α/4(Ĉ)]. (2.10)

Note that the quantile qj,γ(Ĉ) is calculated from a randomized plug-in estimate µ̃ over

the confidence set Ĉ, which takes into account the uncertainty in µ̃. Thus, this interval

incorporates more variation than using a fixed point estimate µ̂ as in ξj(µ̂, α).

Below, I present my main algorithm for constructing the confidence interval ξj(Ĉ). Let

∂Ĉ denote the boundary of Ĉ.

Algorithm 1. Constructing interval ξj(Ĉ), j ∈ N|A|:

1. Draw µ̃(k) uniformly from ∂Ĉ for k = 1, . . . , K.

2. For each k, draw {y∗ki, i = 1, . . . , N} from [y∗|A(y∗) = A] where y∗ ∼ Nn(µ̃(k), σ2In).

3. Estimate qj,γ(Ĉ) by the quantiles of {[X+
A (y∗ki − µ̂)]j,∀k, i} and construct ξj(Ĉ) (2.10)

with the estimated quantiles.

Here, I draw µ̃(k) from ∂Ĉ for efficiency. Since Ĉ is usually an n-dimensional ellipsoid,

uniform points in Ĉ will be close to its boundary when n is large.

My randomization of the plug-in estimate µ̃ can be interpreted from a Bayesian perspec-

tive, regarding µ0 as a random vector. As discussed above, a confidence interval can be

constructed if I have a good approximation to the distribution [y∗ | A(y∗) = A, µ0], where

19



y∗ | µ0 ∼ Nn(µ0, σ
2In) is a new response vector independent of y. From a Bayesian perspec-

tive, a good approximation that takes into account the uncertainty in µ0 is the posterior

predictive distribution

p
(
y∗ | A(y∗) = A, y

)
=

∫
p
(
y∗ | A(y∗) = A, µ0

)
p(µ0 | y)dµ0,

where p(µ0 | y) is a posterior distribution for µ0. Regarding U(Ĉ), the uniform distribution

over Ĉ(y), as a posterior distribution for µ0, steps 1 and 2 in Algorithm 1 can be interpreted as

sampling from the above posterior predictive distribution. Drawing µ̃ in step 1 is equivalent

to drawing samples from p(µ0 | y) and drawing y∗ in step 2 is equivalent to sampling from

p(y∗ | A(y∗) = A, µ̃), which can be done by my Monte Carlo algorithm to be developed in

the next section. In step 3, I find the quantiles of [X+
A (y∗ − µ̂) | A(y∗) = A, y], where µ̂, the

center of Ĉ, is the posterior mean of µ0.

2.2.3 Joint inference

Given the samples of y∗ drawn by Algorithm 1, I can easily approximate the conditional

distribution [T (y∗) | A(y∗) = A] for any function T (·) and carry out many inferential tasks.

In particular, I extend my method to the construction of confidence sets for ν = X+
Aµ0.

Recall ν̂ = X+
Ay and let q = |A|. Given a matrix H ∈ Rm×q for some m ≤ q, I wish to

make inference on the parameter vector Hν ∈ Rm. Generalizing (2.9), let qH,γ(Ĉ; `δ) be the

γ-quantile of the distribution

[ ∥∥H(X+
Ay
∗ −X+

A µ̂)
∥∥
δ

∣∣∣ A(y∗) = A
]
, (2.11)

where δ ∈ [1,∞] specifies a particular `δ norm used in my construction. From the above

Bayesian interpretation, (2.11) approximates [‖Hν̂ − Hν‖δ | A(y) = A] as its posterior

predictive estimate. Then I construct a 1− α confidence set for Hν as an `δ ball

ξH(Ĉ; `δ) :=
{
η ∈ Rm : ‖η −Hν̂‖δ ≤ qH,1−α/2(Ĉ; `δ)

}
, (2.12)
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where Ĉ, as in (2.10), is a 1 − α/2 confidence set for the mean µ0. For example, one can

construct a confidence set for ν by letting H = Iq. If one is interested in constructing a

confidence set for the first two components in A, I can let H = [e1, e2]T, where ej is the

j-th standard basis vector in Rq. In general, ξH(Ĉ; `δ) is a confidence set for some linear

transformation of ν.

Now the remaining question is how to build the (1 − α/2) confidence set Ĉ for µ0,

unconditional on the selected model. There are a few methods that may be used to construct

such a confidence set for high-dimensional regression problems (Nickl and van de Geer, 2013;

Zhou et al., 2019). I apply two different methods in this work. The first method is a two-step

method, consisting of a projection and a shrinkage step (Zhou et al., 2019). This method

builds an ellipsoid-shaped confidence set with different radii for strong and weak signals.

The radius and center for weak signals are constructed using Stein’s method. Denote by ĈS

and µ̂S the confidence set and its center by this method. It is shown by Zhou et al. (2019)

that ĈS is asymptotically honest,

lim inf
n→∞

inf
µ0∈Rn

P(µ0 ∈ ĈS) ≥ 1− α/2,

where P is taken with respect to the distribution of y in (2.1). However, this method

replies on sample-splitting in its construction, which adds another level of complexity in the

application of my post-selection inference. Thus, I develop a second and simpler method,

based on a given subset of covariates XA. Let A0 = supp(β0) be the true support such that

µ0 = XA0β0A0 . If A0 ⊂ A, then X+
Ay ∼ N|A|(β0A, σ

2(XT
AXA)−1). From this fact, I build a

confidence set D̂ for β0A which defines a confidence set Ĉ = XAD̂ for µ0. The confidence set

and its center built this way are denoted by ĈA and µ̂A. A convenient choice of A would be

A(y), the support of lasso, although under this choice ĈA is not guaranteed to achieve the

nominal confidence level, unless P(A(y) = A)→ 1 for some A ⊃ A0 as n→∞. However, I

am only using ĈA as a mechanism to randomize the plug-in estimate µ̃, and thus it does not

have to be a valid confidence set. I will compare the performance of these two methods in

Section 2.4.1 on simulated data. The comparison suggests that the second method usually
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achieves comparable coverage as the first method, while being more coherent with my post-

selection inference procedure in practice. Therefore, I use the second method by default for

all the numerical results in this work.

Now I summarize the steps of my post-selection inference on Hν.

Algorithm 2. Constructing ξH(Ĉ; `δ):

1. Construct (1− α/2) confidence set ĈA centering at µ̂A.

2. Apply Algorithm 1 with Ĉ = ĈA and µ̂ = µ̂A.

3. Estimate qH,γ(Ĉ; `δ) by the quantile of {‖HX+
A (y∗ki−µ̂A)‖δ, ∀k, i} and construct ξH(Ĉ; `δ)

in (2.12) with the estimated quantile.

Remark 2. I have implicitly assumed a fixed tuning parameter λ in (2.3) so far, but I observe

that my method works well even using a λ chosen in a data-dependent way. This is very

appealing in applications: One may simply use lasso, with a data-dependent λ, to identify

potentially importance variables, followed by my inference tool to construct an interval for

each. Although not the focus, for low-dimensional data (p < n), the confidence set Ĉ for µ0

can be constructed with A = Np by the sampling distribution of the least-squares estimator,

which is certainly valid with the nominal confidence level.

2.2.4 An illustration

In Section 2.2.2, I covered four different methods for constructing Îj(α). First, the oracle

interval ξj(µ0, α) is constructed assuming the true mean µ0 is known (the oracle). This is

not a practical method and is used for illustration only. Second, ξj(µ̂, α) uses an estimate

µ̂ in place of µ0. My main proposal ξj(Ĉ), presented in Algorithm 1, randomizes the plug-

in estimate of µ0 by uniform sampling over the boundary of Ĉ. Lastly, the interval ξ∗j (Ĉ)

defined in Proposition 4 controls the worst case over Ĉ. A detailed comparison among the

four methods will be conducted in Section 2.4.1. In general, the oracle interval ξj(µ0, α)

reaches the nominal coverage rate with the shortest interval length, the coverage of ξj(µ̂, α)
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Figure 2.1: Illustration of the confidence intervals (a) ξ(µ̂) and (b) ξ(Ĉ) in one-dimension.

The red lines represents ν̂ = β̂LS and the two blue dotted lines indicate the boundaries of Ĉ.

tends to be lower than the desired level, while ξ∗j (Ĉ) seems too conservative. The interval

ξj(Ĉ) reaches a good compromise between coverage and interval length.

Here, I illustrate the difference between ξj(µ̂, α) and ξj(Ĉ) for p = 1, assuming ‖X1‖2 =

n. In this case, the lasso β̂ = sgn(β̂LS)(|β̂LS| − λ)+, where β̂LS = XT
1 y/n is the least-

squares estimate. The distribution of β̂LS given A(y) = {1} is truncated to the intervals

(−∞,−λ) ∪ (λ,∞) := T (shaded regions in Figure 2.1). Write the two confidence intervals

as ξ(µ̂) and ξ(Ĉ), where µ̂ = X1β̂
LS and Ĉ projected to X1 is an interval (β̂LS−∆, β̂LS + ∆),

centered at β̂LS between the two blue dotted lines in panel (b). Both ξ(µ̂) and ξ(Ĉ) are

centered at ν̂ = β̂LS, but with different end points. Let T Nd(µ,Σ,V) denote Nd(µ,Σ)

truncated to the set V . The interval ξ(µ̂) = [ν̂ − b, ν̂ + a] is constructed based on the

quantiles of

XT
1 y
∗/n | A(y∗) = {1} ∼ T N (β̂LS, σ2/n, T ),

indicated by the dark tail regions in Figure 2.1(a), where y∗ ∼ Nn(µ̂, σ2In). On the contrary,

as shown in Figure 2.1(b), the interval ξ(Ĉ) = [ν̂−d, ν̂+c] is constructed from the quantiles of

a mixture of two truncated normal distributions, i.e. T N (β̂LS±∆, σ2/n, T ), each centered at

a boundary of the interval Ĉ (after being projected to X1). If the true parameter β0 ∈ (−λ, λ)

and close to zero, then ξ(Ĉ) is likely to cover β0 while the other interval ξ(µ̂) will fail. In fact,
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the difficulty in post-selection inference largely stems from such a situation in which some

β0j is very close to zero and consequently the conditional distribution of y given the selection

event can change substantially with the mean µ0. My method tackles this difficult problem

by simulating from a mixture of such conditional distributions with mean µ̃ randomizing

over a suitable neighborhood of µ0.

2.3 Conditional sampling

In this section, I develop an MCMC sampler to draw y∗ such that A(y∗) = A, which is the

key conditional sampling step in my method. My sampler is based on the idea of estimator

augmentation which was introduced in Chapter 1.2.1.

2.3.1 The target distribution

As an immediate consequence of Theorem 1, I can obtain a density for the conditional

distribution [β̂A, SI | A = A] for a fixed subset A, which is directly related to my target

conditional sampling problem.

Corollary 5. Under the same assumptions of Theorem 1, the conditional distribution [β̂A, SI |

A = A] is given by

PΘ|A(dθ|A) ∝ fR
(
V T
RH(θ, A;µ0, λ);σ2

)
dθ := π(θ | A;µ0, σ

2, λ)dθ, (2.13)

where θ = (bA, sI) satisfies the constraints in (1.7) and (1.8).

The conditional distribution [β̂A, SI | A = A] has an especially simple density π(θ | A),

which is just an n-variate density with respect to a fixed parameterization (bA, sF ) ∈ Rn as

the active set A is fixed to A and the set F only depends on A. See Corollary 1 in Zhou

(2014) for a more detailed discussion on the truncated Gaussian nature of π.

Given the density in Corollary 5, I develop a Metropolis-Hastings (MH) sampler to draw

(β̂A, SI) given the fixed active set, A = A. This will achieve my goal of sampling [y | A(y) =
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A] because of the following result:

Theorem 6. Suppose the assumptions of Theorem 1 hold and (β̂∗A, S
∗
I ) follows the distribu-

tion (2.13). Then I have

[y | A(y) = A] =
[
XAβ̂

∗
A + nλ(XT)+

{
WA sgn(β̂∗A) +WIS

∗
I

}]
, (2.14)

and consequently,

[X+
Ay | A(y) = A] =

[
β̂∗A + nλ(XT

AXA)−1WAA sgn(β̂∗A)
]
. (2.15)

As described in Algorithm 1, I wish to draw [y∗ | A(y∗) = A] for y∗ ∼ Nn(µ̃, σ2In). Once

I have drawn (β̂∗A, S
∗
I ) from the density π(θ | A; µ̃, σ2, λ) (2.13), I can easily obtain a sample

of y∗ by (2.14), which follows the target conditional distribution. Note that only X+
Ay
∗ is

needed in (2.9) and (2.11), which can be calculated directly with (2.15).

To provide an intuitive understanding of the conditional distributions in (2.13) and (2.14),

let us consider a simple example with n > p = 2, Ψ = I2, µ0 = Xβ0 and A = {1}. In this

low-dimensional setting, null(X) = {0} and thus the constraint (1.7) is trivially satisfied for

all s ∈ R2 (as VN = 0). As shown in Figure 2.2(a), the sample space of (β̂A, SI) = (β̂1, S2) is

(−∞, 0)× [−1, 1] ∪ (0,∞)× [−1, 1] := Ω−1 ∪ Ω1,

which is an essentially connected set (i.e. having a connected closure). Since Ψ = I2, I may

choose VR = I2, whose columns form an orthonormal basis for row(X) = R2, and under

this choice fR is the density of N2(0, σ2I2/n). The contours of [(β̂1, S2) | A = {1}] are

shown in Figure 2.2(a). It is easier to understand this distribution if further conditioning on

sgn(β̂1) = s1:

(β̂1, S2) | (A = {1}, sgn(β̂1) = s1) ∼ T N2(µ(s1),Σ,Ωs1), s1 ∈ {−1, 1},

which is a bivariate normal distribution truncated to Ωs1 for each s1. The mean and covari-
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Figure 2.2: The conditional distributions of (a) (β̂1, S2) and (b) XTy/n given A = {1} for
p = 2.

ance matrix are

µ(s1) =

β01 − λs1

β02/λ

 , Σ =
σ2

n

1 0

0 1/λ2

 .

The two sets of contours in panel (a), separated by the line segment {0} × [−1, 1], corre-

spond to the two truncated normal distributions with different centers, µ(1) and µ(−1).

Figure 2.2(b) plots the contours of the conditional distribution of XTy/n given A = {1},

which is a bivariate normal distribution N2(β0, σ
2I2/n) truncated to the union of two dis-

connected regions,

(−∞,−λ)× [−λ, λ] ∪ (λ,∞)× [−λ, λ].

The contrast between the two sample spaces illustrates the potential advantage in designing

Monte Carlo algorithms in the space of the augmented estimator (β̂A, SI) over the space of

y.
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2.3.2 A Metropolis-Hastings sampler

In what follows, I describe my MH sampler in detail. For notational brevity, write the target

density as π(θ) ≡ π(θ | A; µ̃, σ2, λ) hereafter, where the space of θ = (bA, sI) is defined by

(1.7) and (1.8). These constraints must be satisfied in each step of the sampling process,

which presents a technical challenge for my Monte Carlo algorithm. I adopt a coordinate-

wise update of θ. Let θ(t) be the value of θ at the t-th iteration. After proposing a new value

θ†i for its i-th component, the MH ratio is computed as

ζ = min

{
1,

π(θ†)

π(θ(t))

q(θ†, θ(t))

q(θ(t), θ†)

}
,

where q(θ(t), θ†) is the transition kernel of the proposal θ† given θ(t). If θ† is accepted, let

θ(t+1) = θ†. Otherwise, I reuse the previous state, i.e. θ(t+1) = θ(t).

I first derive explicit expressions for the feasible region of θ defined by (1.7) and (1.8).

For the sake of notational simplicity, put

G = V T
INWII ∈ R(p−n)×|I|, u = u(sA) = −V T

ANWAA sgn(bA) ∈ Rp−n,

where sA = sgn(bA), and rewrite (1.7) as GsI = u. Recall |I| = p − |A| and q = |A|. Since

p − n constraints are imposed on sI , there are only n − q free coordinates in sI . Partition

sI into free and dependent components and denote them by sF ∈ Rn−q and sD ∈ Rp−n,

respectively. Partition the columns of G accordingly. Then (1.7) can be rewritten

GF sF +GDsD = u ⇐⇒ sD = G−1
D (u−GF sF ), (2.16)

which shows that sD is a function of (bA, sF ) ∈ Rn. Now the feasible region for θ can be

equivalently defined by

‖sF‖∞ ≤ 1, ‖G−1
D (u(sA)−GF sF )‖∞ ≤ 1. (2.17)

Note that every time I update any component of (bA, sF ), sD needs to be updated accordingly
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via (2.16). Below, I provide details about how to draw (bA, sF ), the free coordinates of θ,

given the current value (b
(t)
A , s

(t)
F ). I assume that (b

(t)
A , s

(t)
F ) is feasible and satisfies (2.17).

For the active coefficients bA, a normal distribution is used as the proposal,

b†i |b
(t)
i ∼ N (b

(t)
i , τ

2
i ), i ∈ A.

By using a symmetric proposal distribution, the MH ratio becomes the ratio of the target

densities only,

ζ = min

{
1,

π(θ†)

π(θ(t))

}
= min

{
1,

fR
(
V T
RH(θ†, A; µ̃, λ);σ2

)
fR
(
V T
RH(θ(t), A; µ̃, λ);σ2

)} . (2.18)

Under this proposal, s†F = s
(t)
F is unchanged. If sgn(b†i ) = sgn(b

(t)
i ), then s†A = s

(t)
A . Con-

sequently, θ† satisfies the constraints in (2.17) and thus is feasible. If sgn(b†i ) 6= sgn(b
(t)
i ),

then s†A is different from s
(t)
A , with the i-th element replaced by sgn(b†i ). I need to verify the

second inequality in (2.17). Let u† = u(s†A). If ‖G−1
D (u† − GF s

†
F )‖∞ ≤ 1, then θ† is feasible

and I compute the MH ratio as in (2.18). Otherwise, I move to the next component in A.

When updating each component in sF , denoted by (sF )k, it would be inefficient to use a

naive proposal distribution, such as U(−1, 1), since it does not guarantee every component of

s†D will stay in [−1, 1]. A better approach is to compute the feasible range of (sF )k. Holding

sA and (sF )−k as constants, the second inequality in (2.17) defines 2(p−n) linear constraints

on (sF )k,

−1[p−n] +G−1
D U− (G−1

D GF )−k(sF )−k ≤ (G−1
D GF )k(sF )k ≤ 1[p−n] +G−1

D U− (G−1
D GF )−k(sF )−k,

from which the feasible range of (sF )k, [LBk, UBk], can be computed,

LBk = max

{
− 1,M−1

(
− 1[p−n] +G−1

D u− (G−1
D GF )−k(sF )−k

)}
, (2.19)

UBk = min

{
1,M−1

(
1[p−n] +G−1

D u− (G−1
D GF )−k(sF )−k

)}
, (2.20)
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Algorithm 3 MH(µ̃, σ, λ)

1: Given (bA, sF )(t),
2: for i ∈ A do
3: draw b†i ∼ N (b

(t)
i , τ

2
i ).

4: if sgn(b†i ) 6= sgn(b
(t)
i ) and θ† is infeasible then

5: continue.
6: else
7: b

(t+1)
i ← b†i with probability ζ; otherwise b

(t+1)
i ← b

(t)
i .

8: b
(t+1)
A\i ← b

(t)
A\i, s

(t+1)
F ← s

(t)
F , t← t+ 1.

9: end if
10: end for
11: for k ∈ N|F | do

12: compute LB
(t)
k and UB

(t)
k by (2.19) and (2.20).

13: draw (sF )†k ∼ U(LB
(t)
k , UB

(t)
k ).

14: (sF )
(t+1)
k ← (sF )†k with probability ζ; otherwise (sF )

(t+1)
k ← (sF )

(t)
k .

14: b
(t+1)
A ← b

(t)
A , (sF )

(t+1)
−k ← (sF )

(t)
−k, t← t+ 1.

15: end for

where M = diag
(
(G−1

D GF )k
)

is a (p − n) × (p − n) diagonal matrix having the k-th col-

umn of G−1
D GF as its diagonal elements. Calculate LB

(t)
k and UB

(t)
k with u(t) = u(s

(t)
A ) and

(s
(t)
F )−k. Note that LB

(t)
k < UB

(t)
k since the current value (s

(t)
F )k ∈ [LB

(t)
k , UB

(t)
k ] by assump-

tion. Propose (sF )†k from U(LB
(t)
k , UB

(t)
k ) and compute s†D by plugging s†F and u† = u(t) in

(2.16). Because [LBk, UBk] does not depend on the current value of (sF )k, this proposal is

symmetric, q(θ†, θ(t)) = q(θ(t), θ†). Therefore, the MH ratio again reduces to (2.18).

Putting the above pieces together I present the MH sampler in Algorithm 3. To highlight

its dependency on (µ̃, σ, λ), I denote this algorithm by MH(µ̃, σ, λ).

2.3.3 Examples

Using a small dataset of size (n, p) = (5, 10), I compared my MH sampler with parametric

bootstrap which provided the ground truth here. I estimated µ0 by µ̃ = Xβ̂, where β̂ is the

lasso estimate. The active set chosen by the lasso was A = {6, 9}. In parametric bootstrap,

I simulated y∗ ∼ Nn(µ̃, σ2In) and found the lasso solution β̂(y∗). If the support of β̂(y∗)

was indeed {6, 9}, the sample β̂(y∗) would be accepted. I ran this bootstrap method until

I accepted 10, 000 samples whose active set A(y∗) = A. This is essentially a naive rejection

29



Parametric Bootstrap

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

β^
9

β
^

6

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

S1

S
2

MH sampler

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

β^
9

β
^

6

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

S1

S
2

Figure 2.3: Comparison between bootstrap samples (top) and MH samples (bottom). The
left column shows the scatter plot of (β̂6, β̂9) while the right column shows the scatter plot
of (S1, S2). These are the first two components in A and I, respectively.

sampling method. Note that the bootstrap is only applicable for this small dataset. Even for

such a small dataset, the number of bootstrap samples simulated in order to obtain 10,000

samples was 1.5 × 105, i.e., the acceptance rate was only 6.67%. This demonstrates the

necessity of my MH sampler for this conditional sampling problem. The MH sampler was

then used to draw 20, 000 samples. See Figure 2.3 for a comparison between the samples

generated by the two methods. It can be seen from the scatter plots that the results of my

MH sampler were very close to the exact samples generated by the bootstrap, providing a

numerical validation of my algorithm.

I present a quick visualization of the MH samples on a bigger dataset of size (n, p) =

(50, 100). See Figure 2.4 for summary plots of the samples for the first two active coefficients,

β̂1 and β̂4. The autocorrelation plots and the sample path plots show that my MH sampler

was quite efficient with a fast decay in autocorrelation.

2.4 Numerical results

In this section, I examine the performance of my method by providing simulation results un-

der various settings. In Section 2.4.1, I show the effectiveness of the proposed randomization
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Figure 2.4: Summary plots for β̂1 and β̂4 from my MH sampler whenA = {1, 4, 5}: histogram,
sample trace, and autocorrelation function.

of the plug-in estimate. Section 2.4.2 examines the robustness of my method with regard to

the lasso tuning parameter λ. In Section 2.4.3, my confidence intervals are compared with

those built by Lee’s method. Section 2.4.4 provides simulation results for the construction of

confidence sets by my method. A detailed case study is presented in Section 2.4.5 to clarify

the differences between my method and Lee’s method.

2.4.1 The effect of randomization

To see the effect of my randomization step, I compare four different confidence intervals

defined in Section 2.2.2:

(1) ξj(µ0) = [ν̂j − qj,1−α/2(µ0), ν̂j − qj,α/2(µ0)] (oracle);

(2) ξj(µ̂) = [ν̂j − qj,1−α/2(µ̂), ν̂j − qj,α/2(µ̂)], µ̂ ∈ {µ̂A, µ̂S};

(3) ξj(Ĉ) = [ν̂j − qj,1−α/4(Ĉ), ν̂j − qj,α/4(Ĉ)], Ĉ ∈ {ĈA, ĈS};

(4) ξ∗j (Ĉ) = [ν̂j − q∗j,1−α/4(Ĉ), ν̂j − q∗j,α/4(Ĉ)], Ĉ ∈ {ĈA, ĈS}.

Recall that ν̂ = X+
Ay and see (2.5), (2.6), (2.7) and (2.9) for the definitions of qj,γ(µ), qj,γ(Ĉ)
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and q∗j,γ(Ĉ). As I described in Section 2.2.2, there are two ways of constructing Ĉ, with

center µ̂. The subscripts A and S are used to distinguish the two methods. Again, for

intervals (3) and (4), (α/4, 1− α/4)-quantiles are used due to Bonferroni correction.

Algorithm 1 is used to construct interval (3). Likewise, for interval (4), I draw
{
µ̃(i)
}K
i=1

from ∂Ĉ and estimate q∗j,α/4(Ĉ) and q∗j,1−α/4(Ĉ) by

q∗j,α/4(Ĉ) = min
1≤i≤K

qj,α/4(µ̃(i)), q∗j,1−α/4(Ĉ) = max
1≤i≤K

qj,1−α/4(µ̃(i)).

I set K = 20, and given each µ̃(i), I sampled 500 y∗’s, i.e. the total number of samples used

for intervals (3) and (4) was 20 × 500 = 10, 000. For a fair comparison, I fixed the number

of samples to be 10, 000 for (1) and (2). Note that my MH sampler was used in all the four

methods to draw from [y∗ | A(y∗) = A] and estimate the quantiles qj,γ(µ). Twenty datasets

with (n, p, A0) = (50, 100,N5) were simulated. The true coefficients β0A0 were drawn from

U(−1, 1). Each row of X was independently sampled from Np(0,Σ). I considered three types

of covariance matrix Σ in this comparison:

• Identity (I): Σ = Ip,

• Toeplitz (T): Σij = 0.5|i−j|,

• Exponential Decay (ED): Σ−1
ij = 0.4|i−j|.

The significance level α was set to 0.05 and σ2 = 1 was assumed to be known. For each

dataset, λ was chosen by cross-validation with the one standard error rule.

The following metrics are used to compare the results. For a subset E ⊂ Np and confi-

dence intervals, Îj for j ∈ A, I define power and coverage by averaging over the variables in

the set E:

Power =
∑

j∈E P
(

0 /∈ Îj
)
/|E|,

Coverage =
∑

j∈E P
(
νj ∈ Îj

)
/|E|.
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Table 2.1: Power and coverage rate for (1) ξ(µ0) (oracle), (2) ξ(µ̂), (3) ξ(Ĉ) and (4) ξ∗(Ĉ).

Σ Method
Power Coverage
A0 ∩ A A A0 ∩ A Ac0 ∩ A

I (1) 1.000 0.960(0.379) 0.960(0.471) 0.962(0.202)

(2A) 0.980 0.882(0.493) 0.880(0.555) 0.885(0.373)
(3A) 0.760 0.934(0.751) 0.900(0.857) 1.000(0.546)
(4A) 0.800 1.000(0.881) 1.000(0.874) 1.000(0.895)

(2S) 0.880 0.618(0.479) 0.600(0.520) 0.654(0.401)
(3S) 0.580 0.934(0.850) 0.900(0.973) 1.000(0.613)
(4S) 0.740 1.000(0.975) 1.000(0.980) 1.000(0.965)

T (1) 0.978 0.955(0.426) 0.956(0.542) 0.954(0.191)

(2A) 0.978 0.821(0.562) 0.933(0.634) 0.591(0.416)
(3A) 0.711 0.970(0.852) 0.956(0.963) 1.000(0.624)
(4A) 0.800 0.985(0.945) 1.000(0.966) 0.954(0.902)

(2S) 0.800 0.642(0.537) 0.667(0.593) 0.591(0.421)
(3S) 0.489 0.970(0.962) 0.956(1.106) 1.000(0.668)
(4S) 0.689 0.985(1.044) 1.000(1.077) 0.954(0.979)

ED (1) 0.967 0.957(0.361) 0.951(0.456) 0.969(0.180)

(2A) 0.934 0.914(0.451) 0.918(0.521) 0.906(0.318)
(3A) 0.754 0.957(0.678) 0.934(0.802) 1.000(0.441)
(4A) 0.721 1.000(0.816) 1.000(0.831) 1.000(0.785)

(2S) 0.869 0.774(0.427) 0.721(0.472) 0.875(0.340)
(3S) 0.639 0.957(0.752) 0.934(0.879) 1.000(0.511)
(4S) 0.688 1.000(0.901) 1.000(0.908) 1.000(0.889)

The subscripts A and S indicate two ways of estimating Ĉ and its center µ̂. The average length of
confidence intervals is reported in the parentheses.

A few informative choices for E are A, A0 ∩ A and Ac0 ∩ A. The set A includes all the

variables selected by lasso, while the sets A0 ∩A and Ac0 ∩A separate the true positive and

the false positive variables. I report in Table 2.1 the average coverage rate over variables in

each of the three sets and the power of detecting true positive variables A0 ∩ A for each of

the four methods. I omit the subscript j to simplify my notation and to indicate averaging

over a subset of indices, such as j ∈ A.

The coverage rate of ξ(µ0) was at the desired level while its average length was the

shortest among all the methods. This is an obvious result, since the true parameter µ0 is

assumed to be known (the oracle). Using a single plug-in estimate, ξ(µ̂) produced shorter
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Figure 2.5: Sensitivity test for the choice of λ with the datasets of (n, p, A0) = (50, 100,N5).
Each point is the average from 20 datasets.

confidence intervals (CIs) compared to ξ(Ĉ) and ξ∗(Ĉ). However, the coverage rate of ξ(µ̂)

was much lower than the nominal level, especially for j ∈ Ac0 ∩ A. On the contrary, with

randomized µ̃ drawn from the confidence set Ĉ, the CIs of ξ(Ĉ) achieved the desired coverage

rate, which demonstrates the importance of my proposed randomization step. The intervals

ξ∗(Ĉ) showed a similar effect as ξ(Ĉ), but they turned out to be the most conservative with

overall coverage rates close to 1 and the longest interval lengths. In particular, for the set

Ac0 ∩ A the average length of ξ∗(ĈA) was much longer than the length of ξ(ĈA).

Between the two ways of constructing Ĉ, ξ(ĈA) and ξ(ĈS) had the same coverage rates.

However, I observe that the average length of ξ(ĈS) was longer than that of ξ(ĈA), which

reduced its power.

There was a constructive suggestion regarding how to construct ĈS. As described in

Section 2.2.3, the original algorithm uses the same dataset to decompose strong and weak

signals, and to compute confidence intervals. The suggested way is to use an independent

dataset to construct ĈS so that it does not use any information of the target dataset. How-

ever, consistent to the result in Table 2.1, the methods involving ĈS did not outperform those

of ĈA. Therefore, in the following numerical results, I choose to use ξ(ĈA) only. See related
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discussion in Section 2.2.3. Studying what causes the performance differences in rigorous

way is not covered in this dissertation but it can be one of the interesting future works.

2.4.2 Sensitivity to λ

Using the same datasets from Section 2.4.1, I ran more tests to examine how sensitive the

coverage of ξ(ĈA) is to λ, the tuning parameter of the lasso. I chose 20 λ values, equally

spaced between ‖XTy‖∞/n and 0. Figure 2.5 plots the coverage rate and the size of the

active set q = |A| against the index iλ of λ. Note that the λ sequence is in decreasing order

so that q increases with iλ. Each point in the plot is the average of 20 datasets. The coverage

rate of ξ(ĈA) was preserved around the desired level, indicated by the dashed line in the

top panel, when the lasso active set was not extremely small or large. In fact, the coverage

rate was well maintained around 95% for 2 ≤ q ≤ 30 (7 ≤ iλ ≤ 19), while the size of the

true active set |A0| = 5 (the dashed line in the bottom panel). This shows that my method

works well for a wide range of models selected by lasso. The coverage rate was a little more

sensitive to the choice of λ for the exponential decay design than the other two designs.

However, even for that case, when the size of active set q ≥ 3 (iλ ≥ 10), the coverage rate

stayed around the desired level.

One might worry about the low coverage rates for the first few and the last λ values.

However, these λ’s are either too small or too big to be chosen in practice. Recall that I

choose λ by cross-validation with the one standard error rule, denoted by λ1se. The 5% and

95% percentiles of iλ1se were 10.21 and 17.35, between which the performance of my method

is seen to be very stable (Figure 2.5). This analysis confirms the notion that my inference

tool may be used in conjunction with a data-dependent turning of lasso to quantify the

significance of a quite large set of selected features, as discussed in Remark 2.

2.4.3 Comparison on individual intervals

In this section, ξ(ĈA) is compared with Lee’s method (Lee et al., 2016) implemented in

the R package selectiveInference. Datasets were simulated in the same way as in Section
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Table 2.2: Comparision between (a) ξ(ĈA) and (b) Lee’s method.

(n, p) A0 Σ Method
Power Coverage P∞A0 ∩A A A0 ∩A Ac0 ∩A

(100, 200) A
(1)
0 I (a) 0.870 0.968(0.555) 0.956(0.673) 0.975(0.486)

(b) 0.783 0.968(1.819) 1.000(0.998) 0.949(2.310) 1.6%
T (a) 0.836 0.953(0.590) 0.934(0.721) 0.978(0.416)

(b) 0.820 0.944(1.562) 0.951(0.882) 0.935(2.617) 9.3%
ED (a) 0.870 0.931(0.501) 0.896(0.606) 0.981(0.349)

(b) 0.818 0.946(1.251) 0.922(0.824) 0.981(1.887) 2.3%
EC (a) 0.643 0.846(0.612) 0.768(0.760) 0.892(0.523)

(b) 0.500 0.973(5.178) 0.964(3.513) 0.978(6.288) 9.4%

A
(2)
0 T (a) 0.911 0.914(0.539) 0.889(0.657) 0.928(0.476)

(b) 0.822 0.969(1.618) 0.956(0.994) 0.976(1.984) 4.7%
ED (a) 0.889 0.948(0.460) 0.933(0.574) 0.956(0.403)

(b) 0.822 0.993(2.733) 0.978(1.301) 1.000(3.457) 3.7%

(200, 400) A
(1)
0 I (a) 0.923 0.954(0.433) 0.949(0.489) 0.967(0.286)

(b) 0.872 0.972(0.728) 0.962(0.376) 1.000(1.645) 0.0%
T (a) 0.897 0.933(0.451) 0.926(0.539) 0.946(0.288)

(b) 0.868 0.933(1.154) 0.912(0.787) 0.973(1.887) 2.9%
ED (a) 0.909 0.928(0.362) 0.896(0.468) 0.968(0.230)

(b) 0.779 0.978(1.443) 0.987(0.956) 0.968(2.127) 6.5%
EC (a) 0.841 0.926(0.492) 0.921(0.671) 0.929(0.379)

(b) 0.714 0.975(3.481) 0.984(2.078) 0.970(4.422) 6.2%

A
(2)
0 T (a) 1.000 0.991(0.441) 1.000(0.512) 0.987(0.407)

(b) 0.917 0.928(0.929) 0.972(0.731) 0.907(1.043) 13.5%
ED (a) 0.971 0.927(0.383) 0.914(0.441) 0.932(0.355)

(b) 0.857 0.972(0.945) 0.943(0.510) 0.986(1.162) 3.7%

The numbers in the parentheses are the average length of the confidence intervals. For Lee’s
method, only finite intervals are used to compute the average length and P∞ is the proportion of
excluded infinite intervals.

2.4.1 but with two larger sizes, (n, p) ∈ {(100, 200), (200, 400)}, and one more type of design

matrix

• Equicorrelation (EC): Σii = 1 and Σij = .7 (i 6= j).

Note that the correlation among predictors was the highest under this design. I also consid-

ered two different ways of placing true active coefficients. In the first case, the true active

coefficients were placed together, i.e. A
(1)
0 = {1, · · · , 5}. In the second case, they were evenly

spaced out, i.e. A
(2)
0 = {1, p/5 + 1, · · · , 4p/5 + 1}. The true active covariates were highly
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correlated with each other in the first case, while they were more correlated with other in-

active covariates in the second case. See Table 2.2 for the comparison results. Note that the

designs Identity and Equicorrelation were considered only with A
(1)
0 , since the two ways of

assigning A0 are equivalent for these two designs.

The coverage rate of Lee’s method was well-preserved at the nominal level, 1−α, in most

cases. However, their method sometimes generated very wide or even infinite intervals with

∞ or −∞ as the upper or lower bound. This happens when the conditional distribution

[(X+
Ay)j | A(y), (X+

Ay)−j] is truncated to a union of bounded intervals and the observed value

of (X+
Ay)j is close to one of its boundaries (Kivaranovic and Leeb, 2018). See Section 2.4.5 for

a case study that exemplifies this issue. The last column in Table 2.2 reports the proportion

of infinite intervals estimated by Lee’s method. For example, when (n, p) = (200, 400) and

A0 = A
(2)
0 with the Toeplitz design, the proportion of infinite confidence intervals was 13.5%.

The chance of encountering such an issue was already quite high but it would be even higher

if I increased the confidence level.

On the other hand, for most settings, my confidence intervals ξ(ĈA) succeed to stay at the

desired level while having much shorter average length than the intervals by Lee’s method.

For every setting except the case of (n, p, A0,Σ) = (100, 200, A
(1)
0 ,EC), my coverage rates

averaging over all j ∈ A were higher than 0.9 and very close to 0.95. The average length of

my intervals was uniformly shorter than that of Lee’s method (after excluding infinite ones).

The difference in the interval length was especially significant for the coefficients in A ∩ Ac0
and for the equicorrelation designs. For example, in Table 2.2 when (n, p) = (200, 400) and

A0 = A
(1)
0 with the equicorrelation design, the average length of ξ(ĈA) was 0.492, while the

average length from Lee’s method was 3.481. This is extremely long considering the fact

that I drew β0j from U(−1, 1) for j ∈ A0. These long intervals failed to detect significant

coefficients and thus resulted in a low power.

In Figures 2.6 and 2.7, I show box-plots of the interval lengths from the 20 datasets in

each design for a closer view. Each box-plot reports the interval lengths for all variables in

A, A∩A0 or A∩Ac0. Consistent with the results from Table 2.2, the interval lengths of Lee’s

method were much larger than those of my method. In particular, under the equicorrelation
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Figure 2.6: Comparison between (a) ξ(ĈA) and (b) Lee’s method when A0 = {1, · · · , 5}.
The left and right columns are for (n, p) = (100, 200) and (200, 400), respectively.
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Figure 2.7: The same as Figure 2.6 but for A0 = {1, p/5 + 1, · · · , 4p/5 + 1}.

design, the maximum length of my intervals was even smaller than the first-quartile length

of Lee’s method for all three sets of variables. The length of my intervals is also much less

variable than that of Lee’s method for every case in the two figures, which shows that my

method is more consistent across different datasets. One can easily see that Lee’s method

produced a number of lengthy intervals, represented as isolated dots or outliers in a box-plot.

These intervals are not informative at all. Lastly, the difference between the two methods

is most drastic for the set A ∩ Ac0, where the intervals from Lee’s method can be 10 times

longer than ours. Note that by removing all the infinite intervals output by Lee’s method

from these plots, this comparison favors Lee’s method.

2.4.4 Comparison on joint confidence sets

I conducted further experiments to examine the performance of my method in constructing

confidence sets for ν. I generated results under three types of design, Σ ∈ {T,ED,EC}, and

two data sizes, (n, p) ∈ {(100, 200), (200, 400)}, with A0 fixed to {1, . . . , 5}. Under each of
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Table 2.3: Coverage, power, and size of pairwise confidence sets

Method
(n, p) = (100, 200) (n, p) = (200, 400)

Overall
T ED EC T ED EC

Coverage ξ(Ĉ; `2) 0.941 0.971 0.965 0.912 0.912 0.937 0.940

ξ(Ĉ; `∞) 0.972 0.984 0.970 0.950 0.962 0.944 0.964
Lee 0.924 0.973 0.997 0.972 0.989 0.992 0.975

Power ξ(Ĉ; `2) 1.000 0.983 0.831 1.000 1.000 0.986 0.967

ξ(Ĉ; `∞) 0.986 0.975 0.769 1.000 0.992 0.986 0.951
Lee 0.718 0.558 0.138 0.736 0.558 0.568 0.546

Diameter ξ(Ĉ; `2) 0.885 0.734 1.045 0.644 0.488 0.792 0.765

ξ(Ĉ; `∞) 1.173 0.972 1.384 0.850 0.653 1.065 1.016
Lee 2.854 2.301 10.221 1.935 3.493 6.251 4.509

Volume ξ(Ĉ; `2) 0.627 0.431 0.883 0.331 0.193 0.521 0.498

ξ(Ĉ; `∞) 0.699 0.481 0.986 0.366 0.220 0.601 0.559
Lee 4.181 2.822 50.299 1.861 5.818 20.843 14.304

P∞ Lee 0.201 0.058 0.229 0.117 0.171 0.147 0.154

Note: For Lee’s method, only finite sets are used to compute the average diameter and volume,
and P∞ reports the proportion of excluded infinite sets.

these six settings, the same 20 datasets as in Section 2.4.3 were used. First, I constructed

confidence sets ξ[ei,ej ]T(Ĉ; `δ) (2.12) for each pair (νi, νj), i 6= j, with `2 norm and `∞ norm,

i.e. δ ∈ {2,∞}. Then, I moved to confidence sets ξIq(Ĉ; `δ), q = |A|, for joint inference on

ν, again using the two norms, `2 and `∞. Consequently, the confidence sets were either a

sphere or a hypercube in Rq. As I am not aware of any method specifically designed for joint

inference after lasso selection, I compared my results with Lee’s method using multiple test

adjustment. To build a 1− α confidence set for νB, |B| = d, individual intervals Îk, k ∈ B,

were constructed by Lee’s method with an adjusted confidence level 1 − α/d, and then a

confidence set was constructed as the Cartesian product of Îk, k ∈ B.

The following metrics are used to evaluate constructed confidence sets. Recall A is the set

of selected variables and q = |A|. For a positive integer m, let B(m) = {B : B ⊂ Nq, |B| =

m} index all size-m subsets of A. I define coverage and power by averaging over sets of

variables in B(m):

Coverage =
∑

B∈B(m) P
(
νB ∈ ξeTB(Ĉ)

)
/|B(m)|,
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Table 2.4: Coverage, power and size of joint confidence sets

Method
(n, p) = (100, 200) (n, p) = (200, 400)

Overall
T ED EC T ED EC

Coverage ξIq(Ĉ; `2) 0.900 1.000 0.950 0.850 0.900 0.950 0.925

ξIq(Ĉ; `∞) 1.000 1.000 0.950 1.000 1.000 1.000 0.992
Lee 0.950 0.950 0.950 0.800 1.000 1.000 0.942

Power ξIq(Ĉ; `2) 1.000 1.000 0.900 1.000 1.000 1.000 0.983

ξIq(Ĉ; `∞) 1.000 1.000 0.650 1.000 1.000 1.000 0.942
Lee 0.250 0.150 0.050 0.250 0.450 0.050 0.200

Diameter ξIq(Ĉ; `2) 1.192 1.093 1.509 0.891 0.785 1.324 1.132

ξIq(Ĉ; `∞) 2.179 2.080 3.101 1.576 1.500 2.831 2.211
Lee 3.362 3.602 8.321 2.262 1.188 6.471 4.201

Volume∗ ξIq(Ĉ; `2) 0.826 0.719 0.946 0.627 0.530 0.812 0.743

ξIq(Ĉ; `∞) 0.958 0.838 1.148 0.707 0.613 1.011 0.879
Lee 1.013 1.084 3.201 0.699 0.474 1.865 1.389

P∞ Lee 0.300 0.150 0.450 0.200 0.300 0.400 0.300

Note: Volume∗ is the normalized volume. For Lee’s method, only finite sets are used to compute the
average diameter and volume, and P∞ reports the proportion of excluded datasets due to infinite
volumes or infinite diameters.

Power =
∑

B∈B(m) P
(

0 /∈ ξeTB(Ĉ)
)
/|B(m)|.

For example, when considering ξIq(Ĉ), m = q and |B(q)| = 1. For pairwise confidence sets,

m = 2 and |B(2)| = q(q − 1)/2. The volume and the diameter of a confidence set were

recorded for comparison as well, where the diameter is defined as the maximum distance

between any two points in the set. In short, a confidence set has a better performance if it

has a higher power and a smaller volume or diameter, while achieving the nominal coverage

rate.

Table 2.3 reports the comparison on pairwise confidence sets. The last column reports

the overall averages across all simulation settings. While the coverage rates for all confident

sets were close to the desirable level, the volume and the diameter of Lee’s method were

often much larger than my confidence sets. For example, when compared to ξ(Ĉ; `2) under

(n, p,Σ) = (100, 200,EC), the average diameter and the average volume of Lee’s method

were 10 and 55 times larger, respectively. To compare the power, I restricted to those pairs

(i, j) for which both variables Xi and Xj were in the true support A0, i.e. i, j ∈ A0 ∩A. As
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my method built smaller confidence sets, it is not surprising to see that my confidence sets

showed a much higher power for all data settings.

Table 2.4 reports the results of joint confidence sets for ν, i.e. H = Iq in (2.12). Since an

average volume can be highly influenced by a few datasets with large active sets, i.e. large |A|,

I normalized each volume by the size of A to calculate Volume∗ = Volume1/|A| before aver-

aging over datasets. As seen from the table, while the coverage rates of ξIq(Ĉ; `2), ξIq(Ĉ; `∞)

and Lee’s method all stayed around the desirable level, the average diameter and the average

volume of Lee’s method were larger than ours. In particular, for the equicorrelation designs

(EC), the average diameter and normalized volume of Lee’s method were, respectively, more

than 4 and 2 times larger than those of ξIq(Ĉ; `2). When (n, p,Σ) = (200, 400,ED), I observe

that the average volume of Lee’s method was smaller than that of ours. This is because I only

used datasets for which Lee’s method did not produce any infinite intervals when computing

the diameters and volumes for their method, which clearly underestimated the average size

of their confidence sets. More extreme differences are seen when comparing the power of

a confidence set. While the average power of my method was close to one for most cases,

the average power of Lee’s method was only around 0.20, which demonstrates the advantage

of my method. The issue of producing infinite confidence sets by Lee’s method was even

more severe for joint inference, as expected. For (n, p,Σ) = (100, 200,EC), their method

generated infinite intervals for almost half of the datasets, which would be problematic in

practical applications.

Overall, my confidence sets were able to achieve the nominal coverage rate with a high

power and a small diameter. my current implementation constructs either a sphere or a

hypercube centered at Hν̂ as a confidence set. One may propose alternative ways to build a

confidence set of other shapes using the samples of y∗ generated by my MCMC algorithm.

One option is to approximate the contours of [HX+
Ay
∗ | A(y∗) = A] (cf. (2.11)) to build a

confidence set, in the similar spirit of a highest posterior density region. I leave this appealing

possibility to future work.
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Figure 2.8: The difference between my and Lee’s methods. (a) The feasible regions, (b)
box-plots of eT5X

+
Ay
∗, and (c) box-plots of eT2X

+
Ay
∗.

2.4.5 A case study

Both my method and Lee’s method are based on the truncated Gaussian distribution of y

given A(y) = A, but for some data Lee’s intervals turned out to be much wider in the above

comparisons. To clarify the key differences between the two methods at a conceptual level,

I took a closer look at one dataset from the simulation setting (n, p,Σ) = (100, 200,T) in

Table 2.2, for which the lasso support included seven variables, i.e. |A| = 7. Here, I focus

on making inference about (ν2, ν5), whose true value was (0.533, 0.001). The corresponding

observed value was (ν̂2, ν̂5) = (ηT2 y, η
T
5 y) = (0.694, 0.148), where ηj = (X+

A )Tej. My intervals

for the two parameters were ξ2(Ĉ) = [0.266, 1.126] and ξ5(Ĉ) = [−0.263, 0.150], respectively,

while Lee’s intervals Î2 = [0.469, 0.918] and Î5 = [−11.398, 0.413]. While all four intervals

cover the true parameters, Î5 is extremely wide compared to ξ5(Ĉ).

Let us walk through my procedure to construct ξj(Ĉ) in this example. Given an uncon-
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Figure 2.9: Illustration of deriving confidence intervals using Lee’s method. The dotted lines
in panel (a) and (b) represent Ωη(2) = [0.254, 1.095] and Ωη(5) = [0.144, 0.413], respectively.

ditional confidence set Ĉ, I first draw µ̃(i) uniformly over U(Ĉ), which are shown as the gray

dots in Figure 2.8(a) after being projected to η2 and η5. For each µ̃(i), I simulate a sample

of y∗ from the conditional distribution [y∗ | A(y∗) = A], i.e. Nn(µ̃(i), σ2In) truncated to the

union of many polyhedra, say D, whose projection (ηT2D, ηT5D) is illustrated by the solid-line

polygon in Figure 2.8(a). (The exact polygon may differ slightly as I am just plotting an

approximate one for easy illustration.) The histograms of the simulated ηTj y
∗ are shown as

box-plots in Figure 2.8(b) and (c) for j = 2, 5. Each box-plot corresponds to the distribution

of ηTj y
∗ given one µ̃(i) for i = 1, . . . , K. I then construct confidence intervals or sets from the

aggregation of these samples across all i.

To construct the interval Îj for νj, Lee et al. (2016) decompose y into ηTj y and its or-

thogonal component z−j :=(In−Pηj)y, the residual after projecting to ηj. Their inference is

then based on the conditional distribution

ηTj y | {A(y) = A, z−j} ∼ T N (νj, σ
2‖ηj‖2,Ωη(j)),

44



where the truncation interval Ωη(j) depends on the observed value zo
−j of z−j. The green line

segments in Figure 2.8(a) show Ωη(j), the intersection between D and the line {y : z−j =

zo
−j}, which is a bounded one-dimensional interval for each j. They are much more restrictive

than the feasible set of my samples y∗, projected to these two dimensions, shown as the solid-

line polygon. This is the first key difference between the two methods. Then Lee’s method

finds all possible values of νj ∈ R that makes the observed statistic ν̂j within (α/2, 1−α/2)-

quantiles to define Îj. When ν̂j is close to the boundary of Ωη(j), which is the case for ν̂5,

their method tends to generate very wide intervals, such as Î5 = [−11.398, 0.413]. See Figure

2.9 for the illustration. The lower bound of Î2, 0.469, is the center of the truncated normal

distribution in panel (a1) which makes the dark area to be 1 − α/2 while the upper bound

of Î2, 0.918, is the center of the truncated normal distribution in panel (a2). Same logic is

applied to panel (b1) and (b2) and that is how I got Î5 = [−11.398, 0.413]. I deliberately set

the center of the distribution in panel (b1) to −0.5 in order to make the curve visible. The

actual curve is hard to visualize since the density is too away from its center.

My method gets around this issue with truncated Gaussian inference by considering a

smaller range of νj represented by the samples of eTjX
+
A µ̃, i.e. the star dots (?) in panel (a),

which is the second key difference. This greatly shortens the constructed intervals, such as

ξ5(Ĉ) = [−0.263, 0.150]. See Figure 2.8(b) for illustration. On the other hand, when ν̂j is

far away from the boundaries of Ωη(j), as for j = 2 in this example, Lee’s method builds

efficient intervals, while ours can be slightly wider due to the additional randomness in µ̃

(Figure 2.8c).

2.5 Discussion

I have proposed a new method for post-selection inference, based on estimator augmentation

and a conditional MCMC sampler. Estimator augmentation is applied to derive a closed-

form density for the conditional distribution [β̂A, SI | A(y) = A], which is then used as

the target distribution in my MCMC sampler. I randomize the estimate of the mean µ0

by uniform sampling over a confidence set, which incorporates the uncertainty in using a
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plug-in estimate of µ0 in my sampling procedure. I have shown with numerical comparisons

that my method constructs much shorter confidence intervals than Lee’s method (Lee et al.,

2016), while achieving a comparable coverage rate. Moreover, unlike their method, my

method never produces any infinite confidence intervals. With its great flexibility, I further

demonstrated that my method can perform joint inference by constructing confidence sets

for any set of parameters of interest after lasso selection, which is a unique contribution of

this work.

While I have focused on the lasso active set in this work, conditioning on more general

events is possible under my framework for post-selection inference. Recall that I parameterize

the augmented estimator (β̂, S) by the triplet (β̂A, SI ,A). Suppose the selected model is

defined by the event F (β̂A, SI ,A) ∈ E , where F is a mapping. Similar to Corollary 5, I

may obtain the density for the conditional distribution of the augmented estimator given

the event F (β̂A, SI ,A) ∈ E based on Theorem 1. Let IE(v) be the indicator function for

{v ∈ E}.

Corollary 7. Under the same assumptions of Theorem 1, the conditional distribution [β̂A, SI ,A |

F (β̂A, SI ,A) ∈ E ] is given by

PΘ,A|F∈E(dθ, A) ∝ fR
(
V T
RH(θ, A;µ0, λ);σ2

)
| detT (A;λ)|IE(F (θ, A))dθ, (2.21)

where (θ, A) = (bA, sI , A) satisfying the constraints in (1.7) and (1.8).

Compared to the joint distribution (1.9), the only difference is the inclusion of the indi-

cator function, which essentially imposes more constraints on (θ, A) in addition to (1.7) and

(1.8). A key step in the development of Monte Carlo algorithms for the above more general

conditional distribution is to design efficient proposals that move (θ, A) in its feasible region

satisfying all the imposed constraints. This is a challenging and interesting future direction.

As a concrete example, suppose I select variables by thresholding lasso β̂j for j ∈ Np, that

is, the selected model is M = {j : |β̂j| ≥ τ}. Then the conditioning event in this example
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can be written as

{
|β̂j| ≥ τ, ∀ j ∈M

}⋂{
|β̂j| < τ, ∀ j /∈M

}
.

Note that the active set A is no longer fixed on this event, although it must satisfy A ⊃M .

As a result, the target distribution (2.21) is a joint distribution for Θ and A, which will incur

additional computational cost to my MH sampler. In particular, the dimension of Θ will

change when the size of A changes. A normal distribution centered at b
(t)
j and truncated to

(−∞,−τ ]∩ [τ,∞) can be used as a proposal for b†j, j ∈M at the t-th iteration. For j /∈M ,

I need to consider some of the active b
(t)
j ∈ (−τ, τ) turning into zero and vice versa, which

would change the active set A.

Post-selection inference on data with group structure using estimator augmentation for

group lasso can be another interesting future topic. Due to the complex sample space of

the augmented group lasso estimator (Zhou and Min, 2017a), developing an MCMC sampler

is more complicated than the one for lasso. However, this potential generalization will

be important for applications with pre-grouped variables, categorical variables, or highly

correlated predictors.

2.6 Proofs

Proof of Proposition 4. From (2.6) and (2.7), I have ξj(µ0, α/2) ⊂ ξ∗j (Ĉ) if µ0 ∈ Ĉ. Then,

P
{
νj ∈ ξ∗j (Ĉ)

∣∣∣∣A(y) = A

}
≥ P

{
νj ∈ ξ∗j (Ĉ)

∣∣∣∣A(y) = A, µ0 ∈ Ĉ
}
P
(
µ0 ∈ Ĉ | A(y) = A

)
≥ P

{
νj ∈ ξj(µ0, α/2)

∣∣∣∣A(y) = A, µ0 ∈ Ĉ
}
P
(
µ0 ∈ Ĉ | A(y) = A

)
.
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Due to the independence between Ĉ and y,

P
{
νj ∈ ξj(µ0, α/2)

∣∣∣∣A(y) = A, µ0 ∈ Ĉ
}

= P
{
νj ∈ ξj(µ0, α/2)

∣∣∣∣A(y) = A

}
= 1− α/2,

and P
(
µ0 ∈ Ĉ | A(y) = A

)
= P(µ0 ∈ Ĉ) = 1− α/2, which imply (2.8).

Proof of Theorem 6. Under the assumptions of Theorem 1, for every y ∈ Rn there is a unique

(β̂, S) (Lemma 1 in Zhou (2014)). Therefore, the KKT condition (1.3) establishes a bijection

between y and the augmented estimator (β̂, S). Consequently, y can be uniquely represented

by

y = (XT)+(XTXβ̂ + nλWS)

= XAβ̂A + nλ(XT)+
{
WA sgn(β̂A) +WISI

}
, (2.22)

where (XT)+ = (XXT)−1X because X has full row rank. Since |A| ≤ n (Remark 1) and

every n columns of X are linearly independent, I have X+
A = (XT

AXA)−1XT
A. From (1.3),

XT
Ay = XT

AXAβ̂A + nλWAA sgn(β̂A).

Multiplying both sides by (XT
AXA)−1, I get

X+
Ay = β̂A + nλ(XT

AXA)−1WAA sgn(β̂A). (2.23)

Then the conclusions (2.14) and (2.15) follow from (2.22) and (2.23) due to the assumption

that [β̂∗A, S
∗
I ] = [β̂A, SI | A = A].
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CHAPTER 3

Group Inference

3.1 Introduction

When sparse estimation is the main interest, it has been shown that grouping variables

may improve the performance in many aspects. First, when individual variable signals

are not strong enough to detect, grouping them may lead them to be identifiable (Zhou

and Min, 2017b). Second, it can be more relevant when dealing with highly correlated

variables (Huang and Zhang, 2010; Meinshausen, 2015). When some of the variables are

highly correlated, it is not easy to study the estimator since individual variables may not be

detected as significant even if they are. However, by grouping correlated variables together,

it can alleviate such an issue. Lastly, there exists some data which are more relevant to apply

group-level analysis. For example, for the gene data, genes can be categorized into certain

groups by using gene pathways. For categorical variables, when it is expressed through a set

of indicator variables, it makes more sense to group them together and test the significance

of the group not individual ones. In such cases, exploiting the group structure will perform

better than performing ordinary Lasso since additional information is used. This motivates

us to study group inference.

In this chapter, I first present some numerical results that support the advantages of

grouping effect and then introduce some applications in high-dimensional inference using

estimator augmentation in group lasso which was introduced in Section 1.2.2.
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3.2 Uncertainty quantification under group sparsity

3.2.1 Methods and simulated data

Suppose the underlying model is

y = Xβ0 + ε, ε ∼ N (0, σ2In),

with the group structure G = {Gj}1:J . Zhou and Min (2017b) propose a parametric bootstrap

sampler for a group lasso given β̃ and σ̂, point estimates of β0 and σ. Let B(y;λ) denote the

set of minimizers of the loss in (1.1) so that β̂ ∈ B(y;λ). The parametric bootstrap for the

group lasso contains two steps. Denote the parametric bootstrap by PB(β̃, σ̂2, λ) in order

to emphasize the dependency on (β̃, σ̂2, λ):

Algorithm 4 (PB(β̃, σ̂2, λ)). Given (β̃, σ̂2, λ),

(1) draw ε∗ ∼ Nn(0, σ̂2In) and set y∗ = Xβ̃ + ε∗;

(2) solve (1.1) with y∗ in place of y to obtain β̂∗ ∈ B(y∗;λ).

After drawing a large sample of β̂∗ values with above procedures, inference for each group

j ∈ NJ can be made. By default, choose the function

fj(β̂
∗
(j) − β̃(j)) = ‖X(j)(β̂

∗
(j) − β̃(j))‖2 (3.1)

to build a confidence region and carry out a significance test for β0(j). From the bootstrap

sample of β̂∗, estimate the (1− γ)-quantile fj,(1−γ) such that

P
{
fj(β̂

∗
(j) − β̃(j)) > fj,(1−γ)

∣∣∣X, β̃, σ̂} = γ.

Then the (1− γ) confidence region for β0(j) becomes

Rj(γ) =
{
θ ∈ Rpj : fj(β̂(j) − θ) ≤ fj,(1−γ)

}
. (3.2)
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One may also test the hypothesis H0,j : β0(j) = 0, which will be rejected at level γ if

0 /∈ Rj(γ), that is, if ‖X(j)β̂(j)‖2 > fj,(1−γ). This approach can make inference about β0(j)

simultaneously for j ∈ NJ .

The remaining question is how to construct β̃ and σ̂2. One possible way to construct β̃

is to threshold the group lasso β̂,

β̃(j) = β̂(j)I(‖β̂(j)‖ > bth), j ∈ NJ , (3.3)

where bth > 0 is a cutoff value. Useful practical guidance is to choose the cutoff so that all

small coefficient groups will be thresholded to zero. Let M = G(β̃) be the active groups of β̃

and A = GM be the set of active coefficients of β̃. Then I perform a least-squares regression

of y on XA to re-calculate the nonzero coefficients of β̃, which reduces their bias, and to

estimate the error variance σ̂2, provided that |A| < n.

To evaluate its finite-sample performance, the parametric bootstrap method is applied

on simulated and real data sets. For each data set, a solution path of the group lasso is

obtained using the R package grpreg (Breheny and Huang, 2015) and the tuning parameter

λ is chosen by cross-validation. Let β̂ ∈ B(y; λ̂) denote the solution for the chosen λ̂ and

s = |G(β̂)| be the number of active groups of β̂. In light of equation (3.15) in Zhou and

Min (2017b), set the threshold value bth = 1
2
λ̂(spmax)1/2 to obtain β̃. When β̃ has n or

more nonzero components, only its largest bn/pmaxc−1 groups in terms of `2 norm are kept.

Then the active coefficients of β̃ are re-computed via least-squares, and the noise variance

is estimated by the residual. Given (β̃, σ̂), N = 300 bootstrap samples of β̂∗ ∈ B(y∗; λ̂) are

drawn to make inference.

My bootstrap method is compared with competitors, including two methods of the de-

biased lasso approach (Javanmard and Montanari, 2014; van de Geer et al., 2014) which was

reviewed in Section 1.3, and the group-bound method (Meinshausen, 2015), implemented

in the R package hdi (Dezeure et al., 2015) and R function SSlasso. To distinguish from

the de-biased lasso method of Javanmard and Montanari (2014), I will call the method of

van de Geer et al. (2014) the de-sparsified lasso. The group-bound method generates one
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sided confidence intervals for `1 norm of each group. It starts from constructing a convex

set Cα such that P(ε ∈ Cα) ≥ 1 − α. From there, the lower bound of one-sided confidence

interval for each j-th group is computed. If the lower bound is positive, the group-bound

identifies the corresponding group to be significant.

The hdi package allows the user to input an estimate of the noise variance for the de-

sparsified lasso, for which I use the same estimate in my approach to make results more

comparable. Other tuning parameters are chosen via the default methods in their respective

implementation.

The rows of X are independently drawn from Np(0,Σ), with Σ chosen from the following

two designs: (i) Toeplitz, Σjk = 0.5|j−k|; (ii) Exponential decay, (Σ−1)jk = 0.4|j−k|. Recall

that q0 denotes the number of active coefficients. I adopt two distinct ways to assign active

coefficients: (1) Set the first q0 coefficients, β0k, k = 1, . . . , q0, to be nonzero; (2) the active

coefficients are evenly spaced in Np. Since neighboring Xj’s are highly correlated in both

designs, the two different ways of assigning active coefficients lead to distinct correlation

patterns among the true predictors and between the true and false predictors. Index the

two designs by d ∈ {i, ii} and the two ways of assigning active coefficients by a ∈ {1, 2}.

Given X and β0, the response y is simulated from Nn(Xβ0, In). I fixed q0 = 10 and drew

β0k from U(−1, 1) for k ∈ A0. I chose (n, p) ∈ {(100, 200), (100, 400)}. The combination of

above choices (a, d, n, p) created eight different data generation settings. In each setting, I

generated K = 20 data sets, i.e. K independent realizations of (y,X, β0).

3.2.2 Group inference

Let M0 = G(β0), s0 = |M0| and q0 = |GM0| so that s0 is the number of active groups and q0

the number of active coefficients of β0. I first examine the performance in group inference.

The predictors were partitioned into groups of size pj = 10 by two different methods. In the

first method, I group the 10 active coefficients into one group and the other zero coefficients

into the remaining groups, in which case there is only one active group. In the second way

of grouping, there are two active groups, each containing five nonzero coefficients and five
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zero coefficients. I will denote these two ways of grouping by P1 and P2. Clearly, the signal

strength of the active groups in P2 is weaker.

My bootstrap method, the de-sparsified lasso, and the group-bound method were used to

test the hypothesis H0,j : β0(j) = 0 for each group. The de-sparsified lasso method outputs

a p-value ψk for each individual test β0k = 0 for k ∈ Np. If k ∈ Gj, I adjust the p-value by

Bonferroni correction with the group size to obtain ψadj,k = ψkpj. Then the hypothesis H0,j

will be rejected at level α if mink∈Gj ψadj,k ≤ α. For each j ∈ NJ , the group-bound method

constructs a lower bound for ‖β0(j)‖1 to test the hypothesis H0,j at level γ. I chose α = 0.05

and recorded the numbers of rejections among the active and the zero groups, denoted by

mM and mMc , respectively. Then for each method, I calculated the power PWR = mM/s0

and the type-I error rate, i.e. false positive rate, FPR = mMc/(J − s0). My method can

build a confidence region for each group (3.5), and I recorded the coverage rate rM for the

active groups. Note that the coverage rate for the zero groups rMc = 1 − FPR. The other

two competing methods do not construct confidence regions for a group of coefficients. The

average result over the K data sets in each data generation setting is reported in Table 3.1.

The big picture of this comparison is very clear. my bootstrap method shows a very

satisfactory control of type-I errors, around the nominal level of 5% for all cases, while

its coverage rate for active groups is > 0.9 with power > 0.8 for a strong majority. In

contrast, the de-sparsified lasso method is too optimistic with very high type-I error rates,

ranging between 40% and 70%, and the group-bound approach is extremely conservative,

resulting in no false rejections but having little power at all. Although the bias term ∆

(1.20) can be far from negligible when n is finite, the de-sparsified lasso method totally

ignores this term, and as a result its confidence intervals are often too narrow and its p-

values become severely underestimated. On the contrary, my approach takes care of the

bias in the group lasso via simulation instead of asymptotic approximation, which turns out

to be very important for finite samples as suggested by the comparison. This is one of the

reasons for the observed better performance of my method in Table 3.1. Another reason is

my explicit use of the group lasso so that group structures are utilized in both the estimation

of β̃ and the bootstrap simulation. These points will be further confirmed in my subsequent
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Table 3.1: Coverage, power and false positive rate (%) in group inference

Data Setting bootstrap de-sparsified group-bound
(n, p) (a, d) G rM PWR FPR PWR FPR PWR FPR

(100, 200)

(1, i)
P1 95.0 95.0 5.5 100.0 44.2 0.0 0.0
P2 92.5 67.5 5.3 97.5 48.9 0.0 0.0

(1, ii)
P1 95.0 100.0 5.0 100.0 50.3 0.0 0.0
P2 90.0 97.5 3.6 100.0 54.4 0.0 0.0

(2, i)
P1 100.0 100.0 5.3 100.0 53.4 0.0 0.0
P2 90.0 85.0 4.7 100.0 52.5 0.0 0.0

(2, ii)
P1 100.0 100.0 4.2 100.0 61.8 0.0 0.0
P2 100.0 95.0 4.7 100.0 61.7 0.0 0.0

(100, 400)

(1, i)
P1 95.0 100.0 4.9 100.0 42.6 0.0 0.0
P2 85.0 75.0 3.2 100.0 45.4 0.0 0.0

(1, ii)
P1 90.0 100.0 4.4 100.0 64.2 0.0 0.0
P2 85.0 87.5 6.2 97.5 61.4 0.0 0.0

(2, i)
P1 90.0 100.0 4.0 100.0 65.8 0.0 0.0
P2 85.0 67.5 4.3 100.0 64.7 0.0 0.0

(2, ii)
P1 100.0 100.0 4.0 100.0 74.6 0.0 0.0
P2 82.5 90.0 3.0 100.0 66.6 0.0 0.0

rM : coverage rate of active groups; PWR: power; FPR: false positive rate.

comparison on inference for individual coefficients.

The group-bound method is by nature a conservative approach, testing the null hypoth-

esis β0G = 0 for G ⊂ Np with a lower-bound of the `1 norm ‖β0G‖1. By design, the type-I

error is controlled simultaneously for all groups G ⊂ Np at the significance level γ even if one

specifies a particular group, like what I did in this comparison. It suffers from low power,

especially when the group G does not include all the covariates that are highly correlated

with the true variables. To verify this observation, I did more test on the data sets of

size (n, p) = (100, 200). For the Toeplitz design with the first 10 coefficients being active, its

power stayed close to zero until I included the first 100 variables in the group G and increased

to 0.86 when G = {1, . . . , p} including all variables. I then increased the signal strength by

simulating active coefficients β0k ∼ U(−3, 3). In this case, the power of the group-bound

method increased to 0.45 for G = {1, . . . , 10} and to 0.52 for G = {1, . . . , 50}, which are

still substantially lower than the power of my bootstrap method under weaker signals; see

the first row in Table 3.1. This numerical comparison demonstrates the advantage of my
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Table 3.2: Power and confidence intervals for inference on individual coefficients

Data Setting
Method PWR rM LM rMc LMc r L

(n, p) (a, d)

(100, 200)

(1, i)
bootstrap 54.0 43.5 0.456 96.7 0.136 94.0 0.152
de-sparsified 67.5 76.5 0.540 89.3 0.542 88.6 0.542
de-biased 60.0 81.0 0.566 98.8 0.568 97.9 0.568

(1, ii)
bootstrap 61.0 56.5 0.414 96.4 0.110 94.4 0.127
de-sparsified 74.5 74.5 0.434 86.1 0.433 85.6 0.433
de-biased 68.0 83.0 0.443 98.8 0.441 98.1 0.441

(2, i)
bootstrap 60.5 54.5 0.426 96.2 0.131 94.1 0.146
de-sparsified 70.0 79.0 0.498 85.1 0.503 84.8 0.503
de-biased 60.0 95.0 0.519 98.9 0.525 98.7 0.525

(2, ii)
bootstrap 72.0 60.0 0.408 96.2 0.138 94.4 0.152
de-sparsified 79.5 85.0 0.422 82.8 0.420 82.9 0.420
de-biased 72.0 96.0 0.443 99.1 0.441 99.0 0.442

(100, 400)

(1, i)
bootstrap 47.0 35.5 0.335 96.2 0.065 94.7 0.071
de-sparsified 65.0 74.0 0.537 85.0 0.539 84.8 0.539
de-biased 53.0 73.5 0.523 99.1 0.526 98.5 0.526

(1, ii)
bootstrap 59.5 41.5 0.359 96.9 0.077 95.5 0.084
de-sparsified 70.5 69.0 0.485 88.4 0.483 88.0 0.483
de-biased 64.0 68.5 0.429 99.2 0.428 98.4 0.428

(2, i)
bootstrap 62.0 46.5 0.416 96.5 0.095 95.3 0.103
de-sparsified 72.0 85.5 0.550 83.3 0.554 83.4 0.554
de-biased 65.5 89.0 0.506 99.3 0.510 99.1 0.510

(2, ii)
bootstrap 71.0 40.5 0.374 96.8 0.099 95.4 0.106
de-sparsified 78.5 83.5 0.501 81.2 0.499 81.2 0.499
de-biased 73.0 85.0 0.445 99.2 0.444 98.8 0.444

PWR: power; r: coverage rate; L interval length.

method in presence of between-group correlations, while the group-bound method might be

more appropriate when groups are defined by clustering highly correlated variables together.

Since its target application is different, I exclude the group-bound method from the following

comparisons.

3.2.3 Individual inference

Since the de-sparsified lasso was designed without considering variable grouping, I conducted

another set of comparisons on inference about individual coefficients. I included the de-biased

lasso in these comparisons as well. For my bootstrap method, I completely ignore any group
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structure and set pj = 1 for all j throughout all the steps in my implementation. Under

this setting, the confidence region Rj(α) in (3.5) reduces to an interval. I applied the three

methods on the same data sets used in the previous comparison to construct 95% confidence

intervals for individual coefficients and to test Hk : β0k = 0 for k ∈ Np.

Let rM , rMc and r denote the coverage rates for active, zero, and all coefficients, respec-

tively, and let LM , LMc and L be the corresponding average interval lengths. Note that

1− rMc reports the type-I error rate of the test and the power can be calculated by checking

whether or not an estimated interval for an active coefficient covers zero. Reported in Ta-

ble 3.2 are the average results for each of the eight data generation settings in the Section

3.2.2 simulation study.

Largely consistent with the results in Table 3.1, I see that my bootstrap method shows a

good control of the type-I error, implied by the observation that rMc , the coverage rate for

zero coefficients, is slightly greater than but very close to 95%. The rMc for the de-sparsified

lasso method is uniformly lower than 0.9, dropping to 0.8 in some cases, implying that its

type-I error rate is again substantially higher than the desired level of 5%. Although this

might lead to some moderate degree of increase in power, I argue that a strict control of

false discoveries is critical for large-scale screening when p is large and p� q0. For instance,

the type-I error rate of the de-sparsified lasso is around 15% for n = 100, p = 400. This

means that it brought about 0.1p = 40 more than expected false positives, which was much

larger than the number of true positives q0 = 10. This would be a severe disadvantage of

the de-sparsified lasso method in the typical high-dimensional and sparse setting, p � q0,

under which the method was developed. The de-biased lasso, on the contrary, reached very

high coverage of zero coefficients, close to or above 99% for all the cases. Its coverage of

nonzero coefficients is also seen to be higher than the other two methods. However, the

coverage rates for active coefficients of all three methods can be substantially lower than the

desired level in many cases. For my method, this was caused by the inaccuracy in detecting

active coefficients by thresholding a lasso estimate, which kept only 30% to 40% of them for

the case (n, p) = (100, 400). Even including the largest 20 components of the lasso would

still identify < 75% of the true active variables. Furthermore, without grouping the signal
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Table 3.3: Average runtimes (in seconds) of de-sparsified lasso/bootstrap

n \ p 100 200 400 800
50 12.98/11.03 29.29/22.17 73.61/46.55 167.53/98.37
100 41.19/20.72 108.62/42.54 233.26/83.80
200 223.30/43.86 496.69/91.54
400 1242.78/102.33

strength became small which violates Assumption 2 in Zhou and Min (2017b), as β0k was

uniformly distributed over (−1, 1). I observe that the interval lengths between active and

zero coefficients are very different for my method but are almost identical for the two de-

biased lasso methods. For j /∈ A0, the variance of the lasso β̂j is in general smaller and β̂j can

be exactly zero. My method makes use of such sparsity to improve the efficiency of interval

estimation for zero coefficients. The de-biased lasso b̂ (1.21) de-sparsifies all components of

the lasso, in some sense averaging the uncertainty over all coefficients.

The effect of grouping variables can be seen by comparing the results for my parametric

bootstrap with those in Table 3.1: At almost the same level of type-I error rate, its power

and coverage rate of active coefficients can be boosted substantially through either way of

grouping, which numerically confirms my motivation to group coefficients for a more sensitive

detection of signals.

Finally, I compared the running time between my method applied to the lasso and the

de-sparsified lasso method. The time complexity of my method is in proportion to the

bootstrap sample size N , which has been fixed to N = 300 above. I ran both methods

without parallelization to make inference about all p coefficients. Reported in Table 3.3 are

the average running times per data set of the two methods for 10 different combinations

of (n, p). One sees that my method is uniformly faster across all scenarios and can be

significantly faster when the data size is large. For example, my bootstrap method is 12

times faster than the de-sparsified lasso when n = 400 and p = 800, which corresponds to

one order of magnitude improvement in terms of speed. Bootstrapping the group lasso is

even faster, since the group lasso in general runs faster than the lasso.
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Table 3.4: Coverage rate, power and false positive rate in presence of weak and dense signals

ε = 0.02 ε = 0.2
(a, d) (1, i) (1, ii) (2, i) (2, ii) (1, i) (1, ii) (2, i) (2, ii)

bootstrap rS 86.0 86.0 83.0 84.0 86.0 87.0 82.0 87.0
rW 42.0 60.0 52.0 62.0 46.0 12.0 14.0 22.0

PWRS 77.0 94.0 75.0 94.0 66.0 94.0 68.0 87.0
PWRW 8.0 6.0 4.0 6.0 84.0 54.0 70.0 78.0

FPR 4.9 4.2 5.0 4.1 2.6 3.6 3.2 2.2
de-sparsified PWRS 99.0 99.0 100.0 100.0 97.0 99.0 98.0 97.0
(Bonferroni) PWRW 18.0 32.0 8.0 20.0 84.0 48.0 70.0 78.0

FPR 20.8 23.9 16.2 18.6 18.2 27.5 16.9 19.1
de-sparsified PWRS 71.0 88.0 83.0 91.0 58.0 85.0 70.0 81.0

(Wald) PWRW 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.2
FPR 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.3

rS, rW : coverage rate for strong and weak signal groups, respectively; PWRS, PWRW : power
for strong and weak signal groups, respectively; FPR: false positive rate.

3.2.4 Weak and dense signals

In the second simulation study, I added a third active group of 10 coefficients to the setting of

(n, p) = (100, 400) with grouping P2. I set the coefficients β0k ∈ {±ε} in the third group and

chose ε ∈ {0.02, 0.2}. The signal of this group, in particular when ε = 0.02, was much weaker

than that of the first two groups. The vector β0 also became denser with s0 = 3 and q0 = 20.

Both aspects make the data sets more challenging for an inferential method. I note that

neither the sparsity condition nor the signal strength condition in Assumption 2 from Zhou

and Min (2017b) is satisfied. The results here thus can indicate how the bootstrap method

works when key assumptions of my asymptotic theory are violated. To obtain accurate

estimation of coverage rates in presence of such small signals, I increased the number of data

sets generated in each setting to K = 50.

I applied my bootstrap method and the de-sparsified lasso with Bonferroni adjustment to

perform group inference on these data sets, as I did in Section 3.2.2. Moreover, I conducted

a Wald test with the de-sparsified lasso b̂ as follows. The asymptotic distribution of b̂ (1.21)

implies that, for a fixed group G of size m, TG = n(b̂G − β0G)TV −1
GG(b̂G − β0G) follows a χ2

distribution with m degrees of freedom as n→∞, where V is the covariance of the Gaussian
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random vector W . Thus, one may use the statistic TG to test whether a group of coefficients

is zero such as in H0,j : β0(j) = 0. The results of the three methods are reported in Table 3.4.

To highlight the expected difference in performance, I separately report the coverage rate

and power for the strong groups, rS and PWRS, and those for the weak group, rW and

PWRW .

Again my bootstrap method achieved a good control of type-I error rate, all around or

below 5%. The coverage rate and power for the strong groups are comparable to those in

Table 3.1, indicating that they were not affected by the inclusion of a weak group. The power

for detecting the third group is low when ε = 0.02, which is fully expected given the low signal

strength, and becomes much higher when ε is increased to 0.2. As discussed above, the data

simulated here do not satisfy Assumption 2 in Zhou and Min (2017b). As a consequence,

the bootstrap samples might not provide a good approximation to the sampling distribution,

which could be a reason for the low coverage rate of the weak group. I observe that rW was in

general higher when ε = 0.02 than when ε = 0.2. This is because supS2
‖β0(j)‖ with ε = 0.02

is closer to the requirement in Assumption 2 in Zhou and Min (2017b) for small coefficients.

The de-sparsified lasso with Bonferroni correction failed to control the type-I error rate at

the desired level. While it shows a higher detection power for the weak group when ε = 0.02,

its power is largely comparable to my method when ε = 0.2. The gain in power could simply

be the result of high false positive rates. Compared to Table 3.1, I see a decrease in the false

positive rates. This is because the error variance σ2 was overestimated for these data sets,

which alleviated the underestimate of p-values by the de-sparsified lasso. On the contrary,

the Wald test seems too conservative, almost never rejecting any zero group. Its power

of detecting the weak group is close to zero for most of the cases. These results are the

consequence of ignoring the term ∆ in (1.20), which introduces systematic bias in the Wald

test statistic for finite samples. This numerical comparison demonstrates the advantage of

my bootstrap method in the existence of weak coefficient groups under a relatively dense

setting.
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3.2.5 Real data designs

I further tested my method on design matrices drawn from a gene expression data set (Ivanova

et al., 2006), which contains expression profiles for about 40, 000 mouse genes across n =

70 samples. The expression profile of each gene was transformed to a standard normal

distribution via quantile transformation. The following procedure was used to generate data

sets for my comparison. First, randomly pick p genes and denote their expression profiles by

Xj ∈ Rn for j = 1, . . . , p. I calculate the correlation coefficients (rij)p×p among Xj’s and the

total absolute correlation ri• =
∑

j |rij| for each gene i ∈ Np. For the gene with the highest

ri•, I identify the (m − 1) genes that have the highest absolute correlation with this gene.

These m genes are put into one group of size m. Then I remove them from the gene set and

repeat this grouping process until I partition all p genes into J = p/m groups. This grouping

mechanism results in high correlation among covariates in the same group. Next, fixing the

first s0 groups to be active, I draw their coefficients β0k ∼ U(−b, b). The parameters in the

above procedure were chosen as p ∈ {500, 1000}, b ∈ {1, 3, 5}, m = 10, and s0 = 3. For

each combination of (p, b), I obtained K = 100 independent realizations of (X, β0). Given

each realization, a range of the noise variance σ2 ∈ {0.1, 0.5, 1} was then used to simulate

the response y ∼ Nn(Xβ0, σ
2In). Compared to the data generation settings in Section 3.2.1,

data sets in this subsection have a smaller sample size n = 70 but a higher dimension p,

and the correlation among the covariates is much higher. These put great challenges on an

inferential method.

I applied both the bootstrap and the de-sparsified lasso methods to perform group in-

ference as I did in Section 3.2.2. As reported in Table 3.5, my bootstrap method gives a

good and slightly conservative control over type-I errors, with false positive rates all close to

but below 5%, the desired level. Its power in general increases as the signal-to-noise ratio

increases and is seen to be around 0.5 when the signal-to-noise ratio is reasonably high. On

the contrary, the type-I error rate of the de-sparsified lasso method, not reported in the table,

was even > 0.9 for most of the cases, showing that it failed to provide an acceptable p-value

approximation for these data sets. This might be caused by the facts that this method is not
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Table 3.5: Comparison of power and false positive rate on gene expression data

Data Setting
Group inference Individual inference (pj = 1)

bootstrap bootstrap de-sparsified lasso
p β0 σ2 PWR FPR PWR FPR PWR FPR PWR∗

500

(−1, 1)
0.1 50.3 1.6 14.2 3.1 41.9 19.3 12.9
0.5 24.7 1.8 13.1 3.1 36.1 15.0 12.0

1 24.7 2.4 12.0 3.0 31.8 12.7 13.0

(−3, 3)
0.1 61.3 1.0 15.7 3.3 51.0 27.1 13.2
0.5 54.7 1.1 15.0 3.2 46.2 21.0 10.7

1 48.7 1.2 15.1 3.4 47.3 22.4 11.2

(−5, 5)
0.1 58.7 1.4 14.9 3.1 48.5 24.4 14.3
0.5 57.7 1.2 14.9 3.1 43.1 20.0 10.8

1 55.7 0.9 14.2 3.1 44.4 19.2 14.3

1000

(−1, 1)
0.1 41.0 1.1 12.4 2.0 36.3 14.0 12.0
0.5 29.3 2.0 11.5 2.0 29.8 10.6 15.3

1 30.3 1.1 10.4 1.8 29.4 10.5 13.2

(−3, 3)
0.1 41.0 0.8 13.9 2.1 34.8 13.9 14.2
0.5 33.7 0.7 12.2 2.1 37.4 15.5 13.8

1 46.7 1.3 12.8 2.1 39.5 17.7 13.4

(−5, 5)
0.1 50.0 1.0 12.4 2.1 33.6 12.3 13.9
0.5 47.7 0.9 12.8 2.1 34.3 14.3 10.9

1 45.7 0.8 11.8 2.1 36.9 15.9 11.9

FPR: false positive rate; PWR: power; PWR∗: power of the de-sparsified lasso after matching
false positive rate to 5%.

designed for group inference and that n = 70 is too small for asymptotic approximation. To

conduct a complete comparison, I then used both methods to make inference about individ-

ual coefficients as in Section 3.2.3, in which the group structures were totally ignored in my

method by setting all pj = 1. My method again controlled the type-I error to a level slightly

lower than 5%, but showed a decrease in power, as expected, without utilizing grouping. The

false positive rate of the de-sparsified lasso became smaller for individual inference, ranging

between 15% and 30%, but still far from the desired level of 5%. This makes it difficult to

compare power between the two methods, as the observed higher power of one method could

simply come at the cost of more false positives. To resolve this issue, I sorted the p-values

for all the zero coefficients output from the de-sparsified lasso method, and chose a cutoff p∗

such that 5% of them would be rejected. In this way, the false positive rate by definition is
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Figure 3.1: Sensitivity analysis on thresholding: (left) false positive rate and (right) coverage
rate of active groups against the number of active groups of thresholded group lasso for the
four settings of (a, d) = (1, i) (solid), (1, ii) (dash), (2, i) (dot), and (2, ii) (dot-dash).

always 5%, slightly higher than that of my bootstrap method, while the corresponding power

becomes largely comparable. I also noticed that the overestimate of the significance level by

the de-sparsified lasso method was severe for these data sets: To achieve the target type-I

error rate of 5%, the cutoff for its p-values turned out to be < 0.002 for all the settings and

was even much smaller for many of them.

This comparison shows that my parametric bootstrap method can achieve a desired level

of false positive control in presence of high correlation among a large number of predictors.

It again confirms that grouping variables can lead to substantial power gain.

3.2.6 Sensitivity to thresholding

With λ̂ chosen by cross-validation, the only parameter that requires user input in my method

is the threshold value bth. The following experiment has been conducted to examine how

sensitive my method is to this parameter. Given the group lasso solution β̂, I reorder its

groups so that ‖β̂(1)‖ ≥ . . . ≥ ‖β̂(J)‖. Then I choose a range of threshold values, bth =

‖β̂(k+1)‖, such that the thresholded β̃ has k active groups for k = 0, . . . , K, say K = 6.

I applied this procedure on the simulated data sets generated from the four settings with
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n = 100, p = 400 and G = P2 in Table 3.1, which have s0 = 2 active groups. These were the

most difficult settings for which my bootstrap method had the lowest power and coverage

rate rM . Figure 3.1 plots the curve of the false positive rate and the curve of the active

group coverage rate rM against k, the number of active groups after thresholding, in each of

the four settings.

The false positive rates are well-controlled at the desired level of 5% for all the threshold

values. They are around 0.05 when bth is well-chosen so that β̃ has k = s0 = 2 active groups,

and become smaller when bth deviates from the optimal value. This suggests that my method

is not sensitive to the threshold value in terms of type-I error control. The coverage of the

active groups stays at a high level when β̃ contains two or more active groups, but can be

substantially lower if one or both of the true active groups are missing. Thus, including

a few zero groups in the active set of β̃ will not hurt the performance of my method that

much, since via refitted least-squares, the estimated coefficients of these groups tend to be

small. Similar patterns were observed for inference on individual coefficients, when bth was

chosen for β̃ to have up to 30 nonzero coefficients while the true active set contained only

10 variables.

3.3 Estimator augmentation in group lasso

In this section, I introduce some applications which make inference about β0 by utilizing

the joint density of the augmented block lasso estimator (Zhou and Min, 2017a) which was

reviewed in Section 1.2.2. Consider the group lasso estimator with `2 group regularization.

The goal is to test the hypothesis H0,G : β0G = 0 or to construct confidence regions for β0G

for some G ⊂ Np. Without loss of generality, assume that G = Gj for some j ∈ NJ so that

my goal is to infer β0(j). Denote the null hypotheses by H0,j : β0(j) = 0 for j ∈ NJ .

3.3.1 De-biased parametric bootstrap

Consider inference with an estimator in the form of b̂ = b̂(β̂, S) ∈ Rp, a mapping of the

augmented estimator (β̂, S). One such approach that has drawn recent attention is the

63



de-biased lasso and its generalization to the de-biased group lasso. Given a p × p matrix

Θ̂ = Θ̂(X), a form of the de-biased estimator may be expressed as

b̂(β̂, S) = β̂ + Θ̂XT(y −Xβ̂)/n = β̂ + λΘ̂WS, (3.4)

where (β̂, S) is either the augmented lasso or the augmented group lasso. Different de-biased

estimators have been constructed with different Θ̂, which is often some version of a relaxed

inverse of the Gram matrix Ψ. It is usually impossible to obtain the exact distribution of

(b̂ − β0) for a finite sample. Thus, bootstrap methods have been developed (Zhang and

Cheng, 2017; Dezeure et al., 2017) with improved performance compared to asymptotic

approximations for the de-biased methods.

Assuming the error distribution is Nn(0, σ2In) with a known σ2 for now, I use the para-

metric bootstrap PB(β̃, σ2, λ) in Algorithm 4. This time, for every y∗ I generate, I also

compute S∗ via (1.3). Let (β̂∗, S∗) be the augmented estimators drawn in such way. Let

b̂∗ = b̂(β̂∗, S∗). Choosing a function hj : Rpj → [0,∞), I estimate its (1− γ)-quantile hj,(1−γ)

from a large bootstrap sample such that

P
{
hj(b̂

∗
(j) − β̃(j)) > hj,(1−γ)

∣∣∣ β̃} = γ.

Then, a (1− γ) confidence region for β0(j) can be constructed in the form of

Rj(γ) =
{
θ ∈ Rpj : hj(b̂(j) − θ) ≤ hj,(1−γ)

}
. (3.5)

By duality the p-value for testing H0,j is approximated by the tail probability

P
{
hj(b̂

∗
(j) − β̃(j)) ≥ hj(b̂(j))

∣∣∣ β̃} . (3.6)

Common choices of hj include, for example, various norms and hj(θ) = ‖X(j)θ‖. Although

out of the scope of this chapter, the asymptotic validity of (3.5) and (3.6) comes from the

fact that (b̂(j) − β0(j)) is an asymptotic pivot with a careful choice of Θ̂ (Mitra and Zhang,
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2016; van de Geer et al., 2014).

An interesting and key observation is that the joint density of [β̂∗, S∗ | β̃] is explicitly

given in Theorem 2, with β̃ in place of β0, through its equivalent representation. Denote this

density by fM(rM , s; β̃, σ
2, λ) to emphasize its dependence on (β̃, σ2, λ), i.e.

fM(rM , s; β̃, σ
2, λ) = fE

(
H̃(rM , s;µ0, λ)

)∣∣∣JM(rM , s;λ)
∣∣∣. (3.7)

In principle, I can use Monte Carlo methods, such as importance sampling and MCMC, to

draw (β̂∗, S∗) and obtain a sample of b̂∗ = b̂(β̂∗, S∗), which serve as alternatives to the above

bootstrap sampling. Monte Carlo methods may bring computational efficiency and flexibil-

ity compared to parametric bootstrap. In the following, I will demonstrate the efficiency

of importance sampling in calculating tail probabilities as in (3.6), which is a prominent

difficulty for the bootstrap. Monte Carlo methods for other applications, including those

with an estimated error distribution, are discussed in Section 3.3.5.

3.3.2 Importance sampling

Recall that M = G(β̂) is a random variable and M is the value of M. Given M , let

ΩM = (R+)|M | × SM be the sample space of (γ̂M , S) given M where SM is defined as in

(1.15). Let Ω be the sample space for the augmented estimator (γ̂M, S,M):

Ω =
⋃
|M |≤n

ΩM × {M}.

The following simple fact about the parameterization of SM is useful for designing pro-

posal distributions in importance sampling.

Lemma 8. Let α ∈ (1,∞). Define M = {M ⊂ NJ : |M | ≤ n}. For each M ∈ M , the

manifold SM , except for a set of measure zero, can be parameterized by sF such that the

index set F = F (M) only depends on M .

A consequence of Lemma 8 is that I may use the same volume element dθ = drMdsF
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almost everywhere in the subspace ΩM , which eases my development of a Monte Carlo algo-

rithm. Suppose that qM(rM , s) is the density of a distribution over Ω with respect to dθ such

that
∑

M

∫
ΩM

qM(rM , s)dθ = 1. As long as the support of qM is ΩM for all M ∈M , it can be

used as a proposal distribution in importance sampling. With a little abuse of notation, put

θ = (rM , s) ∈ ΩM so that (θ,M) represents a point in the sample space Ω at which the volume

element is dθ. Suppose I want to estimate the expectation of a function h(β̂, S) = h(γ̂, S,M)

with respect to fM , using (β̂, S) and (γ̂, S,M) interchangeably. Importance sampling can be

readily implemented given the densities fM and qM . Draw (θt,Mt) from the proposal qM(θ)

for t = 1, . . . , N and calculate importance weights ωt = fMt(θt)/qMt(θt). Then by the law of

large numbers, the weighted sample mean

ĥ =

∑N
t=1 ωth(θt,Mt)∑N

t=1 ωt

a.s.−→E[h(γ̂, S,M)]

provides the desired estimate. To estimate the probability in (3.6), h is taken to be the

indicator function of the event of interest. When the true β0(j) 6= 0, the p-value (3.6) can be

tiny, and bootstrap may fail to provide a meaningful estimate of the significance level. In

such cases, it is much more efficient to use importance sampling with a proposal distribution

that has a higher chance to reach the tail of the bootstrap distribution fM(rM , s; β̃, σ
2, λ).

I design two types of proposal distributions. The first type of proposals draw (β̂∗, S∗) by

the bootstrap algorithm PB(β†, cσ2, λ†) with a proper choice of (β†, c, λ†), where c > 0 is a

constant. The proposal distribution has density fM(rM , s; β
†, cσ2, λ†), again by Theorem 2.

By increasing the error variance with c > 1, choosing β† 6= β̃, and possibly with a different

λ†, I can propose samples in the region of interest in (3.6) which has a small probability

with respect to the target distribution. The Jacobian term JM(rM , s;λ) in Theorem 2 is

the time-consuming part in evaluating the densities for calculating importance weights. If I

choose λ† = λ, however, this term will cancel out and the importance weight is simply the

ratio of two normal densities, whose calculation is almost costless. My empirical study shows

that this choice gives comparable estimation accuracy and thus I always let λ† = λ. Denote

by IS(β†, c) the importance sampling with the first type of proposals. My second design uses
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a mixture of two proposal distributions with different β† and c, which has more flexibility

in shifting samples to multiple regions of interest. Again the Jacobian term cancels out in

the importance weight (3.8). My importance sampling with a mixture proposal is detailed

in the following algorithm. For brevity, write

H̃(β̂, S; β0) =
√
n(XT)+(Ψβ̂ + λWS −Ψβ0),

which is identical to the H̃ in (1.14).

Algorithm 5 (IS(a1, β
†
1, c1; a2, β

†
2, c2)). Given a1 + a2 = 1, β†1, β

†
2 ∈ Rp and c1, c2 > 0,

(1) draw Z from {1, 2} with probabilities {a1, a2} and (β̂∗, S∗) from PB(β†Z , cZσ
2, λ);

(2) calculate importance weight

ω∗ =
φn

(
H̃(β̂∗, S∗; β̃);σ2/n

)
∑2

k=1 ak φn

(
H̃(β̂∗, S∗; β†k); ckσ

2/n
) . (3.8)

Remark 3. The first algorithm IS(β†, c) can be regarded as a special case of Algorithm 5

with a1 = 1, β†1 = β† and c1 = c. One can easily generalize Algorithm 5 to a mixture proposal

with K ≥ 3 component distributions. For other error distributions, I simply replace φn in

(3.8) by fE, the density of ε/
√
n.

In my numerical results, the efficiency of an importance sampling estimate is measured

by its coefficient of variation (cv) across multiple independent runs and compared with direct

bootstrap outlined in Algorithm 4.

3.3.3 Group lasso

I begin with a simpler application to test the complete null hypothesis H0 : β0 = 0 using the

statistic T = h(β̂) =
∑

j ‖β̂(j)‖, where β̂ is the group lasso for a particular λ. In this case,

my target density fM(rM , s; β0 = 0, σ2, λ) determines the exact distribution of T under H0.

I set the group size pj = 10 for all groups and fixed σ2 = 1. Each row of X was drawn
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Table 3.6: Simulated datasets for testing complete null hypothesis

Dataset (n, p) (ρ1, ρ2) λ T
1-10 (30, 100) (0, 0) (0.396, 0.796) (0.017, 0.337)
11-20 (30, 100) (0, 0) (0.554, 1.613) (0.460, 1.964)
21-30 (30, 100) (0.5, 0) (0.956, 2.650) (0.045, 2.186)

from Np(0,Σ), where the diagonal elements of Σ are all 1. The off-diagonal elements Σij = ρ1

if i, j are in the same group and Σij = ρ2 otherwise. I simulated 30 datasets with parameters

(n, p, ρ1, ρ2) reported in Table 3.6. Put v = (1, 1, 1, 1,−1,−1,−1,−1, 0, 0). For the first 10

datasets, I chose β0 = 0 so that H0 is true. For the other 20 datasets, the first two groups

of β0 were active, with β0(1) = β0(2) = v/2 for datasets 11 to 20 and β0(1) = β0(2) = v for

datasets 21 to 30. For each dataset, λ was chosen to be the smallest value such that the

group lasso solution had two active groups. The range of λ and that of the statistic T across

the simulated datasets are reported in Table 3.6 as well.

I applied the algorithm IS(0, 5) to generate N = 100, 000 samples. Denote the samples

by β̂∗t , with importance weight ωt, for t = 1, . . . , N . The p-value for the observed statistic T

was then estimated by

q̂(IS) =

∑N
t=1 ωtI(h(β̂∗t ) ≥ T )∑N

t=1 ωt
. (3.9)

This procedure was repeated 20 times independently for each dataset to calculate the mean

q̄ and the standard deviation of q̂(IS), from which I calculated cv(q̂(IS)). If I had used the

bootstrap algorithm PB(0, σ2, λ) for the same N to estimate the p-value, denoted by q̂(PB),

its cv would have been close to
√

(1− q̄)/(Nq̄). Figure 3.2 plots log10(q̄), cv(q̂(IS)) and

log10{cv(q̂(PB))/cv(q̂(IS))} for the 30 datasets. I observe from the ratios of cv’s in panel (c)

that, for datasets 11 to 30, the importance sampling estimates are much more accurate,

while the estimated p-values, as shown in panel (a), are very small. For many of these

20 datasets, the improvement of importance sampling over bootstrap can be five or more

orders of magnitude. The p-values are insignificant for the first 10 datasets, in which the

null hypothesis is true. In a majority of these cases, the importance sampling estimates are

slightly less accurate than the bootstrap estimates, which is fully expected.
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Figure 3.2: Estimation of p-values for testing H0 with the group lasso. (a) log10 q̄, (b)
cv(q̂(IS)) and (c) log10{cv(q̂(PB))/cv(q̂(IS))}. The result for a dataset is reported by a vertical
bar in each plot.

3.3.4 A de-biased approach

The second application concerns a de-biased group lasso in the form of (3.4). Since my

method applies to any choice of Θ̂, to simplify the discussion I set Θ̂ = Σ−1 instead of using

a particular estimate, where Σ is the population covariance of X. The test statistic is chosen

as hj(b̂(j)) = ‖X(j)b̂(j)‖ := Tj in (3.6).

I simulated 20 datasets independently under the same settings as those for datasets 11 to

30 in Table 3.6. The tuning parameter λ was chosen by the same method as in Section 3.3.3

to calculate the group lasso β̂ and the de-biased estimate b̂ (3.4) for each dataset. Figure 3.3

plots these two estimates for one dataset, in which β0(1) = β0(2) = v and β0(j) = 0 for j > 2.

I see that the de-biased group lasso b̂ is not sparse, b̂(j) 6= 0 for all j, and its first two groups

are closer to the active groups of β0 than the group lasso. This largely removed the shrinkage

in the active coefficients of the group lasso solution and substantially reduced its bias. My

goal here is to test H0,1 : β0(1) = 0 by estimating the probability (3.6) for T1 = ‖X(1)b̂(1)‖

with a plug-in point estimate β̃. The observed value of the test statistic T1 ranges from 4.4

to 21.2 across the 20 datasets. Due to the asymptotic unbiasedness of b̂(j), the bootstrap

distribution [b̂∗(j) − β̃(j) | β̃] is not sensitive to the choice of β̃ as long as it is sparse. Thus, I

choose β̃ = β̂. See Dezeure et al. (2017) for related discussions.
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Figure 3.3: The group lasso and de-biased group lasso solutions for one dataset with p = 100,
where the size of each group is 10.

I designed the following mixture proposal for Algorithm 5 to approximate the p-value

(3.6) by importance sampling:

a1 = a2 = 1/2; c1 = 2, c2 = 4; β†1 = β̂, β†2(1) = β̂(1)/2, β
†
2(−1) = β̂(−1).

Note that β†2(1) is the middle point between β̂(1) and 0, serving as a bridge between the target

distribution and the null hypothesis H0,1. To achieve a wider coverage of the sample space,

the error variances of both component distributions were chosen to be greater than σ2. I

applied Algorithm 5 to generate N = 100, 000 weighted samples (β̂∗t , S
∗
t ), with weights ωt,

for each dataset. Similar to (3.9), the p-value for T1 was estimated as

q̂(IS) =

∑N
t=1 ωtI(‖X(1)(b̂

∗
t(1) − β̂(1))‖ ≥ T1)∑N

t=1 ωt
, (3.10)

where b̂∗t = b̂(β̂∗t , S
∗
t ) as in (3.4). I replicated this procedure 20 times independently to

calculate the cv of q̂(IS) as I did in the previous example. The same comparisons were

conducted and the results are reported in Figure 3.4. Strong majority of the p-values were

estimated to be significant, since β0(1) 6= 0 for all 20 datasets. The cv’s of the importance

sampling estimates are seen to be quite small, which is especially satisfactory for those tiny

tail probabilities on the order of 10−10 or smaller. As shown in Figure 3.4(c), my importance
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Figure 3.4: Estimation of p-values for testing H0,1 with a de-biased group lasso. Plots are
in the same format as those in Figure 3.2.

sampling estimation is more efficient than parametric bootstrap for at least 13 out of the 20

datasets, many showing orders of magnitude of improvement. For most of the other datasets,

the importance sampling results are very comparable to the results from bootstrap.

Compared to the parametric bootstrap in Algorithm 4, the only additional step in my

importance sampling algorithms is to evaluate importance weights, such as (3.8), of which

the computing time is negligible relative to computing group lasso solutions. As a result, the

total running time of the importance sampling is almost identical to that of the bootstrap

sampling. The above two applications thus exemplify the huge gain in estimation accuracy

by importance sampling via estimator augmentation at almost identical computing cost. It

is worth mentioning that accurate estimation of small p-values is crucial for ranking the

importance of predictors and controlling false discoveries in large-scale screening.

3.3.5 Other applications

Given the joint density fM(rM , s; β̃, σ
2, λ), one may design MCMC algorithms to draw sam-

ples (β̂∗, S∗) from this distribution, which is identical to the distribution of a bootstrap

sample generated by PB(β̃, σ2, λ) in Algorithm 4. The advantage of an MCMC algorithm

is that it does not need to solve a convex optimization program in any of its steps. But
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evaluating the Jacobian term in fM could be time-consuming. Another potential application

is conditional sampling from [β̂∗, S∗ | β̂∗ ∈ B], which will be useful in post-selection infer-

ence. For example, conditioning on the model selected by β̂, i.e. G(β̂∗) = G(β̂), I may wish

to sample from an estimator b̂∗ with a nice asymptotic distribution for inference. For this

problem, bootstrap may be impractical since the conditioning event is often a rare event.

However, from the joint density one can easily obtain the conditional density ∝ fG(rG, s),

where G = G(β̂), and implement an MCMC algorithm to draw from this conditional distri-

bution. In the case of the lasso, Zhou (2014) implemented an Metropolis-Hastings sampler

for such conditional sampling. The more general case for a block lasso will be considered in

the future.

Under a Gaussian error assumption, it is a common practice to plug an estimated variance

σ̂2 in the bootstrap PB(β̃, σ̂2, λ). As long as σ̂2 is consistent with a certain rate, inference

will be valid asymptotically (Dezeure et al., 2017; Zhou and Min, 2017b). Therefore, I can

use my importance sampling algorithms with fM(rM , s; β̃, σ̂
2, λ) as the target density. Note

that the density fM (3.7) depends on the error distribution only through the density fE of

ε/
√
n. Under a general i.i.d. error assumption, estimating fE reduces to estimating the

density of an univariate distribution, which can be done quite accurately even when n is

moderate by either a parametric or a nonparametric method. Given an estimate f̂E, my

target density is readily obtained with fE replaced by f̂E. An appealing alternative is to

de-bias a scaled group lasso, which estimates σ2 in a coherent way, for inference as in Mitra

and Zhang (2016). As in Section 1.2.3, estimator augmentation can be applied to derive the

joint density of an augmented scaled group lasso, including its variance estimator σ̂2. Given

the density, one can follow the same importance sampling algorithms for tail probability

approximation.
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CHAPTER 4

R-package : EAinference

4.1 Introduction

As reviewed in the earlier chapters, high-dimensional inference is now getting a lot of atten-

tion. However, not many R packages that support high-dimensional inference methods are

available. In this chapter, the R package will be introduced EAinference which supports

many applications using estimator augmentation, including a parametric bootstrap sampler,

computing importance weight, and constructing a post-selection confidence sets/intervals.

The package is now available on CRAN.

In my best knowledge, there are three R packages that support high-dimensional infer-

ence. First, the hdi package (Dezeure et al., 2015) implemented the sample-splitting method,

the de-biased methods for lasso and ridge regression, and the group bound method. The

selectiveInference package (Tibshirani et al., 2017) implemented post-selection inference

methods for lasso, lars and the forward stepwise regression which was used in Chapter 2 to

compare the proposed method with Lee’s method (Lee et al., 2016). The c060 package (Mar-

tin Sill and Zucknick, 2014) implemented stability selection (Meinshausen and Bühlmann,

2010) for lasso and the elastic net.

The unique aspects of EAinference package are that (1) it supports sampling y from

its conditional density, in particular, drawing y such that A(y) = A for a given active set

A, (2) it can construct confidence sets on multiple post-selection estimators which could not

be done by any other packages, (3) since it uses simulation approaches, great flexibility can

be obtained. Since EAinference can generate samples, users can easily come up with their

own hypothesis.
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Section 4.2 introduces parametric bootstrap sampler, high-dimensional importance sam-

pler and Markov chain Monte Carlo sampler. Section 4.3 covers two inference methods; (1)

post-selection confidence sets which was introduced in Chapter 2, and (2) de-biased con-

fidence intervals. The chapter is conclude by presenting demonstration of my package in

Section 4.4.

4.1.1 Common arguments and sample data

Common arguments shared by multiple functions in EAinference are listed here. X and Y

are a design matrix X ∈ Rn×p and a response vector y ∈ Rn, respectively. type determines

the type of lasso estimators which can be chosen among {"lasso", "grlasso", "slasso",

"sgrlasso"} which represent lasso, group lasso, scaled lasso and scaled group lasso estima-

tor, respectively. lbd and weights are λ and {wj}1:p in (1.1) and (1.2) and each is set to

rep(1,p) and 1:p by default, respectively. Whenever type is set to either "grlasso" or

"sgrlasso", group structure needs to be specified through group argument. By default,

group is set to Np so that each variable forms its own group. For example, if p = 3, the

default group structure will be (1, 2, 3) which makes separate groups for each variable. If

one wants to group the first and the second variables together, the group structure needs to

be specified as (1, 1, 2). Whenever a function supports the parallel computing, users can set

parallel = TRUE and specify the number of cores to use with ncores.

Every time a new function is introduced, a small data set with (n, p) = (5, 10) will be

used to ease understanding. Each column of a design matrix X is independently sampled

from Nn(0, In). The response y is drawn from N (Xβ0, In), where β0 = (1, 1, 0, . . . , 0).

R> n <- 5

R> p <- 10

R> beta0 <- c(1, 1, rep(0, 8))

R> X <- matrix(rnorm(n*p), n)

R> Y <- X%*%beta0 + rnorm(n)
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4.2 Sampling methods

To exploit the fact that the density of lasso, group lasso, scaled lasso and scaled group lasso are

known, three sampling methods are developed.

4.2.1 Lasso type estimator

lassoFit provides four different penalized estimator along with their subgradients (and the error

variance estimate σ̂2 for the scaled group lasso) using gglasso function in gglasso package; (a)lasso

and group lasso, (b)scaled lasso and scaled group lasso. Note that if all the group sizes are 1, i.e.

pj = 1 for ∀j, group lasso and scaled group lasso reduce to lasso and scaled lasso, respectively.

Each of the estimator is

β̂(a) ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + nλ

J∑
j=1

wj‖β(j)‖2

 ,

(β̂(b), σ̂) ∈ argmin
β∈Rp, σ∈R+

 1

2σ
‖y −Xβ‖22 +

σ

2
+ nλ

J∑
j=1

wj‖β(j)‖2

 . (4.1)

The corresponding subgradients are

S(a) =
1

nλ
W−1

{
XTy −XTXβ̂(a)

}
,

S(b) =
1

nλσ̂
W−1

{
XTy −XTXβ̂(b)

}
, (4.2)

where W = diag{w1Ip1 , . . . wJIpJ}. The function can be called as follows:

R> lassoFit(X, Y, type, lbd, group = 1:ncol(X), weights = rep(1, max(group)),

+ verbose = FALSE, ...)

lbd can be a positive number as described earlier or it can be selected via cross validation;

lbd = "cv.min" finds λ which gives the minimum cross-validation mean-squared error and lbd =

"cv.1se" uses one standard error rule from cross-validation.

Below is the example code with lbd = 0.4. group and weights are not specified thus the

default values are used. The output includes the lasso estimate(B0), the corresponding subgradi-

ent(S0), λ of the choice(lbd), weights {wj}1:p(weights), and the group structure(group).
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R> lassoEst <- lassoFit(X = X, Y = Y, type = "lasso", lbd = .4)

R> lassoEst

$B0

[1] 1.02808174 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

[7] 0.00000000 0.01433208 0.00000000 0.90947626

$S0

[1] 0.999999997 0.648516454 0.031990556 -0.006260897 0.095389758

[6] 0.792181175 0.766627854 0.999999974 0.472402860 1.000000000

$lbd

[1] 0.4

$weights

[1] 1 1 1 1 1 1 1 1 1 1

$group

[1] 1 2 3 4 5 6 7 8 9 10

4.2.2 Parameteric bootstrap sampler

PBsampler provides bootstrap samples of four types of lasso estimators with their subgradients.

Given point estimates µ̃ and σ̂2, it first generates y∗ = µ̃ + ε∗, where ε∗ ∼ Nn(0, σ̂2In). Then

given λ, (β̂, S) is computed by solving (4.1) and (4.2) with y∗ in place of y. Note that (µ̃, σ̂2, λ)

determines the sampling distribution of y∗ and thus it is denoted by π(•; µ̃, σ̂2, λ).

PBsampler can be called as follows:

R> PBsampler(X, PE_1, sig2_1, lbd_1, PE_2, sig2_2, lbd_2,

+ weights = rep(1, max(group)), group = 1:ncol(X),

+ niter = 2000, type, PEtype = "coeff", Btype = "gaussian", Y = NULL,

+ parallel = FALSE, ncores = 2L, verbose = FALSE)
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X, weights, group, type arguments work the same as in lassoFit.

Up to two sets of (µ̃, σ̂2, λ) can be supplied with (PE 1, sig2 1, lbd 1) and (PE 2, sig2 2,

lbd 2). If (PE 2, sig2 2 and lbd 2) is supplied, the sampling distribution becomes

1

2
π(•; µ̃1, σ̂

2
1, λ1) +

1

2
π(•; µ̃2, σ̂

2
2, λ2),

which can be useful for my importance sampler hdIS which will be introduced in 4.2.3.

µ̃ can be supplied in two different ways: (1) Set PEtype="mu" and supply µ̃ to PE. (2) Set

PEtype="coeff" and supply β̃ to PE; In such a case, µ̃ is computed by Xβ̃. By default, PEtype is

set to "coeff".

Btype determines the type of bootstrap of which I support two types; Btype="gaussian"

for Gaussian bootstrap and Btype="wild" for the wild bootstrap (Mammen, 1993). Gaussian

bootstrap draws ε∗ from Nn(0, σ̂2In). The wild bootstrap generates ε∗ with centered residuals

and normal random variables; ε∗i = ẽiwi, where wi is drawn from N (0, σ̂2) and ẽi is a centered

residual which corresponds to yi. Note that if Btype = "wild", Y needs to be supplied for the wild

bootstrap in order to compute residuals.

Given residuals, ε∗ from the wild bootstrap follows the normal distribution. Therefore, the

method of estimator augmentation can be applied to derive the closed form density of (Θ,A) =

(γ̂M, S,M).

Corollary 9. When the wild bootstrap is used, fE from Theorem 2 and 3 is Nn(0, σ2E/n), where

E = diag(ẽi)1:n.

Below is the example code to generate samples from the target distribution π(•; β̃ = (0.5, 0.5, 0 . . . , 0),

σ̂2 = 2, λ = 0.4). It prints out last 10 samples of lasso estimators and corresponding subgradients.

R> PBsample <- PBsampler(X = X, PE_1 = c(.5,.5, rep(0,p-2)), sig2_1 = 2,

+ lbd_1 = .5, type = "lasso", niter = 10)

R> PBsample

Last 10 steps of beta’s:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.9144 0.0000 0.0000 0.1669 1.8154 0.0000 0.1576 0 0.0000
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[2,] 0.7449 0.9939 0.0000 0.1066 -1.0372 0.0000 0.0000 0 0.0000

[3,] 0.1855 0.0000 0.0000 0.5056 0.4892 0.0000 0.0000 0 0.6095

[4,] 0.1450 0.0000 0.0000 0.2007 0.0000 0.0000 0.0000 0 0.0000

[5,] 0.0000 0.1592 -0.2010 0.0081 0.0000 0.0000 0.0000 0 0.8482

[6,] 1.2659 0.0000 0.0000 0.0000 0.1583 0.0000 0.3505 0 0.0000

[7,] 0.7767 0.0000 0.0000 0.0000 -0.8691 0.0000 0.0000 0 0.1380

[8,] 0.0978 0.0000 0.0000 0.0000 -0.1025 0.0000 0.4532 0 0.0000

[9,] 0.5927 0.0000 0.0000 -0.5236 0.0000 0.1841 0.0000 0 0.0000

[10,] 0.0000 0.9762 -0.1808 0.0000 0.0000 0.0000 0.0000 0 0.0000

[,10]

[1,] 0

[2,] 0

[3,] 0

[4,] 0

[5,] 0

[6,] 0

[7,] 0

[8,] 0

[9,] 0

[10,] 0

last 10 steps of subgradients:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.0000 0.8419 0.4540 1.0000 1.0000 -0.0868 1.0000 -0.3854

[2,] 1.0000 1.0000 -0.3118 1.0000 -1.0000 -0.6319 0.7750 -0.2039

[3,] 1.0000 0.3496 0.0405 1.0000 1.0000 0.1074 -0.5712 0.1212

[4,] 1.0000 -0.2613 0.5411 1.0000 -0.1239 0.0443 -0.1413 -0.0368

[5,] 0.2318 1.0000 -1.0000 1.0000 -0.4045 -0.8820 -0.2991 -0.0433

[6,] 1.0000 0.9370 0.2816 -0.0186 1.0000 0.4421 1.0000 -0.0550

[7,] 1.0000 0.9726 -0.7245 0.3258 -1.0000 -0.2413 0.0775 0.2515

[8,] 1.0000 0.7716 -0.0393 0.3557 -1.0000 -0.1969 1.0000 -0.1005
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[9,] 1.0000 0.7156 -0.5455 -1.0000 0.6658 1.0000 -0.5762 0.8030

[10,] 0.0542 1.0000 -1.0000 -0.2744 0.0078 -0.1724 -0.1814 0.2557

[,9] [,10]

[1,] 0.1181 -0.7456

[2,] 0.6764 -0.6724

[3,] 1.0000 -0.1663

[4,] 0.6415 -0.0501

[5,] 1.0000 -0.3451

[6,] -0.0642 -0.6742

[7,] 1.0000 -0.4092

[8,] 0.2869 -0.5951

[9,] 0.7757 -0.0717

[10,] 0.4986 -0.2489

Call:

PBsampler(X = X, PE_1 = c(0.5, 0.5, rep(0, p - 2)), sig2_1 = 2,

lbd_1 = 0.5, niter = 10, type = "lasso")

Note that all the argument are stored in the output object.

R> str(PBsample)

List of 14

$ beta : num [1:10, 1:10] 0.914 0.745 0.185 0.145 0 ...

$ subgrad: num [1:10, 1:10] 1 1 1 1 0.232 ...

$ X : num [1:5, 1:10] -2.1022 -0.0422 -0.4048 -0.1128 1.7971 ...

$ PE : num [1:10] 0.5 0.5 0 0 0 0 0 0 0 0

$ sig2 : num 2

$ lbd : num 0.5

$ weights: num [1:10] 1 1 1 1 1 1 1 1 1 1

$ group : int [1:10] 1 2 3 4 5 6 7 8 9 10

$ type : chr "lasso"

$ PEtype : chr "coeff"
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Figure 4.1: log(CV) of the p-value estimator, when the samples were directly drawn from the
target distribution. The sample size, N , is set to 1k. The x-axis represents the true p-value
while the y-axis shows the log(CV) of the p̂. The x-axis of the right figure is in log-scale.

$ Btype : chr "gaussian"

$ Y : NULL

$ mixture: logi FALSE

$ call : language PBsampler(X = X, PE_1 = c(0.5, 0.5, rep(0, p - 2)),

sig2_1 = 2, lbd_1 = 0.5, niter = 10, type = "lasso")

- attr(*, "class")= chr "PB"

4.2.3 Importance Sampler

Computing accurate p-value often picks an attention from many scientific studies. Although, using a

simple bootstrap method to draw samples from the target distribution directly, call Direct Sampler,

is one way to estimate the p-value, when the actual p-value approaches to zero, the estimator from

Direct Sampler gets extremely unstable. Figure 4.1 illustrates how the coefficient of variation for

the estimated p-value, CV (p̂), gets changed by the true p-value. For example, when the true p-value

gets smaller than 10−10, CV gets bigger than 8. For such cases when the estimator gets unstable,

importance sampling can be a good remedy. See Section 3.3.2 for how importance sampler is

constructed.

Sampling from a proposal distribution can be done via PBsampler, and let {(b(t), s(t))}1:N be

the bootstrap samples generated by PBsampler, where N is the total number of samples. Then the
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importance weight ωt can be computed as

ωt ==
π(b(t), s(t); µ̃target, σ̂

2
target, λtarget)

π(b(t), s(t); µ̃proposal, σ̂
2
proposal, λproposal)

using the function hdIS, which can be called as follows:

R> hdIS(PBsample, PETarget, sig2Target, lbdTarget, TsA.method = "default",

+ log = FALSE, parallel = FALSE, ncores = 2L)

PBsample is an ouput from PBsampler which contains samples from a proposal distribution. Pa-

rameters of the proposal distribution (µ̃proposal,σ̂
2
proposal, λproposal) is automatically supplied by

PBsample. Thus, users just need to supply parameters of the target distribution (µ̃target, σ̂
2
target,

λtarget) with PETarget, sig2Target, lbdTarget. Note that if one sets PEtype = "coeff" when

he or she runs PBsampler, PETarget in hdIS needs to be β̃target instead of µ̃target. Again, using

the same λ for both the target and the proposal distribution accelerates the computational speed.

Set log = TRUE for the log scale. See Section 3.3.3 and 3.3.4 for examples.

Let us compute importance weights ωt using the PBsampler result from Section 4.2.2. Assume

that the parameters of the proposal distribution are (β̃ = (0, . . . , 0), σ̂2 = 1, λ = 0.5). Then one

can compute importance weights as follows:

> hdIS(PBsample = PBsample, PETarget = rep(0,p), sig2Target = 1,

+ lbdTarget = .5)

[1] 1.874710e-06 9.031988e-06 2.728438e-03 1.633381e+00 3.555004e-02

[6] 1.102515e-04 5.982556e-03 3.443649e-01 6.466466e-02 1.223156e-02

4.2.4 Metropolis Hastings sampler for lasso estimator

MHLS is a Metropolis Hastings sampler which draws lasso estimator β̂ and its subgradient S condi-

tioned on the lasso selection event, i.e. supp(β̂) = A, given point estimates µ0, σ, and λ. The main

function can be called as follows:

R> MHLS(X, PE, sig2, lbd, weights = rep(1, ncol(X)), B0, S0,

+ A = which(B0 != 0), tau = rep(1, ncol(X)), niter = 2000, burnin = 0,
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+ PEtype = "coeff", updateS.itv = 1, verbose = FALSE, ...)

As in PBsampler, MHLS requires users to provide PE, sig2, lbd, weights, and PEtype. B0

and S0 are the initial values of β̂ and S. Supplying S0 is optional and if it is not provided

by the user, limSolve package is used to randomly generate S0 from its feasible reason. The

suggested initial values are the output of lassoFit. By doing so, Markov chain starts from the

stationary distribution and thus no burn-in period is required. niter and burnin control the

number of iteration and the burn-in period, respectively. tau controls the standard deviation

of proposal distributions. The i-th component of tau corresponds to the standard deviation of

proposal distribution for β̂i. The detailed algorithm is introduced in Section 2.3.2 Algorithm 3.

The output of MHLS is a S3 class MHLS. The generics functions such as print, summary, and

plot are defined. The same example dataset is used to demonetrate MHLS.

R> MHresult <- MHLS(X = X, PE = lassoEst$B0, sig2 = 1, lbd = 0.5, B0 = lassoEst$B0,

+ S0 = lassoEst$S0, tau = rep(1,p)/2, niter = 5000, burnin = 0)

Last 10 steps of beta’s:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.2355 0 0 0 0 0 0 0.9562 0 0.1095

[2,] 1.4737 0 0 0 0 0 0 0.8126 0 0.1095

[3,] 1.4737 0 0 0 0 0 0 0.9708 0 0.1230

[4,] 1.4737 0 0 0 0 0 0 0.9708 0 0.1230

[5,] 1.0814 0 0 0 0 0 0 0.9708 0 0.0204

[6,] 1.3636 0 0 0 0 0 0 0.9708 0 0.0204

[7,] 0.5316 0 0 0 0 0 0 0.8421 0 0.0204

[8,] 0.9389 0 0 0 0 0 0 0.7380 0 0.0204

[9,] 0.9389 0 0 0 0 0 0 0.7380 0 0.0204

[10,] 0.9389 0 0 0 0 0 0 0.4246 0 0.0204

last 10 steps of subgradients:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0.7587 -0.0200 -0.0608 0.1226 0.7119 0.9429 1 0.6521 1

[2,] 1 0.5173 -0.0120 -0.2241 0.1053 0.9948 0.5862 1 0.2101 1
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[3,] 1 0.5321 0.0273 -0.1079 0.0904 0.9372 0.5970 1 0.2553 1

[4,] 1 0.7229 -0.0273 -0.1079 0.1234 0.7625 0.8924 1 0.5827 1

[5,] 1 0.7329 -0.0487 -0.1574 0.1325 0.7721 0.9129 1 0.5912 1

[6,] 1 0.5840 0.0150 -0.1010 0.0984 0.8871 0.6766 1 0.3455 1

[7,] 1 0.3827 0.1594 0.1310 0.0289 0.9837 0.3408 1 0.0400 1

[8,] 1 0.6790 0.2088 0.4894 0.0266 0.5767 0.7622 1 0.6095 1

[9,] 1 0.4296 0.1870 0.2405 0.0207 0.8993 0.4020 1 0.1392 1

[10,] 1 0.7241 0.2302 0.5811 0.0207 0.5008 0.8223 1 0.7024 1

Acceptance rate:

-----------------------------

beta subgrad

# Accepted : 7565 9273

# Moved : 14997 9998

Acceptance rate : 0.504 0.927

Call:

MHLS(X = X, PE = lassoEst$B0, sig2 = 1, lbd = 0.5, B0 = lassoEst$B0,

S0 = lassoEst$S0, tau = rep(1, p)/2, niter = 5000, burnin = 0)

R> summary(MHresult)

$beta

mean median s.d 2.5% 97.5%

[1,] 0.7589649 0.7557742 0.3299982 0.13019733 1.4244766

[2,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[3,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[4,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[5,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[6,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[7,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000

[8,] 0.3069249 0.2600379 0.2298273 0.01167645 0.8421297

[9,] 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000
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[10,] 0.4015329 0.3496764 0.3033251 0.01424487 1.0969511

$subgradient

mean median s.d 2.5% 97.5%

[1,] 1.00000000 0.999999997 0.00000000 1.0000000 1.0000000

[2,] 0.51375213 0.532814981 0.18826983 0.1296041 0.8007815

[3,] 0.22458260 0.236729660 0.17797797 -0.1441359 0.5203479

[4,] 0.40521747 0.457410200 0.39274421 -0.4399964 0.9720213

[5,] 0.01060764 0.008077449 0.07892967 -0.1280815 0.1700554

[6,] 0.75990969 0.790217581 0.16925422 0.3893181 0.9900324

[7,] 0.51511813 0.547742320 0.31208919 -0.1256632 0.9756543

[8,] 0.99999997 0.999999974 0.00000000 1.0000000 1.0000000

[9,] 0.31167853 0.328255227 0.29859184 -0.2712799 0.8317186

[10,] 1.00000000 1.000000000 0.00000000 1.0000000 1.0000000

attr(,"class")

[1] "summary.MHLS"

R> plot(MHresult, index = 1, skipS = TRUE)

print.MHLS provides an overview of samples. It shows the last 10 steps of sampled β̂ and S

with thier acceptance rates. summary.MHLS summarizes the mean, the median, 2.5% and 97.5%

quantiles, and the standard deviation of each β̂i and each Si for i ∈ Np. plot.MHLS provides the

histogram, the path-plot, the autocorrelation plot for each β̂i and each Si for i ∈ Np. Users can

suppress plots for Si by skipS=FALSE. Also By specifying the variable index through index, one

can choose which β̂i and/or Si to plot. See Figure 2.4 for example plots generated by plot.MHLS.
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4.3 Inference

4.3.1 Confidence interval via parametric bootstrap

After drawing samplers with PBsampler, consider constructing confidence intervals for β0,j for

j ∈ Np. Denoted bootstrap samples by {(b(t), s(t))}Nt=1, where N is the number of iteration. Two

ways of constructing confidence intervals is considered in here. The first way is to construct 1− α

confidence intervals in a naive way. In other words, α/2 and 1− α/2 quantiles of {bi}Nt=1 for each

i ∈ A are computed respectively.

The second method is constructing de-biased confidence intervals as in (3.4). Define the de-

biased lasso samples by

b̂(t) = b(t) + λΘ̂Ws(t),

where Θ̂ is computed by hdi package. Then quantiles are computed to construct confidence intervals

as in Algorithm 6.

Algorithm 6 (Constructing de-biased confidence intervals).

1. Draw
{

(b(t), s(t))
}N
t=1

using PBsampler.

2. Plug in (b(t), s(t)) in place of (β̂, S) in (3.4) to compute the de-biased estimates {b̂(t)}Nt=1.

3. Construct a (1−α) confidence interval of β0,j with (qj,α/2, qj,1−α/2), where qj,γ is a γ quantile

of {b̂(t)j }Nt=1.

These two ways of constructing confidence intervals are implemented in the function PB.CI

which can be called as follows:

R> PB.CI(object, alpha = 0.05, method = "debias", parallel = FALSE,

+ ncores = 2L)

object is bootstrap samples drawn by PBsampler. alpha is the significance level which is set to

0.05 by default. method controls which method to use to construct confidence intervals. By default,

method is set to "debias" but users can change into "naive" to construct confidence intervals in

a naive way. See the following code for an example.
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R> PB.CI(object = PBsample, alpha = 0.05, CImethod = "naive")

2.5% 97.5%

beta1 0.0000000 1.1868432

beta2 0.0000000 0.9899032

beta3 -0.1964871 0.0000000

beta4 -0.4057522 0.4369896

beta5 -0.9993455 1.5169751

beta6 0.0000000 0.1426440

beta7 0.0000000 0.4300718

beta8 0.0000000 0.0000000

beta9 0.0000000 0.7944642

beta10 0.0000000 0.0000000

4.3.2 Post-selection inference

Algorithm 1 and 2 are implemented in postInference.MHLS so that one can easily construct

confidence sets or confidence intervals of (X+
Aµ0)B for B ⊂ A, where the active set A is selected

via lasso. The function can be called as follows:

R> postInference.MHLS(LassoEst, Ctype = "CI", X, Y, sig2.hat, tau = rep(1,

+ ncol(X)), alpha = 0.05, MHsamples, target = which(LassoEst$B0 != 0),

+ nChain = 10, Rmethod = "coeff", niterPerChain = 500, parallel = FALSE,

+ ncores = 2L, returnSamples = FALSE, ...)

It takes lasso output generated by lassoFit as an input argument LassoEst so that it can

collect all the necessary information from lassoFit. Ctype can be either "CI" or "CS" which stand

for confidence intervals and confidence sets, respectively. If Ctype = "CI", Algorithm 1 is used to

construct confidence intervals of [X+
Aµ0]j for j ∈ N|A|. Otherwise, a confidence set is constructed

by Algorithm 2. In this case, with target argument users can specify the subset of A of which

they want to construct a confidence set. By default, target is set to A so that it constructs a

confidence set of X+
Aµ0. Rmethod controls which method to use to construct Ĉ, a confidence set of

µ0. By letting Rmethod = "coeff", I build Ĉ with the center PAy. If Rmethod = "mu", Ĉ is built

by two-step method by Zhou et al. (2019). See Section 2.2.3 for more detail.
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Since Metropolis Hastings sampler is used to draw samples to construct confidence intervals

or confidence sets, it can be time-consuming if one wants to construct, say, another confidence

set with different choice of target but with the same dataset. In such way, during the first run,

users can set returnSamples = TRUE which makes the output to include samples generated by

Metropolis Hastings sampler. Then those samples can be supply back to postInfernece.MHLS

under MHsamplers argument so that sampling step can be omitted. See the example code below to

ease the understanding. In the example, first, the confidence intervals for post-selection estimators

(X+
Aµ0)j for j ∈ A is constructed and samples are saved with returnSamples = TRUE. Then using

the same MH samples, the confidence set for X+
Aµ0 is constructed.

R> P1 <- postInference.MHLS(LassoEst= lassoEst, X = X, Y = Y, sig2.hat = 1,

+ alpha = .05, nChain = 3, niterPerChain = 20, parallel = parallel,

+ returnSamples = TRUE)

> P1$confidenceInterval

$Coeff

[1] 1.1752132 -0.6126123 2.1886790

$CI

Var LowerBound UpperBound

1 -0.2554922 2.0876358

8 -1.4820561 -0.6126123

10 0.6373363 3.0850577

R> postInference.MHLS(LassoEst = lassoEst, MHsamples = P1$MHsamples,

+ Ctype = "CS", target = which(lassoEst$B0 != 0), X = X, Y = Y)

$confidenceSet

$confidenceSet$Target

[1] 1 8 10

$confidenceSet$Center

[1] 1.1752132 -0.6126123 2.1886790
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$confidenceSet$l2_Radius

97.5%

1.673057

$call

postInference.MHLS(LassoEst = lassoEst, Ctype = "CS", X = X,

Y = Y, MHsamples = P1$MHsamples, target = which(lassoEst$B0 !=

0))

4.4 Prostate cancer data example

In this section, the prostate cancer data is used to demonstrate my package which is available from

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data. The same

data set was used in Chatterjee and Lahiri (2011), Tibshirani et al. (2016) and Liu et al. (2018).

The response variable y is log(prostate specific antigen) (lpsa). The rest of the variables except

train are used as explanatory variables, X. The number of samples n is 97 and the number of

explanatory variables p is 8.

After loading the data, Guassian quantile transformation is used on each Xi for i ∈ N8. Then

each Xi and y are centered and scaled so that they have the mean 0 and the standard deviation 1.

R> Data <- read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/

+ datasets/prostate.data", sep="\t", header = TRUE, row.names = 1)

R> y <- Data$lpsa

R> x <- as.matrix(Data[,1:8])

R> n <- nrow(x)

R> p <- ncol(x)

R> y <- (y - mean(y)) / sd(y)

R> x <- apply(x,2, function(x) qnorm(rank(x) / (n+1)))

R> x <- apply(x,2, function(x) (x-mean(x))/sd(x))

First the lasso estimator is fitted using λ chosen by cross-validation with one standard error rule.

R> lassoEst <- lassoFit(x,y,type = "lasso",lbd = "cv.1se")

88

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data


R> lassoEst

$B0

[1] 0.47102520 0.12280336 0.00000000 0.00000000 0.11694123 0.00000000 0.00000000

[8] 0.01127849

$S0

[1] 1.0000000 1.0000000 0.1946447 0.7234005 1.0000000 0.8031447 0.8608784

[8] 1.0000000

$lbd

[1] 0.160958

$weights

[1] 1 1 1 1 1 1 1 1

$group

[1] 1 2 3 4 5 6 7 8

Note that weight and group is set by 1p and Np by default. λ chosen by one standard error rule

is 0.161. The output shows that the active set A is {1, 2, 5, 8} which corresponds to log of cancer

volume (lcavol), log of prostate weight (lweight), seminal vesicle invasion (svi), and percentage

Gleason scores 4 or 5 (pgg45), respectively.

Consider testing the significance of [X+
Aµ0]j for j ∈ N|A|. Since the selection procedure was done

using the same dataset, the confidence interval should be generated under the selection condition

A = A. With 95% confidence level, it turns out that the first variable (lcavol) is significant while

every other one is not significant.

R> postInference.MHLS(LassoEst = lassoEst, X=x, Y=y, sig2.hat = 1,

+ Rmethod = "coeff", nChain = 20, niterPerChain = 500, tau = rep(1,p)/4,

+ parallel = TRUE, ncores = 10)

$confidenceInterval

$confidenceInterval$Coeff
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[1] 0.5118173 0.2494862 0.1935013 0.1016934

$confidenceInterval$CI

Var LowerBound UpperBound

1 0.06297174 0.9723036

2 -0.07152630 0.7988247

5 -0.27717815 0.3088623

8 -0.41410973 0.6845259

$call

postInference.MHLS(LassoEst = lassoEst, X = x, Y = y, sig2.hat = 1,

tau = rep(1, p)/4, nChain = 20, Rmethod = "coeff", niterPerChain = 500,

parallel = TRUE, ncores = 10)

Ignoring the fact that the selection procedure was done with the same dataset, if one just decide

to construct the confidence intervals of [X+
Aµ0]j for j ∈ N|A| using least squares, the result gets

different. Below is the confidence intervals from the least squares. For a fair comparison, assume

that σ2 = 1 is known.

R> A <- which(lassoEst$B0 != 0)

R> lmFit <- lm(y~x[,A]+0)

R> sig2 <- 1

R> cbind(coef(lmFit) - qnorm(0.975)*sqrt(diag(sig2 * solve(t(x[,A])%*%x[,A]))),

+ coef(lmFit) + qnorm(0.975)*sqrt(diag(sig2 * solve(t(x[,A])%*%x[,A]))))

[,1] [,2]

x[, A]lcavol 0.25355018 0.7700845

x[, A]lweight 0.04060231 0.4583700

x[, A]svi -0.05763687 0.4446395

x[, A]pgg45 -0.13564586 0.3390327

The least squares confidence intervals are a lot shorter and consequently make lcavol and

lweight significant.
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CHAPTER 5

Summary and Discussion

The dissertation focused on high-dimensional data and proposed a new inference method which

can generates confidence intervals and confidence sets given the lasso selection event using methods

of estimator augmentation by Zhou (2014). Bootstrap is not a practical method to sample from

[y | A(y) = A] due to the tiny probability of the target event. My Metropolis-Hastings algorithm

enables drawing samples from [y | A(y) = A] which gives a great flexibility to study inference.

Consequently, beyond generating confidence intervals of post-selection estimators, it could also

generate confidence sets of the post-selection estimators. With other pre-existing methods, the

only way to construct confidence sets is to use the Cartesian product of individual confidence

intervals. Confidence intervals generated by my method met desired coverage rates with shorter

length compared to those by Lee’s method (Lee et al., 2016). Also my confidence sets showed better

efficiency in terms of volume when they were compared to the Cartesian product of confidence

intervals by Lee’s method. I then presented some works to advocate advantages of using group

structure in studying high-dimensional inference with strong numerical results. Lastly, I have

developed an R pacakge EAinference to facilitate applying my methods which mainly relate to

estimator augmentation in lasso, group lasso, scaled lasso, and scaled group lasso estimator.

Few possible future works can include an inference method of the post-selection estimators

when the variables are selected via group lasso. As discussed in Chapter 3, grouping variables

has advantages on dealing with disruption caused by high-correlation or when individual signal

strength is not strong enough to detect. Therefore, quantifying uncertainty of each group given

the selection procedure can be one interesting topic. Also, instead of focusing on the conditional

distribution [β̂A, S,A | A = A], one can focus on more general cases. One way is separating the

active set into strong signals and the weak signals which may improve the performance of my

proposed method of constructing confidence intervals and sets. The similar idea was used in Liu

et al. (2018). Also in EAinference package, Metropolis Hastings algorithm was coded in R. By
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switching into C++ code, a significant increase in computational speed can be expected. Due to

the complicated constraints imposed on the subgradient of the group lasso estimator, developing a

MCMC sampler under the fixed active set for group lasso is a very challenging but an interesting

future topic. Lastly, providing rigorous proof
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