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Abstract

Evaluating linguistic knowledge in neural networks

by

Geoffrey I Bacon

Doctor of Philosophy in Linguistics

University of California, Berkeley

Professor Terry Regier, Chair

Where does knowledge of language come from? How, for example, do speakers learn the
meanings of words or the restrictions on their co-occurrences? This age-old question has age-
old answers, from the necessity of direct sensory experience of the world to the existence of an
innate language faculty. Recently, neural networks trained on distributional data have proven
enormously successful in applied natural language processing tasks, suggesting that they
acquire substantial knowledge of language. This dissertation examines what neural networks
learn about language. Specifically, I present four studies that characterize the phonological,
morphosyntactic and semantic knowledge of neural networks across more than 80 languages.
The first of these focuses on phonological features and I show that distributional data of
modest size is sufficient to induce human-like phoneme representations using standard neural
architectures. The second uses agreement relations as a means of assessing sensitivity to
structure dependence in a state-of-the-art model. Using a new cross-linguistic dataset of four
types of agreement relations, I demonstrate that the model does capture syntax-sensitive
agreement patterns well in general, but I also highlight the specific linguistic contexts in
which its performance degrades. The third study looks at the lexical semantics of visual
concepts in two domains, comparing neural models to both sighted and blind speakers’
representations. These analyses show that some human-like knowledge is captured, but
that the more nuanced structures of the domains are not. Taken together, these first three
studies argue that neural networks trained on distributional data are largely accurate yet
imperfect models of language. The final study of this dissertation suggests a way forward.
In this study, I show that the semantic typology of tense systems is well explained by a
domain-general pressure for communicative efficiency and suggest that this same principle
is an appropriate inductive bias for neural networks, which may lead to developing more
human-like computational models of language.
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Chapter 1

Introduction

1.1 Motivation

Where does knowledge of language come from? Speakers of all languages have nuanced
and productive knowledge of linguistic objects and phenomena, despite receiving noisy and
impoverished data while learning. How, for example, do German children learn that the
underlying /g/ in Tag devoices word-finally? How do children learning Arabic come to
know that a house is kabiir but a library is kabiira? What makes English-speaking children
realize that twinkling and glinting are much less intense than blazing and glaring? These are
questions about language acquisition, and they have consistently been central to the field of
linguistics for decades (Chomsky, 1965).

In parallel developments during the last decade, deep learning has proven enormously suc-
cessful in applied natural language processing tasks, such as machine translation (Sutskever
et al., 2014; Johnson et al., 2019), question answering (Raffel et al., 2019) and sentiment
analysis (Yang et al., 2019). Deep neural networks have consistently improved the state of
the art to the point today that practical applications such as Google Translate are accurate
enough to be widely useful in commercial settings (Wu et al., 2016). Not only can neural
networks generate grammatically valid sentences, but they can also produce semantically
consistent and coherent multi-sentence paragraphs (Radford et al., 2019).

These applied tasks all require extensive linguistic abilities. The impressive performance
of neural networks suggests that they acquire robust linguistic knowledge, much like chil-
dren do (Linzen and Baroni, 2020). While their practical success is encouraging, it must not
be overstated. Performing well on applied benchmark tasks does not necessitate that the
model has obtained substantial linguistic competence (Niven and Kao, 2019; Warstadt et al.,
2019). It is possible that models learn heuristics that work well in common grammatically
simple examples but will not extend to more challenging examples (Linzen et al., 2016).
Understanding whether neural networks genuinely do acquire substantial knowledge of lan-
guage, or whether they are merely modeling complex co-occurrence statistics, is currently
an important question for the field of natural language processing (Linzen et al., 2019).
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This dissertation examines what modern neural networks learn about language, as a way
of shedding new light on old questions about language acquisition. Concretely, I present
three studies that characterize the phonological, morphosyntactic and semantic knowledge
of neural networks across more than 80 languages. Taken together, these three studies
reveal aspects of linguistic competence that are well modelled by neural networks, as well
as those that are not. In the fourth and final study of this dissertation, I suggest a way
forward for developing more accurate neural models of language. Specifically, I show that
a domain-general drive for efficient communication accounts for the semantic typology of
tense systems. Just as generativist theories of language are guided by typological concerns,
I suggest that incorporating typological concerns into neural models may lead to developing
more human-like computational models of language.

The present chapter provides an overview of the conceptual and technical background of
the ideas in this dissertation, as well as a survey of what is already known about them. In
the next section, I present the core ideas behind neural network models of language. The
subsequent section is a literature review on the topic of what neural models learn about
language. The chapter ends with an outline of the four studies in this dissertation.

1.2 Neural networks

Overview

Neural networks are the objects of study in this dissertation. This section briefly describes
the core ideas behind neural models for readers who are not already familiar with them. It
may safely be skipped by those who are.

Neural networks are a class of machine learning models loosely inspired by biological
brains (Goodfellow et al., 2016). As in organic brains, neural networks are graphs of indi-
vidual computational units called “neurons”. Artificial neurons are significantly simplified
mathematical models of their biological counterparts (McCulloch and Pitts, 1943). An ex-
ample of an artificial neuron is illustrated in Figure 1.1. A neuron receives n scalar inputs
(in Figure 1.1, n = 3), each input i being scaled by its associated weight wi. The neuron
computes the weighted sum of its inputs

y = f(w · x) (1.1)

and passes the result through a nonlinear function f to produce its final output y. In
vectorized notation, the neuron computes the function above. The function f is called the
activation function. Common choices for the activation function are sigmoid, tanh and
Rectified Linear Unit (ReLU) (Goodfellow et al., 2016). These three activation functions are
displayed in Figure 1.2.

While neurons compute extremely simple functions, the power of neural networks comes
from interconnecting large numbers of neurons. In modern neural networks, hundreds or
thousands of neurons are connected in parallel to form a layer of neurons. Layers are the
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x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Inputs

Figure 1.1: Illustration of an artificial neuron. This neuron has three inputs (x1, x2 and x3)
and produces one output (y). The inputs are multiplied by their associated weights
(w1, w2 and w3), summed, and passed through a nonlinear activation function f to pro-
duce the output. The weights are the parameters of the neuron. Neural networks consist of
many of these simple computing units connected together.

Figure 1.2: Graphs of sigmoid, tanh and ReLU for −3 ≤ x ≤ 3. These three functions are
commonly used as the activation function in an artificial neuron.
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A B C

1

2

3

4

5

Figure 1.3: Illustration of a neural network with three layers of neurons. Layers are collec-
tions of neurons and form the building blocks of modern neural networks.

level of abstraction at which models are designed, implemented and evaluated. An example
of a network with three layers (labelled A, B and C) is given in Figure 1.3. Each neuron i
in layer B receives the same input x but has its own weights wi and thus produces a unique
yi. Representing all the outputs as the vector Y , all the weights as the matrix W and all
the inputs as the vector X, we can express the hidden layer’s computation as Equation 1.2,
analogous to Equation 1.1. The layers of a network are connected together, with the outputs
of one layer becoming the inputs to the next. In Figure 1.3, the output of layer A forms the
input to layer B whose output in turn forms the input of layer C.

Y = f(WX) (1.2)

The science and engineering of modern neural networks is often referred to as “deep
learning” because the networks contain multiple layers, making them deep. This is illustrated
in Figure 1.4. Layers that do not interact directly with the world (i.e. layers in the middle
of the network that are only directly connected to other layers in the network) are called
hidden layers. Importantly, hidden layers serve to learn useful intermediate representations
of the inputs. Theoretical and empirical results demonstrate that deep networks are highly
successful because of their ability to learn intermediate representations in the hidden layers
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Figure 1.4: Illustration of a deep neural network. A deep neural network is composed of
many interconnected layers of neurons. The outputs of one layer become the inputs of the
next layer.

(Leshno et al., 1993). Indeed, sufficiently large neural networks are able to approximate
arbitrarily complex functions (Cybenko, 1989; Hornik et al., 1989).

The many types of layers as well as the many different ways of connecting them together
lead to different designs, or “architectures”, of neural networks. I describe the specific neural
architectures studied in this dissertation in the relevant chapters. For a more comprehensive
introduction to modern neural networks, see Goodfellow et al. (2016) for a general discussion
and Goldberg (2017) for one specific to language. Linzen and Baroni (2020) and Pater (2019)
contain briefer introductions specifically intended for linguists.

Fundamental properties

There are three fundamental properties of neural language models that are relevant to the
arguments in this dissertation. The first is that neural networks embody the polar opposite
approach to generativist theories of linguistics. Generativist theories argue for the neces-
sity of a rich, innate and domain-specific knowledge of language (Universal Grammar) for
language acquisition (Chomsky, 2006; Hauser et al., 2002). In contrast, neural networks
are relatively naive and domain-general models (Linzen and Baroni, 2020; Bowman, 2016).
Despite their lack of prior knowledge of language, neural networks have enormous success on
tasks requiring considerable linguistic capabilities (Goldberg, 2017). The inductive biases of
modern neural network architectures are completely unlike those argued for by generative
linguistics (Linzen and Baroni, 2020). If it is shown that neural language models are truly
acquiring substantial knowledge of language despite their initial naiveté, then learnability
arguments about Universal Grammar will need to be re-visited.

A second core property of neural networks worth highlighting is their ability for represen-
tation learning. As mentioned above, neural models learn their own representations, both



CHAPTER 1. INTRODUCTION 6

of the input data and of higher-order compositions. They learn representations of words (or
phonemes) that are good at predicting their neighbors. Words that have similar neighbors
will have similar representations. As we will see in chapters 2 and 4, a prominent method of
understanding what neural networks learn about language is to inspect the representations
directly.

The third and final fundamental property to highlight is the nature of neural represen-
tations. Neural representations are the weights associated with a layer in a network and are
thus expressed as real-valued high-dimensional vectors. They are often called embeddings,
because they embed a word in a high-dimensional vector space. Typical embedding dimen-
sionalities are between 100 and 1000, which makes direct visualization impossible. Even
more challenging is the distributed nature of the representations. As opposed to localist rep-
resentations, in distributed representations information may be spread out across a number
of dimensions in an unknown way.

1.3 Neural networks’ knowledge of language

There is a growing interest in understanding the linguistic abilities of neural networks (Linzen
and Baroni, 2020). This section surveys a representative set of studies on this topic, high-
lighting major themes as well as identifying important gaps. I organize this survey around
what I consider to be two fundamental questions of the literature: i) why do we care what
neural networks learn about language? and ii) how can we measure what they learn about
language?

Why do we care what neural networks learn about language?

As mentioned above, understanding whether neural networks genuinely do acquire substan-
tial knowledge of language, or whether they are merely modeling complex co-occurrence
statistics, has received a lot of attention in the literature (Linzen et al., 2019). This atten-
tion is driven by both engineering and scientific concerns.

From the scientific point of view, there are three main motivations to understand the lin-
guistic capabilities of neural networks. The first concerns the foundational ideas of learnabil-
ity in linguistics. Chomskyan linguistics has long argued that rich, innate and domain-specific
knowledge of language is required for successful language acquisition Chomsky (1965); Ev-
eraert et al. (2015). However, as discussed in the previous section, neural networks are
domain-general learners with little to no prior knowledge of language. The bias they do have
is vastly different from those assumed by contemporary theories of linguistics. For example,
none of the models studied in this dissertation are constrained to hierarchical grammars. In-
deed, recurrent models are biased towards sequential grammars. If neural networks genuinely
learn human-like linguistic competence despite their lack of explicit a priori knowledge of
language, then we could conclude that such biases are not strictly necessary. Second, neural
network models of language can inform linguistic theory. Given their empirical success, it’s
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clear that they are constructing a reasonable model of human language that is supported by
so much data. What representations do such models find to be useful? Are there fine-grained
selectional restrictions that linguists haven’t discovered yet? Finally, at the same time that
deep learning is revolutionizing NLP, linguistics is experiencing a “transcription bottleneck”
(Arkhipov and Thieberger, 2018; Seifart et al., 2018). With the digital revolution, it is now
relatively easy not only to compile a large corpus but also to archive and make it publicly
available (Himmelmann, 2018). This is of great scientific and cultural importance, with
over half the world’s estimated 6,000 languages predicted to be extinct by the end of this
century (Evans, 2011). Although compiling such corpora is comparatively straightforward,
the next step in language documentation of annotating them with syntactic categories and
other grammatical metadata is a time-consuming and expensive task (Foley et al., 2018).
This asymmetry between the ease of collecting language resources and annotating them is
often described as the transcription bottleneck in linguistics. Modern NLP offers a partial
solution to linguistics’ transcription bottleneck.

From an engineering point of view, there are four related reasons for understanding what
neural networks learn about language. The first concerns the evaluation of neural network
models. We can evaluate models by how well they capture linguistic phenomena. The more
sensitive they are to known linguistic properties, the more confidence we can have that
they will generalize to data that differs from the peculiarities of the training set. Nuanced
evaluations also help compare models for their suitability in varying use cases. For example,
all else being equal, a model that tracks scope of negation well should be chosen for tasks such
as sentiment analysis over one that does not. Furthermore, given that neural language models
are a key component in many NLP tasks, such as speech recognition, part-of-speech tagging
and information extraction, defining useful metrics for language models yields benefits across
all downstream tasks. The second reason for understanding what neural networks learn about
language is in order to guide research into improving them. Having a more detailed picture of
what these models do and do not perform well is necessary for improving them in a principled
manner. The third reason is the general drive for interpretability in machine learning models
(Murdoch et al., 2019). Despite their success, the inner workings of neural networks are often
opaque to humans. As such models are increasingly used in real-world applications, many
argue that interpretability is a desirable property (Gilpin et al., 2018; Herman, 2017). This
is especially the case when implicit biases from the training data can be unintendedly picked
up by the model. For example, many neural network models show harmful biases towards
protected categories, such as gender and ethnicity. Better understanding how such models
represent gender can help to prevent against this harmful bias. Moreover, traditional features
of natural language processing models (such as part-of-speech tag) have now been replaced
with neural network components (He et al., 2017; Lee et al., 2017; Klein et al., 2017). This
strongly suggests that linguistic phenomena are being captured by these neural models, but
it is not clear what or how they do this. Despite their different goals, better understanding
what neural networks learn about language promises significant benefits to both scientific
and engineering communities.
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How do we measure what neural networks learn about language?

Given the various motivations for understanding the linguistic abilities of neural networks
discussed above, the next question is how can we understand them? A growing literature
on this topic has proposed many different methods and resources for analyzing and under-
standing neural network models of language (Belinkov and Glass, 2019; Lin et al., 2019).
The bulk of the methods fall into one of two categories: structural methods and behavioral
methods. Structural methods evaluate whether interpretable linguistic knowledge can be
identified somewhere within the model. For example, a structural analysis may conclude
that the grammatical feature gender is encoded in a subset of the dimensions of a model’s
word representations. Structural methods examine the internals of a model and presuppose
that they will be interpretable. In contrast, behavioral methods treat the model as a black
box and only examine the relationship between inputs and outputs to the model. Behavioral
methods test whether the model behaves as human speakers do. For instance, given the
phrase The keys to the cabinet, does the model agree with humans that the main verb must
be the plural are to match the subject keys, and not the singular is to match the more recent
cabinet (Linzen et al., 2016)?

Despite the growing efforts to understand what neural networks learn about language, as
well as the more recent interest in the methodology used to study this, there is no general
consensus on how to evaluate the linguistic capabilities of neural language models (Belinkov
and Glass, 2019). Both structural and behavioral methods have strengths and weaknesses.
Indeed, because of the shortcomings of individual analysis methods, Chrupa la et al. (2020)
and Warstadt et al. (2019) argue for a multi-pronged approach in which multiple methods
are used for evaluating the same linguistic phenomenon before any conclusions are drawn. In
this dissertation, I take such a multifaceted approach, using the methods most suited to the
phenomenon under study and the data available. In the remainder of this section, I survey
the literature on the main structural and behavioral methods.

The goal of structural methods is to quantify the extent to which linguistic knowledge is
captured by a model and to locate that knowledge within the network. In this way, structural
methods are analogous to psycholinguistic studies that relate brain activations to abstract
linguistic phenomena. By far the most common structural method is probing. Probing refers
to using the hidden layers of a neural network as features to predict a linguistic property
of interest. The extent to which the property can be predicted from the hidden layers is
intended as a measure of how well the neural model has captured that property.

For example, Conneau et al. (2017) obtained sentence representations from the hidden
layers of various neural models and trained probes to predict 10 linguistic features, including
the grammatical number of the subject and the tense of the main clause in English. They
concluded that the neural models did capture these properties well above strong baselines.
One limitation of probing is that although it is intended to evaluate only the neural network,
its results depend on both the network’s representations and the strength of the probe. To
address this, a common trend in the literature is to constrain the probe to be linear in an
attempt to reduce the dependence of the results on the probe. However, there is no a priori
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reason to expect the neural model to represent linguistic features in a linearly separable way.
Probing neural models in natural language processing dates back to at least 2016 (Ettinger
et al., 2016), although in early work it is also called diagnostic classification (Giulianelli
et al., 2018), auxiliary task prediction (Adi et al., 2017) and decoding (Belinkov and Glass,
2019).

The second most popular structural method is Representational Similarity Analysis
(Bouchacourt and Baroni, 2018; Chrupa la and Alishahi, 2019; Abnar et al., 2019, RSA).
RSA measures how correlated the neural model and human features are in similarity space.
As in probing, RSA begins by deriving representations of linguistic objects from the hidden
layers of the neural model under study. We then compute the similarities between these
representations, producing the similarity matrix for the model. We obtain an equivalent
similarity matrix using human judgements or ground truth features and compare the rela-
tionships between the two similarity matrices. For example, Chrupa la and Alishahi (2019)
use RSA-based methods to study the English syntactic information captured by various neu-
ral models. RSA is a technique from neuroscience that has been adopted from neuroscience
to study artificial neural networks (Kriegeskorte et al., 2008).

While structural methods seek to identify and locate interpretable linguistic phenomena
within a model, behavioral methods treat the model as a black box and analyze the relation-
ship between specific input/output pairs. In this way, behavioral methods are analogous to
how field linguists gather data, as they do not have access to a consultant’s brain (or mind)
states. In both behavioral methods and field linguistics, inputs are chosen that illustrate
a specific linguistic phenomenon, such as center embedding or filler-gap dependencies. The
outputs are interpreted as an indirect lens on the linguistic knowledge of the system. In the
case of field linguistics, the knowledge is taken as the ground truth around which we build
theories. In behavioral analysis of neural models, the knowledge is being measured against
how (we think) we know language works.

The most common behavioral method in the literature is the acceptability task, familiar
to linguists (Linzen et al., 2016; Marvin and Linzen, 2018). We begin with a dataset of
minimal pairs differing in their grammaticality. Using a neural language model, we obtain
the probabilities of the variants in each pair. If the model assigns a higher probability to
the grammatical variant, then it is said to have succeeded on that pair. For instance, Linzen
et al. (2016) study subject-verb agreement in English language models using the acceptability
task. They find that LSTM models perform well in grammatically simple examples, but show
decreasing performance as the examples become more challenging. For a detailed discussion
of the use of the acceptability task, as well as modifications to this setup, see Warstadt et al.
(2019).

1.4 This dissertation

This dissertation seeks to characterize the linguistic knowledge in neural networks trained
on distributional data. Each of the following four chapters describes core aspects of human
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language that neural networks must capture if they are to be successful models of language.
In Chapter 2, I investigate whether standard phonological representations can in principle be
learned from distributional data alone. In Chapter 3, I measure the extent to which a state-
of-the-art neural model captures syntactic agreement relations, a classic structure-dependent
phenomenon. Chapter 4 evaluates a range of models on their ability to accurately model
the lexical semantics of visual concepts. The overall picture from these first three projects
is that neural models are largely accurate yet imperfect models of language acquisition. In
Chapter 5, I suggest a direction for improving neural models by building in an inductive
bias for communicative efficiency. This final substantive chapter demonstrates that natural
language tense systems are well-explained by a drive for efficient communication and argues
that this result can inform future model development. Each of these four chapters represent
a novel contribution to the literature. In what remains of the present chapter, I briefly
summarize these four research projects and preview my findings.

Chapter 2: Learning phonological features from distributional
data

In modern phonological theory, phonemes are represented as bundles of discrete binary-
valued features, such as Continuant and Voice (Hayes, 2011b; Kenstowicz and Kisseberth,
2014). A core question in language acquisition research is how speakers come to possess
these featural representations. In this chapter, I ask whether such representations could
in principle be learned from distributional data alone. After training four types of neural
networks on phoneme corpora in 77 languages, I submit the learned representations to three
increasingly fine-grained analyses in order to measure their correspondence with human
representations. I show that the more powerful recurrent neural networks do learn human-
like representations, while a shallower neural model does not. The extent to which the
models match human representations is strongly correlated with the amount of training
data available. This finding provides evidence for the view that phonological features can
be acquired from distributional data and suggests that neural language models can acquire
substantial levels of linguistic knowledge.

Chapter 3: Evaluating knowledge of structure dependence
through agreement relations

Chapter 3 moves from the level of phonology to that of morphosyntax, demonstrating the
generality of the methods used in this dissertation. In recent years, learning general-purpose
sentence representations which accurately model sentential semantic content has become an
important goal of natural language processing research (Subramanian et al., 2018; Conneau
et al., 2017; Wieting et al., 2016; Kiros et al., 2015). A prominent and successful approach
is to pre-train neural networks to encode sentences into fixed length vectors (Conneau et al.,
2018; Nie et al., 2017). Many core linguistic phenomena that one would like to model in
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general-purpose sentence representations depend on syntactic structure (Chomsky, 1965; Ev-
eraert et al., 2015). Despite the fact that none of the neural models have explicit syntactic
structural representations, they perform exceedingly well on tasks requiring competence with
syntactic structure (Gulordava et al., 2018; McCoy et al., 2018; Linzen et al., 2016; Bowman
et al., 2015). The recently introduced Bidirectional Encoder Representations from Trans-
formers model (BERT, Devlin et al., 2018) is one such model. Goldberg (2019) performed
an experiment to assess BERT’s sensitivity to number agreement in English subject-verb
agreement relations. The results showed that BERT performed surprisingly well at this task
(above 80% accuracy in all experiments), even when there were multiple “distractors” in the
sentence (other nouns that differed from the subject in number). This suggests that BERT
is actually learning to approximate structure-dependent computation, and not simply rely-
ing on flawed heuristics. Building on Goldberg’s (2019) work, I expand the experiment to
33 languages and four types of agreement relations, which include more challenging exam-
ples. I replicate Goldberg’s (2019) result that BERT captures syntax-sensitive agreement
patterns well in general, but I also highlight an important qualification of this result. I show
that BERT’s ability to model syntax-sensitive agreement relations decreases slightly as the
dependency becomes longer range, and as the number of distractors increases.

Chapter 4: Distributional semantic representations of visual
concepts

Chapter 4 shifts the focus to lexical semantics, and in particular, the lexical semantics of
visual concepts. Early empiricist philosophers argued that word meanings must be acquired
through first-person sensory experience of the world. On this view, knowing what the word
sparkle means requires direct perceptual experience with sparkling stars and the like. Thus,
congenitally blind and sighted individuals should have different patterns of knowledge about
words referring to visual concepts. A contrasting view, however, emphasizes that much can
be learned about visual concepts indirectly, from non-visual sources such as language and
inference. For instance, hearing that “the fire glowed all night” could help listeners learn
about the temporal structure of the meaning of glow. This view predicts that the meanings
of words like sparkle or glow should be similar or even identical in blind and sighted speakers.

Bedny et al. (2019) tested these two views and found that blind and sighted speakers
have “indistinguishable” (p. 105) knowledge of visual concept verbs in English, including
fine-grained structure of the domain. Thus, in the absence of direct visual experience, de-
tailed knowledge of visual word meanings is still acquired. How do blind speakers learn
the meanings of these words? One possibility is that these meanings can be induced from
distributional information. In Chapter 4, I test this idea by comparing the representations
of both sighted and blind speakers to those of neural networks trained on distributional
data. If detailed knowledge of visual concept verbs is recoverable by distributional models,
then distributional information could be the source of blind and sighted speakers’ knowledge
of word meanings. If, however, distributional models do not induce human-like knowledge,
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then it seems likely that some other source is involved. I find that a substantial amount of
knowledge is recovered, but not all. This finding suggests that blind speakers’ knowledge of
visual concepts could come in part but not completely from the distributional information
in language use.

Chapter 5: Efficiency in tense systems

The previous three chapters all compared neural networks to human data directly, and
found an accurate yet imperfect correspondence between them. This suggests that existing
architectures trained on distributional data alone are insufficient for capturing human-like
knowledge of language. How can we improve neural models to better model human lin-
guistic competence? Generativist theories of language are strongly influenced by typological
concerns, and here I suggest that neural models should be too. To that end, Chapter 5
investigates the semantic typology of tense systems.

All languages have ways of expressing location in time, but they differ widely in their
grammatical tense systems. At the same time, there are tense systems that recur across
unrelated languages. What explains this wide but constrained variation? In this chapter,
we propose that tense systems are shaped by the need to support efficient communication–a
need that has recently been shown to explain cross-language semantic variation in other
domains. We test this proposal computationally against the tense systems of 64 diversely
sampled languages. We find that most languages in the sample support near-optimally
efficient communication. We argue that efficient communication may play an important role
in explaining why tense systems vary across languages in the ways they do. Incorporating
this same communicative pressure into neural models is a promising direction for developing
more human-like neural models of language.

Collectively, these studies are designed to evaluate and inform the development of human-
like neural models of language for both scientific and engineering goals. The findings pre-
sented here reinforce and elaborate on an emerging consensus on the shortcomings of models
trained on distributional data alone as well as suggest a productive direction forward.
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Chapter 2

Learning phonological features from
distributional data

Phonological theory often represents phonemes as bundles of discrete binary-valued features.
How could speakers come to possess these featural representations? Here, I ask whether such
representations could in principle be learned from distributional data alone. Specifically, I
examine whether four standard models of learning latent features from distributional data,
word2vec and three variants of recurrent neural networks, are capable of learning human-
like representations. Using data from 77 languages, I show that the more powerful recurrent
neural networks do learn human-like representations, while word2vec does not. The extent
to which the models match proposed human representations is strongly correlated with the
amount of training data available. This finding provides evidence for the view that phono-
logical features can be learned from distributional data and suggests that neural language
models can acquire substantial levels of linguistic knowledge.

2.1 Background

Since Jakobson (1941), the dominant representation of the phoneme has been a set of fea-
tures.1 Phonological theory often represents phonemes as bundles of discrete binary-valued
features (Bird, 2017; Duanmu, 2016; Moreton et al., 2015). This is illustrated in Table 2.1.
Although the names of these features often bear resemblance to phonetic features, these are
phonological features that describe how phonemes pattern together. Each feature groups
together a class of phonemes that behave in the same way with respect to the phonology
of the language. The fact that the segments /f/, /h/ and /k/ lack the Syllabic feature in
Table 2.1 tells us something about their phonological distribution, namely that they cannot
appear in the nucleus of a syllable, while /a/ can.

1Although related ideas are also present in Vachek and Trubetzkoy (1939). See Cohn (2011); Matthews
(2001); Anderson (1985); Halle (2005) for a comprehensive history of features in phonology.
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Syllabic Sonorant Consonantal Continuant . . .

f − − + +
h − + + +
k − − + −
a + + − +
. . .

Table 2.1: Standard phonological features, adapted from Hayes (2011a). These features
capture distributional properties of phonemes, not phonetic properties.

Feature charts like Table 2.1 are representations of some of the knowledge that speak-
ers have of their language. A natural question is, how do speakers come to possess this
knowledge?

Recently, arguments have been made that phonological representations can be learned
from the phonetic input (Mielke, 2008, 2005). In particular, Emergent Feature Theory
builds off existing work (Maye et al., 2002, 2008; Werker and Tees, 1984; Kuhl et al., 1992)
demonstrating that children’s sensitivity to frequency distributions of speech sounds in the
input language influences their speech perception. Lin and Mielke (2008) show how place
and manner features may be induced from phonetic input.

At least some phonological classes are phonetically unmotivated – perhaps many of them
(as argued in Mielke (2008)). Therefore, phonological features are either innate or, if they
are learnable, they must be in part learning from non-phonetic sources of input

While this approach may work for phonetically natural classes (such as place and manner
features), it will by definition not work for phonetically unnatural classes. At least some
phonological classes are phonetically unmotivated – perhaps many of them, as argued in
Mielke (2008). Therefore, phonological features are either innate or, if they are learnable,
they must be in part learning from non-phonetic sources of input

One such non-phonetic source that is readily available to learners is distributional data,
the co-occurrence patterns in sequences of phonemes. Concretely, consider the example in-
put /kæt/. In this example, learners have available to them the knowledge that /æ/ is the
kind of phoneme that can appear after /k/ and before /t/ in English. In this study, I inves-
tigate whether phonological features like those in Table 2.1 can in principle be learned from
distributional data. Concretely, I train neural networks on distributional data and evaluate
the correspondence of the learned representations to the standard feature representations
used in phonology. Before describing the models and data used in these experiments, I first
review some related prior work.
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2.2 Related work

At a broad level, research on the phonological knowledge of neural networks can be catego-
rized by the nature of the data on which the network was trained. In the first category, the
network is trained on an acoustic signal of speech. An example of this category is Nagamine
et al. (2015), in which structural methods were used to identify phonetic and phonological
features in the hidden layers of a speech recognition model. In a related study, Belinkov and
Glass (2017) probed a similar model for phoneme identity, finding that the lower hidden lay-
ers capture phonological information more than the higher layers. This result is supported
by consistent findings in Krug et al. (2018), Belinkov et al. (2019) and Chrupa la et al.
(2020). In another strand of work, Begus (2019) trained a network to successfully model the
allophonic distribution of aspiration in English voiceless stops. As discussed above, phonet-
ically motivated phonological classes, such as Voice, may be learnable from phonetic input,
but this source of data cannot account for classes that have been argued to be phonetically
unmotivated (see e.g. Mielke (2008, 2005)).

In the second category of research on phonological competence, the network is trained
on distributional data (i.e. sequences of phonemes). The present study falls with this cate-
gory, with the closest existing work being Silfverberg, Mao and Hulden (2018). Silfverberg
et al. (2018) studied the representations learned by neural networks using Representational
Similarity Analysis to assess how well they align with phonological features. They found
a statistically significant correlation between the learned representations and the featural
representations of phonological theory, concluding that some but not all phonological fea-
tures were partially captured in some models. These experiments were performed on Finnish,
Spanish and Turkish data using the orthographic representations as a proxy to the phonology.
In this study, I massively extend these experiments to 77 languages and use IPA represen-
tations. This study differs from Silfverberg et al. (2018) in the use of IPA representations
and the increased range of languages examined.

The remainder of the chapter is structured as follows. Section 2.3 outlines the specific
neural models under study, while Section 2.4 describes the distributional data used to train
them. In Section 2.5, I describe the experimental methods followed by their results in Section
2.6, while I discuss the broader implications of these results in Section 2.7.

2.3 Models

To model the learning process, I use four standard models of learning from distributional
data: word2vec (Mikolov et al., 2013a) and three variants of recurrent neural networks (RNN)
(Elman, 1990b). The RNN variants studied here are Simple Recurrent Networks (SRN)
(Elman, 1990a), Long Short-Term Memory networks (LSTM) (Hochreiter and Schmidhuber,
1997), and Gated Recurrent Units (GRU) (Chung et al., 2014). While it is beyond the scope
of this dissertation to recap the details of these models, the interested reader can find them
in Goldberg (2017) and Jurafsky and Martin (2020). Despite their differences, all models
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considered here share the following abstractions that are the focus of this study. They
all have vector representations (also called embeddings) of phonemes of a fixed dimension.
Before being trained on a corpus, the representations and other parameters in the model
are randomly initialized, reflecting the absence of any prior knowledge about the lexicon or
grammar. The process of learning in these models is to continually update the representations
and other parameters to encode useful distributional information. Concretely, the goal of
these updates is to better predict neighboring phonemes. The predictions are probability
distributions over the phonemic inventory expressed as functions of the representations both
of the phonemes being predicted and their context. The chief difference among the models
is in the function used to perform the predictions. All code and data for this project are
available at https://github.com/geoffbacon/phonological-features.

2.4 Data

The models were trained on data collected using WikiPron (Lee et al. 2020). WikiPron
is an open-source tool for extracting pronunciation data from Wiktionary. Wiktionary is a
collaborative project that creates online dictionaries in many languages, all available under
a Creative Commons license. An excerpt from the English Wiktionary page on the word
“linguistics” is shown in Figure 2.1. Among other data fields, Wiktionary often contains
pronunciation data for each entry, represented in the IPA. WikiPron is a tool to scrape the
pronunciation data for each language in Wiktionary. As Wiktionary is a user-contributed
project, the available data changes over time as users add, remove and edit entries. This work
uses the May 2020 snapshot of the data, which contains over 1.7 million IPA transcriptions
across 165 languages.

https://github.com/geoffbacon/phonological-features
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Figure 2.1: Excerpt of the English Wiktionary page for the word “linguistics”. Wiktionary
contains community-contributed dictionaries across hundreds of languages and is available
online for free under a permissive license. Entries in Wiktionary contain many fields; most
relevant for this dissertation is the pronunciation field represented in IPA.

In addition to the evolving nature of the data, the fact that the data are community-
contributed results in several inconsistencies and varying quality. To correct for this, I map
all phonemes in a transcription that do not appear in the language’s inventory to the closest
phoneme that is in the inventory. I source the phonemic inventories from PHOIBLE Moran
and McCloy (2019), a cross-linguistic database of phonemic inventories. To measure phone-
mic distance, I use a weighted edit distance between featural representations in PanPhon
(Mortensen et al. 2016). This distance metric is an edit distance in which the cost of a
feature edit is weighted according to the features involved and their subjective variability.
As not every language in the WikiPron dataset had a corresponding phonemic inventory in
PHOIBLE, this work is restricted to the 77 languages that do have phonemic inventories
in PHOIBLE. An alternative approach to the inconsistent data quality would be to simply
remove unattested phonemes from the data. However, given how widespread unattested
phonemes are in the WikiPron data, this would involve removing over 50% of available data.
I create random splits for training, validation and test sets. The number of transcriptions
per language in the preprocessed WikiPron data are listed in Table 2.2.
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Language Train Validation Test

Mandarin 106186 13273 13273
Polish 55648 6956 6956
French 49053 6131 6131
English (UK) 48830 6103 6103
Spanish (Castilian) 47126 5890 5890
English (US) 44179 5522 5522
Catalan 43200 5400 5400
Spanish (Latin America) 37721 4715 4715
Finnish 37557 4694 4694
Bulgarian 30901 3862 3862
German 27758 3469 3469
Dutch 21629 2703 2703
Serbo-Croatian 21312 2664 2664
Thai 12891 1611 1611
Georgian 12626 1578 1578
Italian 9120 1140 1140
Portuguese (Brazil) 9048 1131 1131
Portuguese (Brazil) 8650 1081 1081
Icelandic 8486 1060 1060
Greek 7771 971 971
Hindi 7413 926 926
Irish 5625 703 703
Welsh (South Wales) 4812 601 601
Arabic 4554 569 569
Galician 4311 538 538
Sanskrit 4150 518 518
Welsh (North Wales) 3978 497 497
Slovenian 3919 489 489
Burmese 3663 457 457
Luxembourgish 3590 448 448
Slovak 3340 417 417
Danish 3131 391 391
Farsi 3086 385 385
Czech 3071 383 383
Romanian 2847 355 355
Swedish 2781 347 347
Khmer 2714 339 339
Maltese 2275 284 284
Malay 2267 283 283
Assamese 1971 246 246
Norwegian 1827 228 228
Lower Sorbian 1734 216 216

(continued on next page)
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Language Train Validation Test

Turkish 1544 193 193
Faroese 1461 182 182
Tibetan 1460 182 182
Tagalog 1261 157 157
Tamil 1215 151 151
Indonesian 1155 144 144
Hebrew 1101 137 137
Albanian 1064 133 133
Kurdish 1036 129 129
Afrikaans 1031 128 128
Norwegian Nynorsk 1002 125 125
Kikuyu 983 122 122
Mongolian 918 114 114
Gaelic 820 102 102
Zulu 820 102 102
Norwegian Bokmål 819 102 102
Scots 766 95 95
Hijazi Arabic 675 84 84
Ligurian 670 83 83
Western Frisian 669 83 83
Urdu 582 72 72
Bengali 582 72 72
Breton 431 53 53
Hawaiian 396 49 49
Telegu 386 48 48
Gulf Arabic 386 48 48
Cebuano 240 30 30
Basque 204 25 25
Ukranian 174 21 21
Azerbaijani 158 19 19
Balinese 154 19 19

Table 2.2: Number of transcriptions per language in the preprocessed WikiPron data used
in this dissertation.
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2.5 Methods

All models are trained on the training data for each language. The RNN models were trained
under a language modeling objective, that is, they were trained to predict the upcoming
phoneme given a sequence of previous phonemes (see Jurafsky and Martin (2020) for more
details). The RNN models were trained with embedding sizes of 5, 10, 20 and 30 and hidden
state sizes of 5, 10, 20, 30 and 50. As discussed in Section 1.2, the embeddings are the
model’s representations of the phonemes, while the hidden state is one of the hidden layers
in the network. word2vec was trained with embedding sizes of 5, 10, 20 and 30 with window
size of 1, 2 and 3. The window size of word2vec controls how much context (i.e. number of
phonemes to the left and right) to take into consideration during training. The motivation
for training models of different embedding and window sizes is to ensure that any results
obtained are not specific to one set of hyperparameters. All models were trained for 10
epochs (i.e. 10 iterations through the training data). The complete specification of the
training procedure can be found in https://github.com/geoffbacon/phonological-features.
The learned representations of each model were then extracted for analysis.

My experimental methods are designed to measure how human-like the representations
learned by the neural models are. In particular, I am interested in three questions: i)
are the representations functionally equivalent to phonological features?, ii) are the repre-
sentations similar to phonological feature representations? and iii) are the representations
interpretable?

In my first analysis, I am interested in whether the representations learned by the neural
models perform the same function as feature representations, regardless of what they ac-
tually look like. To answer this question, I train RNN language models with the standard
phonological feature representations and compare their performance to RNN language mod-
els that learn their own representations. If the models that learn their own representations
perform similarly to those that use feature representations, then this would suggest that the
learned representations are “doing the job” of the feature representations. If however the
models with feature representations perform much better than the learnt models, this would
suggest the models are not learning functionally equivalent representations. As the measure
of performance, I use the standard metric for language models of perplexity on the test set.
Perplexity is a measure of how “surprised” a language model is to see the specific sequences
in the test set, and is inversely proportional to the probability it assigns to a sequence. For
a more thorough description of language models and perplexity, see (Jurafsky and Martin,
2020).

In my second analysis, I am interested in whether the learned representations as a whole
are similar to feature representations. To do this, I perform Representational Similarity
Analysis as in Silfverberg et al. (2018). Concretely, I compute dissimilarity matrices for
both learned representations and for feature representations. For the learned representations,
I use the standard measure of dissimilarity for embeddings, namely cosine distance. For
feature representations, I use the weighted edit distance between featural representations in
PanPhon (Mortensen et al. 2016) that was also used to preprocess the data (see Section

https://github.com/geoffbacon/phonological-features
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2.4). I then measure Pearson’s correlation r between the learned and feature representations.
This correlation between the two similarity spaces is a global measure of correspondence, or
how human-like the learned representations are. This analysis helps to discern whether the
models learn unhuman-like representations that still manage to support phoneme predictions,
or whether they learn more human-like representations.

In my final analysis, I are interested in the extent to which individual features (e.g.
such as Sonorant) are captured by the neural models. To measure this, I use QVEC-CCA
(Tsvetkov et al., 2016), a standard metric for the degree to which linguistic features are
captured in distributed representations. QVEC-CCA reports the correlation between a linear
transformation of the learned representations with the feature representations. It is thus a
measure how well the features are captured in the learned representations. As opposed
to the Representational Similarity Analysis of my second analysis, QVEC-CCA measures
the correspondence between individual features and dimensions of the embeddings. It is
possible for a set of embeddings to show close correpondence in similarity space to standard
feature representations (and thus perform well in my second analysis), yet not show close
correspondence with individual phonological features (and thus perform poorly on my third
analysis). Performing both analyses allows me to discriminate at a finer level than would be
possible using just one method.

2.6 Results

Overall, I find that RNN models show significantly closer correspondence to human repre-
sentations than word2vec, with little to distinguish between the three RNN variants. Across
all three analyses, I find that the amount of training data available in a language has a
strong influence on how human-like the learned representations are. Given enough data,
RNNs models learn quite human-like representations. With less training data, RNNs do not
learn human-like representations. For this reason, all results are reported as a function of
the training data size.

The primary result from the first analysis on functional equivalence is shown in Figure
2.2. This figure shows the difference in perplexity between models that use standard feature
representations and models that learn their own representations. A negative difference in
perplexity indicates that feature representations perform better than learned representations,
while a positive difference in perplexity indicates that learned representations perform better.
The X-axis measures the number of training data points available for that language. As
the figure shows, when there are small amounts of training data available, using feature
representations lead to lower perplexity. As the amount of training data increases, the benefit
in using feature representations decreases. In most cases with at least 10,000 training data
points, models that learn their own representations perform roughly as well or better than
models that use feature representations. This demonstrates that, provided there is sufficient
data, learned representations are functionally equivalent to feature representations.
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Figure 2.2: Difference in perplexity of models using standard feature representations com-
pared with learned representations as a function of training data size. Each point represents
one language. The Y-axis measures the averaged difference in perplexity between models
using feature representations and otherwise equal models learning their own representations.
The X-axis measures the number of data points in the training data. When there is small
amounts of training data available, using feature representations lead to lower perplexity. As
the amount of training data increases, the benefit in using feature representations decreases.

Figure 2.3 shows the same data but stratified by the dimensionality of the learned rep-
resentations. This figure demonstrates that the upward trend of Figure 2.2 is robust across
different embedding dimensionalities. Furthermore, the mean of the difference in perplexity
increases with the dimensionality. In the final panel of Figure 2.3, the mean is above 0.
This indicates that across all 77 languages in the data, RNN models with 30 dimensional
embeddings on average performed better than those with standard feature representations.
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Figure 2.3: Difference in perplexity of models using feature representations compared with
learned representations as a function of training data size, plotted by the dimensionality of
the learned embeddings. Each panel is identical to Figure 2.2 except restricted to the models
of a certain dimensionality. Each panel shows the same upward trend as Figure 2.2. The
horizontal red line indicates the mean of each panel, which also demonstrates an upward
trend across panels. In the final panel, the mean is above 0. This indicates that RNN
models that learn their own embeddings with 30 dimensions perform better than those that
use feature representations.
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Finally, Figure 2.4 stratifies the same data by the RNN variant. For both GRUs and
LSTMs, we observe the same upward trend, signifying that with enough data, they learn
representations that are functionally equivalent to feature representations. SRNs show a
weaker upward trend as seen in the bottom panel of Figure 2.4.

In Figure 2.5, I illustrate the primary result from my second analysis on similarity. This
figure demonstrates that for all three RNN variants, as more training data is available, the
correlation between learned and standard feature representations increases. This trend is
not the case for word2vec, in which the correlation with feature representations remains low
regardless of the amount of training data. With sufficient training data, RNN models, but
not word2vec, show a strong correlation (ρ ≈ 0.7) with feature representations.

Finally, Figure 2.6 shows the main result from my third analysis. As the results of my
second analysis showed that word2vec shows low correlation with feature representations in
similarity space, we restrict the third analysis to RNN models. I report the average QVEC-
CCA score across all RNN models within a language. As in the previous two analyses, we
see an upward trend; as more training data is available, the QVEC-CCA score increases.
Thus, as more training data is available, learned representations increasingly support the
extraction of features that directly match standard features, one to one.

2.7 Discussion

I asked whether the standard featural representations of phonemes could in principle be
learned from distributional information alone. To answer this question, I trained a range
of neural networks on sequences of phonemes and submitted the learned representations to
three analyses, designed to measure how human-like they are. Across all three analyses, I
found a strong effect of the amount of training data on my results. In languages in which few
training data points are available (fewer than 1,000 words), the neural models showed poor
correspondence with feature representations. As the amount of training data increased, so
did the three measures of “human-likeness”. This finding held for all three variants of RNNs,
but not word2vec, in which more training data did not yield more human-like representations.
With sufficient training data (more than 10,000 words), RNN models produced representa-
tions that were highly correlated with human representations and even proved more useful
in the language modeling objective than feature representations themselves. These analyses
show that reasonably human-like representations, of the kind standardly used in modern
phonology, can in principle be learned from distributional data using RNNs.
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Figure 2.4: Difference in perplexity of models using feature representations compared with
learned representations as a function of training data size, plotted for each RNN variant.
Each panel is identical to Figure 2.2 except restricted to one RNN variant. Each panel shows
the same upward trend as Figure 2.2. The horizontal red line indicates the mean of each
panel. GRUs and LSTMs show marked increases in performance as the training data size
increases.
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Figure 2.5: Correlation between similarity matrices of learned and feature representations as
a function of training size. Each point represents one of the 77 languages. As more training
data is available, the correlation increases for all three RNN variants, but not for word2vec.
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Figure 2.6: Mean QVEC-CCA score across all RNN models within a language, a global
measure of how well phonological features are captured in the learned representations. Each
point represents one of the 77 languages. With more training data, RNN models learned
representations that more closely match standard phonological features.
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Chapter 3

Evaluating knowledge of structure
dependence through agreement
relations

This chapter presents work that was co-authored and originally made available as a pre-print
as Bacon and Regier (2019). My co-author was my advisor, who was primarily involved in
an advisory role rather than in a direct collaboration.

Learning representations that accurately model semantics is an important goal of natu-
ral language processing research. Many semantic phenomena depend on syntactic structure.
Recent work examines the extent to which state-of-the-art models for pre-training representa-
tions, such as BERT, capture such structure-dependent phenomena, but is largely restricted
to one phenomenon in English: number agreement between subjects and verbs. We eval-
uate BERT’s sensitivity to four types of structure-dependent agreement relations in a new
dataset of over two million examples across 33 languages covering four language families. We
show that both the single-language and multilingual BERT models capture syntax-sensitive
agreement patterns well in general, but we also highlight the specific linguistic contexts in
which their performance degrades.

3.1 Introduction

Learning general-purpose sentence representations which accurately model sentential seman-
tic content is a current goal of natural language processing research (Subramanian et al.,
2018; Conneau et al., 2017; Wieting et al., 2016; Kiros et al., 2015). A prominent and suc-
cessful approach is to pre-train neural networks to encode sentences into fixed length vectors
(Conneau et al., 2018; Nie et al., 2017), with common architecture choices based on recurrent
neural networks (Elman, 1990a; Hochreiter and Schmidhuber, 1997), convolutional neural
networks, or transformers (Vaswani et al., 2017). Many core linguistic phenomena that one
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would like to model in general-purpose sentence representations depend on syntactic struc-
ture (Chomsky, 1965; Everaert et al., 2015). Despite the fact that none of the aforementioned
architectures have explicit syntactic structural representations, there is some evidence that
these models can approximate such structure-dependent phenomena under certain condi-
tions (Gulordava et al., 2018; McCoy et al., 2018; Linzen et al., 2016; Bowman et al., 2015),
in addition to their widespread success in practical tasks.

The influential BERT model (Devlin et al., 2018), which is based on transformers,
achieves state-of-the-art results on eleven natural language processing tasks. In this work,
we assess BERT’s ability to learn structure-dependent linguistic phenomena of agreement
relations. To test whether BERT is sensitive to agreement relations, we use the cloze test
(Taylor, 1953, also called the “masked language model” objective), in which we mask out
one of two words in an agreement relation and ask BERT to predict the masked word, one
of the two tasks on which BERT is initially trained.

Goldberg (2019) adapted the experimental setup of Linzen et al. (2016), Gulordava et al.
(2018) and Marvin and Linzen (2018) to use the cloze test to assess BERT’s sensitivity to
number agreement in English subject-verb agreement relations. The results showed that the
single-language BERT model performed surprisingly well at this task (above 80% accuracy
in all experiments), even when there were multiple “distractors” in the sentence (other nouns
that differed from the subject in number). This suggests that BERT is actually learning to
approximate structure-dependent computation, and not simply relying on flawed heuristics.

However, English subject-verb agreement is a rather restricted phenomenon, with the
majority of verbs having only two inflected forms and only one morphosyntactic feature
(number) involved. To what extent does Goldberg’s (2019) result hold for subject-verb
agreement in other languages, including more morphologically rich ones, as well as for other
types of agreement relations? Building on Goldberg’s (2019) work, we expand the experi-
ment to 33 languages and four types of agreement relations, which include more challenging
examples.

In Section 3.2, we define what is meant by agreement relations and outline the par-
ticular agreement relations under study. Section 3.3 introduces our newly curated cross-
linguistic dataset of agreement relations, while section 3.4 discusses our experimental setup.
We report the results of our experiments in section 3.5. All data and code are available at
https://github.com/geoffbacon/does-bert-agree.

3.2 Structure-dependent agreement relations

Agreement phenomena are an important and cross-linguistically common property of natural
languages, and as such have been extensively studied in syntax and morphology (Corbett,
2006).1 Languages often express grammatical features, such as number and gender, through
inflectional morphology. An agreement relation is a morphophonologically overt co-variance

1For a comprehensive bibliography, see http://www.smg.surrey.ac.uk/projects/agreement/

bibliography/.

https://github.com/geoffbacon/does-bert-agree
http://www.smg.surrey.ac.uk/projects/agreement/bibliography/
http://www.smg.surrey.ac.uk/projects/agreement/bibliography/
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in feature values between two words in a syntactic relationship (Preminger, 2014). In other
words, agreement refers to when the morphosyntactic features of one word are reflected
in its syntactic dependents. In this way, agreement relations are overt markers of covert
syntactic structure. Thus, evaluating a model’s ability to capture agreement relations is also
an evaluation of its ability to capture syntactic structure.

Following Corbett (2003), we call the syntactically dependent word the “target” of the
agreement relation, and the word with which it agrees we call the “controller”. An example
of an agreement relation in English is given in (1), in which the inflected form of the verb be
(are) reflects the plural number of its syntactic head keys. In all examples in this section,
the controller and target are given in bold. In this example, keys is the controller and are is
the target of the agreement relation.

(1) The keys to the door are on the table.

The agreement relation in (1) is between a subject and its verb, but there are other
types of agreement relations. In addition to subject-verb agreement, three other types of
agreement relations are cross-linguistically common: agreement of noun with i) determiner,
ii) attributive adjective and iii) predicate adjective (Baker, 2008). The latter two types
are distinguished by whether the adjective modifies the noun within a noun phrase or is
predicated of the subject of a clause. The first two types are sometimes categorized as
nominal concord rather than agreement, but for our purposes this is merely a difference in
terminology.

The morphosyntactic feature in the agreement relation in (1) is number, a feature that
is cross-linguistically common in agreement systems. In addition to number, the most com-
monly involved in agreement relations are gender, case and person (Baker, 2008).

With its comparatively limited inflectional morphology, English only exhibits subject-
verb and determiner agreement (in demonstratives, “this” vs. “these”) and even then only
agrees for number. Languages with richer inflectional morphology tend to display more
agreement types and involve more features. French, for example, employs all four types of
agreement relations. Examples are given in (2)-(5). The subject and verb in (2) agree for
number, while the noun and determiner in (3), the noun and attributive adjective in (4) and
the subject and predicated adjective in (5) agree for both number and gender.

(2) Les clés de la porte se trouvent sur la table.

‘The keys to the door are on the table.’

(3) Je peux voir les clés.

‘I can see the keys.’

(4) Je ne veux plus les clés totalement cassées.

‘I no longer want the completely broken keys.’
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(5) Les clés de la porte sont cassées.

‘The keys to the door are broken.’

Previous work using agreement relations to assess knowledge of syntactic structure in
modern neural networks has focussed on subject-verb agreement in number (Goldberg, 2019;
Gulordava et al., 2018; Linzen et al., 2016). In our work, we study all four types of agreement
relations and all four features discussed above. Moreover, previous work using any method
to assess BERT’s knowledge of syntactic structure has focussed exclusively on the single-
language English model (Hewitt and Manning, 2019; Goldberg, 2019; Tenney et al., 2019;
Lin et al., 2019; Jawahar et al., 2019; Clark et al., 2019). We expand this line of work to 33
languages. Not all languages in our sample exhibit all four types of agreement nor use all
four features examined, but they all exhibit at least one of the agreement types involving at
least one of the features.

3.3 Data

Our study requires two types of data. First, we need sentences containing agreement rela-
tions. We mask out one of the words in the agreement relation and ask BERT to predict
the masked word. We are interested in BERT’s ability to predict words that respect the
agreement relation, that is, words which share the morphosyntactic features of the word
with which it agrees. To measure this, we need to know the feature values for each word in
BERT’s vocabulary. This is our second type of data. Throughout this paper, we refer to the
first type of data as the cloze data, and the second as the feature data.

In the design of our datasets, we followed two principles. First, we chose data sources
that are available across multiple languages, because we are interested in cross-linguistic
generality. The languages in this study are those with sufficiently large data sources that
also appear in the multilingual BERT model. Second, we use naturally-occurring data (cf.
Marvin and Linzen (2018)).

Cloze data

We sourced our cloze data from version 2.4 of the Universal Dependencies treebanks (Nivre
et al., 2016, UD). The UD treebanks use a consistent schema across all languages to annotate
naturally occurring sentences at the word level with rich grammatical information. We used
the part-of-speech and dependency information to identify potential agreement relations.
Specifically, we identified all instances of subject-verb, noun-determiner, noun-attributive
adjective and subject-predicate adjective word pairs. We then used the morphosyntactic
annotations for number, gender, case and person to filter out purported agreement examples
that disagree due to errors in the underlying data source (e.g. one is annotated as plural
while the other is singular) or that are not annotated for any of the four features.
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This method is language-agnostic, but due to errors in the underlying UD corpora, yielded
some false positives. For example, the method identified examples of predicate adjective
agreement in English, which is not an agreement relation that English has. To correct for
this, we consulted reference grammars of each language to note which of the four types of
agreement exist in the language. We removed all examples that are of the wrong type for the
language (8% of harvested examples). Across the 33 languages, we curated over two million
cloze examples. Their breakdown across agreement type and language is shown in Tables
3.1 and 3.2.

Agreement type # cloze

Attributive adjective 787,611
Determiner 751,978
Verb 448,009
Predicate adjective 41,646
Total 2,029,244

Table 3.1: Number of cloze examples per agreement type in our new cross-linguistic dataset
on agreement relations. Previous work has largely focused on subject-verb agreement in
English.

In all four types of agreement studied, the controller of the agreement is a noun or
pronoun, while the target can be a determiner, adjective or verb. Because of this part-of-
speech restriction, we chose to mask out the controller in every cloze example so that BERT
is evaluated against the same vocabulary across all four types. This also means that we only
need to collect feature data on nouns and pronouns.

Feature data

Our feature data comes from both the UD and the UniMorph projects (Sylak-Glassman,
2016, downloaded June 2019). The UniMorph project also uses a consistent schema across
all languages to annotate word types with morphological features. Although this schema
is not the same as that used in UD, there is a deterministic mapping between the two
(McCarthy et al., 2018).

In this work, a word form can take on a particular bundle of feature values (e.g. singular,
feminine and third person) if it appears with those features in either UD or UniMorph. The
UniMorph data directly specifies what bundles of feature values a word can take on. For the
Universal Dependencies data, we say a word can take on a particular bundle if we ever see
it with that bundle of feature values in a Universal Dependencies corpus for that language.
Both sources individually allow for a word to have multiple feature bundles (e.g. sheep in
English can be singular or plural). In these cases, we keep all possible feature bundles.
Finally, we filter out words that do not appear in BERT’s vocabulary.
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Language # cloze # feature bundles

German 607,513 4,790
Czech 275,404 2,328
Spanish 181,489 3,225
Russian 147,932 2,404
Italian 140,170 2,479
French 118,019 3,384
Catalan 91,375 1,753
Portuguese 53,884 2,107
Latin 49,330 1,044
Polish 48,253 2,011
Finnish 35,355 1,167
English 33,937 6,743
Dutch 31,236 1,531
Norwegian 28,780 1,393
Romanian 28,615 1,330
Arabic 24,778 892
Croatian 22,106 1,141
Hindi 21,971 402
Ukrainian 14,485 1,206
Greek 14,385 216
Swedish 11,288 1,611
Hebrew 10,351 338
Persian 9,438 985
Danish 9,123 1,330
Urdu 7,178 547
Basque 4,143 267
Afrikaans 2,372 365
Irish 2,329 259
Turkish 2,106 846
Armenian 1,010 211
Tamil 526 67
Hungarian 193 836
Breton 170 157
Total 2,029,244 49,365

Table 3.2: Counts of data points per language used in this paper. “# cloze” is the number
of cloze examples in our dataset, and “# feature bundles” is the number of word types in
BERT’s vocabulary for which we harvested morphosyntactic features. Most previous work
has focused on English.
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3.4 Experiment

Our experiment is designed to measure BERT’s ability to model syntactic structure. Our
experimental set up is an adaptation of that of Goldberg (2019). As in previous work, we
mask one word involved in an agreement relation and ask BERT to predict it. Goldberg
(2019), following Linzen et al. (2016), considered a correct prediction to be one in which
the masked word receives a higher probability than other inflected forms of the lemma.
For example, when dogs is masked, a correct response gives more probability to dogs than
dog. This evaluation leaves open the possibility that selectional restrictions or frequency are
responsible for the results rather than sensitivity to syntactic structure (Gulordava et al.,
2018). To remove this possibility, we take into account all words of the same part-of-speech
as the masked word. Concretely, we consider a correct prediction to be one in which the
average probability of all possible correct words is higher than that of all incorrect words.
By “correct words”, we mean words with exactly the same feature values and the same part
of speech as the masked word. By “incorrect words”, we mean words of the same part of
speech as the masked word but that differ from the masked word with respect to at least one
feature value. We ignore cloze examples in which there are fewer than 10 possible correct and
10 incorrect answers in our feature data. The average example in our cloze data is evaluated
using 1,468 words, compared with 2 in Goldberg (2019).

Following Goldberg (2019), we use the pre-trained BERT models from the original au-
thors2, but through the PyTorch implementation.3 Goldberg (2019) showed that in his
experiments the base BERT model performed better than the larger model, so we restrict
our attention to the base model. For English, we use the model trained only on English
data, whereas for all other languages we use the multilingual model.

3.5 Results

Overall, BERT performs well on our experimental task, suggesting that it is able to model
morphosyntactic choices. BERT was correct in 94.3% of all cloze examples. This high
performance is found across all four types of agreement relations. Figure 3.1 shows that
BERT performed above 90% accuracy in each type. Performance is best on determiner and
attributive agreement relations, while worst on subject-verb and predicate adjective.

In figure 3.2, we see BERT’s performance for each language. BERT performs well for
the majority of languages, although some fare much worse than others. It is important to
note that it is an unfair comparison because even though the datasets were curated using
the same methodology, each language’s dataset is different. It is possible, for example, that
the examples we have for Basque are simply harder than they are for Portuguese.

Finally, we ask how BERT’s performance is affected by distance between the controller
and the target, as well as the number of distractors. Figure 3.3 shows BERT’s performance,

2https://github.com/google-research/bert
3https://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/google-research/bert
https://github.com/huggingface/pytorch-pretrained-BERT
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Figure 3.1: Accuracy per agreement type aggregated across all languages. Results are aver-
aged across all languages. In all four types, BERT performed above 90% accuracy. Accuracy
is slightly lower for predicate adjectives and subject-verb agreement relations, which typically
have longer distance dependencies. Error bars are bootstrapped 95% confidence intervals.

aggregated over all languages and types, as a function of the distance involved in the agree-
ment, while figure 3.4 shows the same for number of distractors. There is a slight but
consistent decrease in performance as the distance and the number of distractors increase.
The decline in performance begins later in figure 3.4 but drops more rapidly once it does.

3.6 Related work

Given the success of large pre-trained language representation models on downstream tasks,
it is not surprising that that the field wants to understand the extent of their linguistic
knowledge.4 In our work, we looked exclusively at the predictions BERT makes at the word
level. Tenney et al. (2019) and Jawahar et al. (2019) examined the internal representations
of BERT to find that syntactic concepts are learned at lower levels than semantic concepts.
Hewitt and Manning (2019) are also interested in syntactic knowledge and propose a method
to evaluate whether entire syntax trees are embedded in a linear transformation of a model’s
word representation space, finding that BERT does capture such information. As a comple-
mentary approach, Clark et al. (2019) studied the attention mechanism of BERT, finding
clear correlates with interpretable linguistic structures such as direct objects, and suggest
that BERT’s success is due in part to its syntactic awareness. However, by subjecting it to
existing psycholinguistic tasks, Ettinger (2019) found that BERT fails in its ability to un-
derstand negation. In concurrent work, van Schijndel et al. (forthcoming) show that BERT

4For a thorough overview of the recent push to understand what pre-trained models learn about language,
see Belinkov and Glass (2019).
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Figure 3.2: Accuracy per language aggregated across all four agreement types. In all 33
languages, BERT performs above 50% accuracy. In most languages BERT performs above
90% accuracy, although performance is significantly lower for a handful of languages. Error
bars are bootstrapped 95% confidence intervals.

does not consistently outperform LSTM-based models on English subject-verb agreement
tasks.

3.7 Conclusions & future work

Core linguistic phenomena depend on syntactic structure. Yet current state-of-the-art mod-
els in language representations, such as BERT, do not have explicit syntactic structural
representations. Previous work by Goldberg (2019) showed that BERT captures English
subject-verb number agreement well despite this lack of explicit structural representation.
We replicated this result using a different evaluation methodology that addresses short-
comings in the original methodology and expanded the study to 33 languages. Our study
further broadened existing work by considering the most cross-linguistically common agree-
ment types as well as the most common morphosyntactic features. The main result of this
expansion into more languages, types and features is that BERT, without explicit syntactic
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Figure 3.3: Accuracy as a function of distance between controller and target of agreement,
aggregated across all languages and agreement types. BERT is relatively robust to longer-
distance dependencies but does show a small decrease as the dependency length increases.
Error bars are bootstrapped 95% confidence intervals.

structure, is still able to capture syntax-sensitive agreement patterns well. However, our
analysis highlights an important qualification of this result. We showed that BERT’s ability
to model syntax-sensitive agreement relations decreases slightly as the dependency becomes
longer range, and as the number of distractors increases. We release our new curated cross-
linguistic datasets and code in the hope that it is useful to future research that may probe
why this pattern appears.

The experimental setup we used has some known limitations. First, in certain languages
some of the cloze examples we studied contain redundant information. Even when one
word from an agreement relation is masked out, other cues remain in the sentence (e.g.
when masking out the noun for a French attributive adjective agreement relation, number
information is still available from the determiner). To counter this in future work, we plan to
run our experiment twice, masking out the controller and then the target. Second, we used
a different evaluation scheme than previous work (Goldberg, 2019) by averaging BERT’s
predictions over many word types and plan to compare both schemes in future work.



CHAPTER 3. EVALUATING KNOWLEDGE OF STRUCTURE DEPENDENCE
THROUGH AGREEMENT RELATIONS 38

Figure 3.4: Accuracy as a function of number of distractors (other nouns in the sentence
with different feature values), aggregated across all languages and agreement types. As with
distance, BERT is quite robust to distractors although there is a more noticeable decrease
in accuracy as more distractors are present. Error bars are bootstrapped 95% confidence
intervals.
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Chapter 4

Distributional semantic
representations of visual concepts

This chapter presents work that was co-authored by myself, Terry Regier and Noga Zaslavsky.
My co-authors were primarily involved in an advisory and planning capacity, rather than in
a direct collaboration.

It is natural to imagine that blind and sighted speakers must have different representa-
tions of visual concepts. However, recent psycholinguistic work has suggested the opposite,
demonstrating that first-person sensory experience is not necessary to learn fine-grained
knowledge of visual word meanings. Where, then, does this knowledge come from? Previous
computational work has suggested that some of this knowledge may be derived from language
use. To explore this idea more comprehensively, we studied eight computational models that
have access only to distributional information, to ascertain whether language use could be
the source of this knowledge. In both English verbs and color terms, we show that these
models capture some human-like visual knowledge, but not all. Only some of the models
perform well, and these tend not to fully capture the fine-grained structure of the domain.
Our findings reinforce recent claims that some but not all of blind speakers’ knowledge of
visual concepts could come from the distributional information in language use.

4.1 Introduction

Where does knowledge come from? How, for example, do speakers of a language come to
know the meanings of its words? Early empiricist philosophers argued that word meanings
must be acquired through first-person sensory experience of the world. On this view, knowing
what the word sparkle means requires direct perceptual experience with sparkling stars and
the like. Thus, congenitally blind and sighted individuals should have different patterns of
knowledge about words referring to visual concepts.

A contrasting view, however, emphasizes that much can be learned about visual concepts



CHAPTER 4. DISTRIBUTIONAL SEMANTIC REPRESENTATIONS OF VISUAL
CONCEPTS 40

indirectly, from non-visual sources such as language and inference. For instance, hearing
that “the fire glowed all night” could help listeners learn about the temporal structure of the
meaning of glow. This view predicts that the meanings of words like sparkle or glow should
be similar or even identical in blind and sighted speakers.

Bedny et al. (2019) tested these two views and found that blind and sighted speakers
have “indistinguishable” (p. 105) knowledge of visual concept verbs in English, including
fine-grained structure of the domain. This was concluded on the basis of the strong corre-
spondence between similarity judgements of word meanings from the two groups of speakers.
Thus, in the absence of direct visual experience, detailed knowledge of visual word meanings
is still acquired. How do blind speakers learn the meanings of these words? One possibility,
pursued by Kim et al. (2019), is that in the absence of sensory input, such visual word
meanings are “acquired through inference from ontological kind” (p. 11213). For example,
speakers could use their existing knowledge that flamingos are birds and that birds have
feathers to infer that flamingos have feathers.

In response, Lewis et al. (2019) argued for a different possibility: semantic knowledge
of words with visual referents may be derived at least in part from linguistic distributional
information — that is, from co-occurrence statistics of words in language use. They con-
sidered a computational model that has access only to such distributional information, and
showed that it can to some extent reproduce human judgments about words that refer to
visual appearance, including the visual concept data of Bedny et al. (2019).

Still, several important questions remain unanswered. It is not yet known whether dis-
tributional information suffices for inducing the fine-grained knowledge of visual concept
verbs studied by Bedny et al. (2019) — the Lewis et al. (2019) analysis of that dataset
did not explore that issue. It is also not yet known whether other computational models
based on distributional information might fare better than the one tested by Lewis et al.
(2019). Here, we test these questions by considering a wider range of such models compre-
hensively on the Bedny et al. (2019) data. Our aim is to give the distributional hypothesis
the most favorable conditions possible: we will consider the hypothesis to have succeeded
to the extent that any of the models we consider succeeds. If detailed knowledge of visual
concept verbs is recoverable by distributional models under such favorable conditions, then
distributional information could be the source of blind and sighted speakers’ knowledge of
word meanings. If, however, distributional models do not induce human-like knowledge even
under such favorable conditions, then it seems likely that some other source is involved.

The remainder of this chapter proceeds as follows. First, we summarize in more detail
the prior work on visual concept verbs on which we build. Next, we describe the particu-
lar distributional models we consider. We then present analyses that examine how well the
models capture human representations. To preview our results, we find that some but not all
of the meaning of visual concept verbs is recoverable from distributional information, impli-
cating some other knowledge source at least in part. To demonstrate the robustness of these
results, we perform an analogous analysis on English color terms and present qualitatively
very similar findings.
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4.2 Lexical semantics of visual concept verbs

Languages are rich in ways to express visual concepts (Winter et al., 2018). Speakers who
have never seen nonetheless use and comprehend visual concept words in the same way as
sighted speakers. This has been shown for visual concept verbs (Bedny et al., 2019), animal
appearances (Kim et al., 2019), and color (Saysani et al., 2018). We first focus on visual
concept verbs in English, and then later in this chapter consider the domain of color.

Bedny et al. (2019) studied 29 English visual concept verbs. 14 verbs referred to agentive
perception (gawk, gaze, glance, glimpse, leer, look, peek, peer, scan, see, spot, stare, view
and watch) and 15 verbs referred to light emission (blaze, blink, flare, flash, flicker, gleam,
glimmer, glint, glisten, glitter, glow, shimmer, shine, sparkle and twinkle). We henceforth
refer to these groups as sight verbs and light verbs respectively. Bedny et al. (2019) collected
semantic similarity judgements for all pairs of verbs within a group (e.g. sight-sight and
light-light verb pairs) from sighted (N = 22) and congenitally blind (N = 25) individuals,
as well as a second group of sighted individuals (N = 303) via Amazon Mechanical Turk,
which we henceforth refer to as the sighted reference group.

Bedny et al. (2019) found that for both sight and light verbs the correlation between
the blind and the sighted reference group (sight verbs: ρ = 0.81, light verbs: ρ = 0.93) was
comparable to the correlation between the sighted and the sighted reference group (sight
verbs: ρ = 0.84, light verbs: ρ = 0.91). In other words, blind representations were about as
similar to sighted representations as two independent sighted representations were to each
other. The fine-grained structure of this knowledge was probed using hierarchical clustering
and multidimensional scaling. Hierarchical clustering of both sighted and blind similarity
judgements of sight verbs revealed three clear clusters of events: intense and prolonged
(leer, gawk and stare), brief (peek, spot, glimpse and glance) and generic (look, see, view
and watch). Multidimensional scaling of light verb judgements from both sighted and blind
groups revealed two dimensions structuring the space: intensity (e.g. blaze vs. flicker) and
stability (e.g. shine vs. twinkle). This detailed knowledge about the lexical semantics of sight
and light verbs was found to be shared among sighted and blind individuals.

4.3 Distributional models

Distributional models embody a theory of meaning called distributional semantics, in which
the meaning of words is entirely derived from co-occurrence statistics of language use (Harris,
1954; Firth, 1957; Landauer and Dumais, 1997). These models learn the meanings of words
by attempting to predict what words surround other words. Once trained on a corpus, they
represent words as real-valued vectors, or equivalently points in a continuous space. The
meaning of a word is captured by its geometric relationships with the rest of the lexicon in
such a space (Turney and Pantel, 2010; Erk, 2012).

Many different distributional models exist, varying in how they predict words from their
surrounding context. In previous computational work exploring visual concept word mean-
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Model Dimensionality Size of training corpus Citation
word2vec 300 ∼1 billion Mikolov et al. (2013b)

GloVe 100 ∼6 billion Pennington et al. (2014)
fastText 300 ∼16 billion Bojanowski et al. (2017)
ELMo 1024 ∼1 billion Peters et al. (2018)
BERT 786 ∼3.3 billion Devlin et al. (2018)

RoBERTa 786 ∼34 billion Liu et al. (2019)
distilBERT 786 ∼3.3 billion Sanh et al. (2019)

XLNet 786 ∼32 billion Yang et al. (2019)

Table 4.1: The eight distributional models used in this work. We used the publicly available
pre-trained models from the original authors. Previous work by Lewis et al. (2019) used
fastText.

ings, Lewis et al. (2019) used the fastText model (Bojanowski et al., 2017) to argue that
distributional information could be an important source of this knowledge. Our goal is to
perform a more comprehensive test of the efficacy of distributional models and so we consider
eight different models. We chose these models because they (i) span an important dimension
of distributional models (discussed in the following paragraph), (ii) are publicly available
pre-trained by the models’ original authors, and (iii) are highly influential and successful in
applied settings, suggesting that they may capture fine-grained semantic knowledge. The
eight models we study are listed in Table 4.1.

An important aspect of distributional models is whether their word representations are
contextual or not. Non-contextual models learn a single representation for each orthographic
form, regardless of homographs or polysemy (e.g. flash meaning to shine brightly and mean-
ing to move quickly). word2vec, GloVe and fastText are non-contextual models. In contrast,
the representations of contextual models are a function not only of a given target word but
also of the words surrounding it in text; this context often helps to resolve ambiguity in-
duced by e.g. polysemy. BERT, RoBERTa, distilBERT and XLNet are contextual models.
ELMo has both contextual and non-contextual representations. In this study, we use ELMo’s
non-contextual representations.

4.4 Methods

For each computational model, we extracted representations of all vision and light verbs
used by Bedny et al. (2019). For non-contextual models (i.e. word2vec, GloVe, fasttext and
ELMo), this amounts to a simple look-up in the pre-trained model. For contextual models
(i.e. BERT, RoBERTa, distilBERT and XLNet), we seeded the model with a context when
generating the representations. All results in this paper use the context When they’re in



CHAPTER 4. DISTRIBUTIONAL SEMANTIC REPRESENTATIONS OF VISUAL
CONCEPTS 43

the dark, animals can’t . We then compute the cosine distance between each pair of
word representations from a model to arrive at a dissimilarity matrix for that model. We
repeated our analyses with three different contexts and obtained the same qualitative results
presented in this paper: i) The light helps you , ii) I want to and iii) the context
given to the human participants in Bedny et al. (2019), namely the infinitive to .

The remainder of our methodology follows Bedny et al. (2019) exactly, but applied to the
model representations described above. In our first analysis we computed the Spearman’s
rank correlation between normalized human dissimilarity judgements (data made publicly
available by Bedny et al. (2019)) and the models’ dissimilarity matrices. In our second
analysis, we performed multidimensional scaling (MDS) with four dimensions. Specifically,
we computed two-way interval MDS models using the Stress Majorization of a Complicated
Function (SMACOF) approach (Leeuw and Mair, 2008), fit with 4 dimensions as in Bedny
et al. (2019). In our third analysis, we perform hierarchical agglomerative clustering us-
ing a bottom-up approach, with clusters merged based on Ward’s criterion (Murtagh and
Legendre, 2014), using the pvclust package in R (Suzuki and Shimodaira, 2006).

4.5 Results

Tables 4.2 and 4.3 show, for sight and light verbs respectively, correlations between distribu-
tional models and the three human groups. First and foremost, we note that all models have
positive correlations with all three human groups, with some models showing correlations of
up to ρ = 0.67 (GloVe for sight verbs) and ρ = 0.74 (fastText for light verbs) with human
judgements. While these are high, they are not as high as the correlations between the
human groups (e.g. ρ = 0.84 between sighted and blind for sight verbs, ρ = 0.91 between
sighted and blind for light verbs). The correlations we present for fastText are comparable
to those found by Lewis et al. (2019). Moreover, looking at the scores for all models, we can
see that fastText was an excellent choice by Lewis et al. (2019): it outperforms most other
models on sight verbs, and all others on light verbs. Focusing on sight verbs, we note that
the distributional models are often more similar to the two sighted groups than they are to
the blind group. We see the opposite trend for light verbs, namely, that the models tend
to be more similar to the blind group than they are to either of the sighted groups. Over-
all, the non-contextual models (word2vec, GloVe and fastText) are more similar to human
judgments than the contextual models (BERT, RoBERTA, distilBERT and XLNet) are.

Moving beyond overall correlations with human similarity judgments, we also wished to
determine whether some of the fine-grained structure of the domain is captured by distri-
butional models. For these followup analyses, assessment was based on visual inspection of
clustering and MDS outputs.

Recall that Bedny et al. (2019) found, in human judgments, three subgroups of sight
verbs: verbs of brief sight (e.g. glance), intense/prolonged sight (e.g. stare), and generic
sight (e.g. see). These clusters can be seen in Figure 4.1, which presents the hierarchical
clustering dendrogram for sight verbs based on Bedny et al.’s (2019) data from human sighted
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Model Sighted Sighted reference Blind
word2vec 0.56 0.5 0.47

GloVe 0.67 0.63 0.56
fastText 0.57 0.59 0.52
ELMo 0.34 0.32 0.31
BERT 0.41 0.34 0.40

RoBERTa 0.15 0.13 0.11
distilBERT 0.57 0.57 0.53

XLNet 0.36 0.26 0.32

Sighted 1.0 0.88 0.84

Table 4.2: Sight verbs (e.g. stare): Spearman rank correlation (ρ) between similarity judg-
ments induced by distributional models and those elicited from two groups of sighted indi-
viduals and one group of blind individuals. The best performing model is shown in bold.
The bottom row shows rank correlations with the sighted group.

Model Sighted Sighted reference Blind
word2vec 0.52 0.63 0.64

GloVe 0.40 0.47 0.53
fastText 0.65 0.70 0.74
ELMo 0.45 0.56 0.57
BERT 0.03 0.04 0.05

RoBERTa 0.12 0.11 0.14
distilBERT 0.10 0.12 0.12

XLNet 0.28 0.26 0.28

Sighted 1.0 0.92 0.91

Table 4.3: Light verbs (e.g. flash): Spearman rank correlation (ρ) between similarity judg-
ments induced by distributional models and those elicited from two groups of sighted indi-
viduals and one group of blind individuals. The best performing model is shown in bold.
The bottom row shows rank correlations with the sighted group.
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Figure 4.1: Hierarchical clustering dendrograms for sight verbs. The left panel is based on
Bedny et al.’s (2019) data from sighted individuals, and the right panel is based on data
from word2vec representations.

subjects (left panel), and the corresponding dendrogram based on word2vec representations
(right panel). Brief events (e.g. glance, glimpse, peek) tend to cluster together, both in
the human data and in the machine data, while prolonged events (e.g. stare, gaze) and
generic events (e.g. see, look, watch, view) form their own respective clusters, again both in
the human data and in the machine data. Thus, this aspect of fine-grained structure was
captured by word2vec. Clustering of fastText representations revealed the same three groups
just as clearly (results for this and other models are not shown here for reasons of space).
Although GloVe has the highest overall correlation with human judgements for sight verbs
(recall Table 4.2), we did not observe all three verb groupings as clearly when clustering
GloVe representations. Clustering of ELMo representations recovers prolonged events and
most of the brief and generic events. Clustering on all other models fails to reveal any of the
three verb clusters.

With respect to the fine-grained structure of light verbs, recall that Bedny et al.’s (2019)
multidimensional scaling analysis of light verb judgments from humans revealed two relevant
dimensions: intensity (e.g. twinkle vs. blaze) and stability (e.g. flicker vs. shine), and that
they found this pattern with both sighted and blind individuals. This pattern can be seen
in the left panel of Figure 4.2, which shows the first two dimensions of the MDS solution
based on Bedny et al.’s (2019) data from sighted individuals. Intensity is roughly captured
by the horizontal axis of this plot, with verbs of intense light emission like blaze and flare
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Figure 4.2: MDS results for light verbs, showing the first two dimensions. The left panel is
based on Bedny et al.’s (2019) data from sighted individuals. In this panel, the horizontal
axis roughly captures the notion of intensity, and the vertical axis roughly captures the
notion of stability. The right panel is based on data from fastText representations. Here,
the horizontal axis again roughly captures the notion of intensity, but the notion of stability
does not emerge as clearly as in the human data.

on the right side of the plot, and verbs of weaker light emission like glisten and gleam on
the left side. Stability is roughly captured by the vertical axis of the same plot, with verbs
of stable light emission like shine and glow in the lower part of the plot, and verbs of less
stable light emission like flicker, flash, and twinkle in the upper part. The right panel
of the same figure shows the analogous MDS solution based on fastText, the model most
highly correlated with human judgments for light verbs (recall Table 4.3). This MDS plot
from machine representations aligns only partially with that from humans: the dimension
of intensity emerges here, but the dimension of stability does not. Intensity is again roughly
captured by the horizontal axis of this plot (although with the polarity reversed): high
intensity events such as flare, flash and blaze lie at one extreme while low intensity events
like glisten and shimmer lie at the other, with the medium-intensity word glow appearing
in the middle. Stability however is not clearly captured in this plot. A verb of stable light
emission, shine, appears at one extreme of the orthogonal vertical axis, but next to it is
a verb of non-stable light emission, glitter. At the same time, another verb of stable light
emission, glow, is at around the middle of the vertical dimension, and not near shine. While
there is some meaningful clustering in this plot, the dimension of stability does not emerge
as clearly as in the human data. Beyond these reported results, we found no other major
patterns in multidimensional scaling of light verbs, across any of the models we considered.

To summarize our results, we found that some distributional models can reproduce as-
pects of human-like knowledge of sight and light verbs in English, whereas others are less
successful. Models that performed well have strong positive overall correlations with human
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similarity judgements, capture the three subgroupings of sight verbs and recover the inten-
sity dimension of light verbs. When other models did capture human-like structure in their
overall correlations, they did not reliably capture the fine-grained structure of the domain.
No model clearly recovered the stability dimension of light verbs.

4.6 Color

As a measure of the robustness of the above results, we now perform an analogous analysis
on English color terms. Here, we ask whether distributional information is sufficient to allow
blind individuals without sensory access to the visual modality to induce the fine-grained
lexical semantics of English color terms exhibited by both sighted and blind speakers. To
this end, we examine the same eight major computational models we examined above, all
of which have access only to distributional information in language use, and assess the
extent to which these models accurately capture such knowledge. As before, we aim to
give the distributional hypothesis the most favorable conditions possible, by considering the
hypothesis to have succeeded to the extent that any of the models we consider succeeds.

We used existing data sets of similarity judgements of English color terms from both
sighted and congenitally blind speakers, drawn from two prior studies. One study (Boster,
1986) studied eight basic color terms (BCT) (white, black, red, blue, green, yellow, purple
and orange) and collected similarity judgements from sighted individuals using a verbal
(N = 18) and a non-verbal (N = 27) card sorting task. In the verbal task, participants sorted
cards with color names written on them, while in the non-verbal task participants sorted
cards by their color. The other study (Saysani et al., 2018) directly collected judgements
of similarity of nine BCT (white, black, red, blue, green, yellow, purple, orange and brown)
and 12 “descriptive” color terms (charcoal, copper, cream, gold, lilac, maroon, orange, pearl,
rose, saffron, salmon and turquoise, henceforth referred to as DCT). from sighted (N = 15)
and congenitally blind (N = 13) individuals. We computed dissimilarity by subtracting
similarity from the maximum possible rating for that study.

The upper panel of Figure 4.3 shows correlations between models and human data. Over-
all, the models are weakly correlated with humans, and substantially less correlated than
independent human groups (e.g. ρ = 0.94 between two sighted groups’ judgements of BCT
in Saysani et al. (2018), ρ = 0.65 between sighted speakers’ judgements of BCT of the
two data sets, and ρ = 0.72 between sighted and blind speakers’ judgements of BCT.). In
the lower panels of Figure 4.3, we contrast the MDS results for sighted, blind and model
representations. The left panel shows the clear structure of a hue circle present in sighted
speakers’ representations induced from Boster (1986). The middle panel shows the close
approximation of a hue circle in blind representations from Saysani et al. (2018). The right
panel illustrates the lack of such structure in the most human-like model representations
XLNet (as measured in the correlation analysis).

In sum, we find that distributional models do not reproduce human-like knowledge of
color terms in English. While some contextual models show moderate correlations with
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human data, even they do not recover the hue circle found in human representations. A
striking shortcoming of all models is that they assign similar representations to black and
white, whereas humans consider these words to be the most dissimilar.

4.7 Discussion

We asked whether distributional information is sufficient to allow language users, includ-
ing blind individuals without sensory access to the visual modality, to induce fine-grained
knowledge of two domains: visual concept verbs and color terms. To answer this question,
we examined eight major computational models that have access only to distributional in-
formation in language use, and assessed the extent to which these models accurately capture
such visual knowledge. We found that a substantial amount of knowledge is recovered, but
not all. Several models produced judgments that correlated substantially overall with those
of humans, but not all models that we considered did so. Moreover, while some of the mod-
els captured aspects of the fine-grained structure of visual concept verbs, no model that we
examined fully captured that structure. The results for color were less impressive, yielding
little correspondence to human judgements. Importantly, by testing a much wider range of
models than previous work (Lewis et al., 2019), we afforded the distributional hypothesis
every opportunity to succeed. That none of the models recovered all of the knowledge sug-
gests that distributional data is not the sole source of speakers’ knowledge of visual concept
word meanings. At the same time, the partial success of the best-performing models we
have examined does suggest, in line with Lewis et al.’s (2019) argument, that distributional
information may be an important contributor to that knowledge. Our findings temper recent
claims that blind speakers’ knowledge of visual concepts could come in substantial part from
the distributional information in language use (Lewis et al., 2019). Future work can usefully
explore what other sources of knowledge also contribute, such as inference from taxonomic
kind (Kim et al., 2019), or other possible sources, and how the different sources of knowledge
are integrated.

A natural and interesting question is to what extent our conclusions will generalize
to other linguistic expressions of visual experience. Numerous studies characterizing fine-
grained knowledge of word meanings already exist, and future research could extend our
work to compare human and distributional models more broadly. Another important ques-
tion is whether future distributional models will perform better than the models to which we
have access today, and which we have assessed here. Until such future work is undertaken,
however, we can conclude provisionally on the basis of the present results that distributional
data may be part of the story of how speakers learn the meanings of visual concept verbs,
but probably not the full story.
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Figure 4.3: Upper panel: Spearman rank correlation (ρ) between dissimilarity judgments
induced by distributional models and those elicited from humans in two independent studies.
Lower panels: First two dimensions of MDS results. The left panel is based on data from
Boster (1986) on sighted individuals’ dissimilarity judgements of BCT. In this panel, the
words are structured in a clear circle largely according to their hue, and with black and
white appearing as opposites. The middle panel is based on blind representations of BCT
from Saysani et al. (2018). This panel shows an approximation of the hue circle, again with
white and black as opposites. The right panel is based on data from XLNet representations,
the best performing model. Here, black and white appear close together and the hued colors
do not show any clear structure.
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Chapter 5

Efficiency in tense systems

This chapter presents work that was co-authored by myself, Yang Xu and Terry Regier.

The previous three chapters all compared neural networks to human data directly, and
found an accurate yet imperfect correspondence between them. This suggests that existing
architectures trained on distributional data alone are insufficient for capturing human-like
knowledge of language. How can we improve neural models to better model human lin-
guistic competence? Generativist theories of language are strongly influenced by typological
concerns, and here I suggest that neural models should be too. To that end, this chapter
investigates the semantic typology of tense systems. I show that a domain-general principle,
a drive for communicative efficiency, helps explain why tense systems look the way they do.
Incorporating this same communicative pressure into neural models is a promising direction
for developing more human-like neural models of language.

All languages have ways of expressing location in time, but they differ widely in their
grammatical tense systems. At the same time, there are tense systems that recur across
unrelated languages. What explains this wide but constrained variation? Here, we propose
that tense systems are shaped by the need to support efficient communication–a need that
has recently been shown to explain cross-language semantic variation in other domains.
We test this proposal computationally against the tense systems of 64 diversely sampled
languages. We find that most languages in the sample support near-optimally efficient
communication, but with some interesting and potentially illuminating exceptions. We argue
that efficient communication may play an important role in explaining why tense systems
vary across languages in the ways they do.

5.1 Time and tense systems

Time is one of the most fundamental aspects of human experience, and it occupies a signif-
icant position in the grammars and lexicons of natural languages (Quine, 1960; Hornstein,
1993; Klein and Li, 2009). However, linguistic systems of temporal expression differ sub-
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stantially (Dahl, 1985; Bybee and Dahl, 1989; Bybee et al., 1994). Klein (2009) describes
six major ways in which languages express time: tense, aspect, Aktionsart (lexical aspect),
temporal adverbials, temporal particles, and discourse principles. We focus on variation in
tense, which is one of the most well-documented means of temporal expression (Binnick,
2012).

Tense is “the grammaticalised expression of location in time” (Comrie, 1985: 9). In some
ways, tense systems are strikingly similar across languages. For example, there is a well-
documented cross-language preference for more elaborate past tense categories than future
tense categories (Comrie, 1985: 85). Yet in other ways, they vary considerably. For instance,
English has grammatical categories to express the past, present and future. To locate an
event of walking in the past, English uses the morphologically marked form “walked” to
distinguish from “walk” in the present tense. To locate the same event in the future, English
employs the auxiliary “will” to form the periphrastic “will walk”. However, some languages
have more elaborate tense systems than English, that specify not only whether an event is in
the past or future, but also how far in the past or future it is. Kikuyu, for example, a Bantu
language spoken in Kenya, uses different grammatical categories depending on whether an
event took place very recently or a long time ago. Intuitively, Kikuyu’s tense system is more
precise than that of English at locating the time of an event. In contrast to languages like
Kikuyu and English, some languages are tenseless, in that their grammars do not locate
events in time at all. An example of a tenseless language is Cebuano, an Austronesian
language of the Philippines. To express the same event of walking in Cebuano does not
require any reference to when the walking takes place.

What explains this wide but constrained cross-linguistic variation? We seek general
principles that explain why tense systems vary as they do, and why many logically possible
tense systems are not attested.

5.2 Efficient communication

An existing proposal has the potential to explain variation in tense systems (Regier et al.,
2007, in press). By this account, systems of semantic categories across languages are shaped
by the need to support efficient communication. This communicative principle has been
shown to account for cross-linguistic variation in the semantic domains of color (Regier
et al., 2007, in press), kinship (Kemp and Regier, 2012), space (Khetarpal et al., 2013) and
numerosity (Xu et al., 2014). It also reflects a more general recent interest in communicative
pressure as a source of explanation for linguistic structure (e.g. Piantadosi et al. (2011);
Fedzechkina et al. (2012); Smith et al. (2013)). We hypothesize that this drive for efficient
communication may also explain the variation we find in grammatical tense systems across
languages.

The notion of efficient communication involves two competing forces: informativeness
and simplicity. A communicative system is informative to the extent that it communicates
precisely, whereas it is simple to the extent that its cognitive representation is compact.
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These two forces compete against each other. For example, the most informative tense
system would have a unique linguistic form (e.g. a word or grammatical morpheme) to denote
each temporal location. However, such a system would be highly complex, not simple. In
contrast, the simplest system would have one linguistic form for all temporal locations. This
would be simple, but would not support precise communication. The hypothesis of efficient
communication proposes that languages reflect a near-optimal tradeoff between these two
competing constraints.

Figure 5.1 illustrates a simple communicative scenario. Here, the speaker is thinking
of a particular occasion of her having gone somewhere, which took place in the immediate
past, e.g. earlier that morning. We represent time in terms of a discretized time line divided
into seven units, spanning from the distant past to the distant future: remote past, recent
past, immediate past, present (time of speech), immediate future, recent or intermediate
future, and remote future.1 Because the speaker is certain that the event took place in the
immediate past, her mental representation of the time of the event is a discrete probability
distribution with all probability mass on the immediate past. The speaker then attempts to
communicate this event to the listener, using the English past tense “I went”. The listener,
having access only to this linguistic form, must mentally reconstruct when the event took
place. Because the speaker used a broad past tense category, the listener’s reconstruction of
the time of the event is necessarily uncertain. Concretely, the listener has no way of knowing
whether the event took place in the immediate, recent or remote past, because the English
past tense category does not make such fine distinctions. We represent this uncertainty in
the listener’s mind as probability masses over these possible points in the past, that sum to
1. We take the informativeness of communication to be the extent to which the listener’s
reconstruction closely approximates the speaker’s intended message.

“I went ...”

 Speaker                                Listener

rem   rec   im              im   rec   rem

past   present      future
rem   rec   im              im   rec   rem

past   present      future

Figure 5.1: A communicative scenario about time.

We have seen that the tense system of English is relatively coarse and leads to temporal

1In theory, the time line could be continuous. However, grammatical tense systems never treat time in
such detail, so we discretize it into intervals to account for the most fine-grained representation available in
the tense systems that we analyze.
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uncertainty. In contrast, a tense system like that of Kikuyu is more precise, because of the
fine grained distinctions it makes in its past tense categories. However, Kikuyu’s system
is also less simple than English’s system, by virtue of having these additional categories.
Thus there is a tradeoff between a preference for informativeness and one for simplicity. We
ask whether the tense systems we find in the world’s languages reflect an optimal tradeoff
between these two preferences.

In what follows, we first describe the cross-linguistic data that we use for our analysis. We
then present the theory of efficient communication in formal terms, building on the informal
sketch given above. Finally, we test our theory against the data.

5.3 Data

We used data from Dahl (1985), the most comprehensive cross-linguistic survey of tense,
mood and aspect systems currently available. These data represent a diverse genetic and
geographic distribution against which to test our hypothesis. Of the 64 languages in the
sample, the most well-represented families are Indo-European (21 languages), Afro-Asiatic
(8), Niger-Congo (8) and Austronesian (7). The remaining 17 languages are well-spread,
with at least two languages from each inhabited continent.

For all languages in the sample except Latin, Dahl (1985) uses primary data collected
through a questionnaire designed specifically for the survey. Each speaker was presented
with 197 standardized sentences in English, with accompanying linguistic and extralinguisic
context, and asked to translate them into the target language. Dahl coded the responses
for language-specific categories, then classified those categories into major cross-linguistic
categories on the basis of similarity of distribution. It is possible that some subtle differences
between languages may not have been fully captured in these cross-language categories,
but for this initial test of our hypothesis we took Dahl’s coding into cross-language tense
categories as definitive. The categories we consider as tense are past, present, future,
and finer-grained subdivisions of those expressing degree of remoteness, as in our discretized
timeline above. In our initial analyses reported here, we restrict attention to absolute tense
and do not consider relative tense or aspect, which we leave for future work.

Dahl’s classification of tense systems displays three broad classes. The first class consists
of tenseless systems like Cebuano discussed above, in which no tense category is expressed.
The second class uses absolute tense, in which events being communicated are temporally
located with respect to the present, but without expressing degree of remoteness. The
third and final class are systems that encode both absolute tense and degree of remoteness.
Degrees of remoteness encode a magnitude associated with the temporal location of events,
as explained in the Kikuyu example above. Dahl’s data present a maximally three-way
distinction in degrees of remoteness: immediate, recent, and remote. Note that languages
are not consistent in the precise meanings of immediate, recent and remote past and future.
Recent past for one language may specify up to a week ago, while for another it may specify
up to a month ago. However, cross-linguistic tendencies do exist, with the distinction between
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immediate and recent past most commonly specifying ‘today’ and ‘before today’ (Comrie,
1985: 87). On this basis we chose to define immediate as occurring today. Another common
tendency is for languages to distinguish between ‘a few days ago’ and ‘more than a few days
ago’ (Comrie, 1985: 88). On this basis we chose to define remote as occurring more than a
week from today, with recent categories sitting between immediate and remote categories.

The three classes are summarized in Table 5.1, along with example languages. The
numbers in parentheses represent the number of languages in that qualitative class with the
same number of categories, but not the same categories. For example, within the class of
absolute tense systems are 22 languages with systems of two categories. However, these may
be any combination of past, present and future.

Table 5.1: The three qualitative classes of tense systems in Dahl (1985). Parentheses indicate
multiple languages that have the same number of categories within a class.

Class # of categories Language (total #)

Tenseless 1 Cebuano (1)
1 Hawaiian (3)

Absolute 2 Maltese (22)
3 English (33)

Absolute and 4 Zulu (3)
remoteness 5 Sotho (2)

5.4 Formal presentation of theory

The notion of efficient communication involves two competing forces: informativeness and
simplicity. We describe each of these in turn in the specific case of tense systems, building
on the informal presentation above. Our presentation here follows that of Kemp and Regier
(2012) and Regier et al. (in press).

Informativeness

We assume a communicative scenario such as that depicted in Figure 5.1, in which a speaker
is communicating with a listener. As in that figure, we assume that the shared mental
representation of the time line consists of seven ordered temporal locations, which we denote
as: -REM (remote past), -REC (recent past), -IM (immediate past), t0 or 0 (present), +IM
(immediate future), +REC (recent or intermediate future), and +REM (remote future). We
model the speaker’s and listener’s mental representations as probability distributions, S(·)
and L(·) respectively, over these temporal locations. We assume that the speaker wishes to
communicate an event that occurred at a particular temporal location i (e.g. -IM: immediate
past), and that the speaker is certain of this location: S(i) = 1 and S(j) = 0, ∀j 6= i. In
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order to convey this location, the speaker produces an utterance (e.g. “I went”) that is
marked for the tense category (here, past for English) in which the target location falls.
The listener then attempts to reconstruct the speaker’s intended meaning, creating a mental
representation Lc(·) based on the tense category c used by the speaker:

Lc(i) ∝ f(i|c) (5.1)

We assume that f(i|c) is determined by how mentally accessible each temporal location i
within the category c is. Previous work on the mental representation of time has suggested
that in general, “recent items ... are more retrievable than distant items” (Brown et al., 2007:
541). For this reason we distribute mass within the category c according to the similarity of
each item in the category to the present (t0):

f(i|c) =

{
sim(i, t0) if i ∈ c
0 otherwise

(5.2)

Following Brown et al. (2007: 544), we also assume that the psychological similarity between
any two temporal locations i and j is an exponentially decaying function of temporal distance
between them:

sim(i, j) = e−dist(i,j) (5.3)

Finally, we assume that the mental distance dist(·, ·) between any two neighboring temporal
locations on our idealized 7-location mental time line is 1. Given these assumptions, the
listener reconstruction for the English past category would assign the most mass to -IM
(immediate past), less to -REC (recent past), and still less to -REM (remote past), as in
Figure 5.1 above.

Given these definitions of the speaker S and listener Lc distributions, we define the
communicative cost of communicating a mental object i under a given semantic system to
be the Kullback-Leibler divergence between S and Lc. Intuitively, this is the amount of
information that is lost when using Lc to approximate S. In the case of speaker certainty as
assumed here, this quantity reduces to surprisal:

C(i) = DKL(S||L) =
∑
j

S(j) log2

S(j)

L(j)
= log2

1

Lc(i)
(5.4)

We then define the communicative cost of a tense system as a whole as the expected
communicative cost it incurs over all seven temporal locations on the discretized time line:

E[C] =
7∑

i=1

C(i)N(i) (5.5)

Here N(i) is the need probability for location i; that is, the probability that the speaker
will need to refer to location i rather than any other temporal location. We estimated these
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probabilities using data from the Google Ngram English corpus (Michel et al., 2011) for the
year of publication of Dahl’s book: 1985. This involved two steps. First, we found the 10
most common verbs according to the Corpus of Contemporary American English (Davies,
2008-): be, have, do, say, go, think, know, want, get and make, which account for over 50%
of verb tokens in a 17,000 sentence spoken corpus (Ota, 1963). We conjugated each of these
verbs to express present, past or future tense. For instance, be becomes am, are and is for
present, will be and shall be for future, was and were for past. We then individually
searched for these conjugated verb forms in the corpus, and summed the frequencies to obtain
aggregated frequencies for the coarse categories past, present and future. Second, we used
frequencies of specific temporal adverbs to approximate the fine-grained remote, recent and
immediate categories for past and future. The specific temporal adverbs we searched for
are shown in Table 5.2. Since both the immediate past and immediate future are expressed
through today in English, we assigned half of today ’s frequency to each of the two stimuli.
We used this second set of frequencies to distribute probability mass within past and future
categories.

Degree of remoteness Temporal adverb

immediate past/fut. today
past recent yesterday
future recent tomorrow
past remote last week/month/year/decade/century

future remote next week/month/year/decade/century

Table 5.2: Temporal adverbs used to estimate the need probabilities for varying degrees of
remoteness.

The resulting need probabilities are shown in Figure 5.2, and follow the rank order
present > past > future. We confirmed this rank order in an independent corpus of spoken
English (Du Bois et al., 2000-2005) by randomly sampling 100 sentences and categorizing
them into present, past, and future based on conjugated verbs in these sentences.

Given these definitions and quantities, we take a semantic system to be informative to
the extent that it exhibits low communicative cost E[C], as defined in Equation 5.5.

Simplicity

Simplicity is the opposite of complexity, and we take the complexity of a tense system to be
the number of grammatical categories in it—whether marked morphologically or periphrasti-
cally, as coded by Dahl (1985). For example, English has morphologically marked categories
for past and present, and a periphrastic category for future, so it has a total complex-
ity of 3. For those systems that do not include all seven temporal locations within their
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Figure 5.2: Need probabilities of 7 temporal locations.

tense categories, we added a null category that groups together the otherwise uncategorized
temporal locations.

5.5 Procedure and results

We tested the proposal of efficient communication by comparing tense systems from Dahl
(1985) to hypothetical systems that partition the seven temporal locations of the idealized
time line in all possible ways. We considered an attested system to be communicatively
efficient to the extent that it is more informative (has lower communicative cost) than most
hypothetical systems of the same complexity.

Figure 5.3a-b summarizes the results. The two axes of panel (a) are complexity and com-
municative cost. Gray dots denote hypothetical systems, and colored circles denote attested
systems. It can be seen that most attested systems are near-optimally efficient, in that they
exhibit near-minimal cost (near-maximal informativeness) for their level of complexity–with
some exceptions. For the tenseless class, there is only one hypothetical system, hence this
system is necessarily and trivially most informative. The class of tense systems without
degrees of remoteness (shown in blue) is near-optimally informative when compared with
hypothetical systems of matching complexity (p < 10−15 using Fisher’s method). However,
within this class, Greenlandic Eskimo is clearly not efficient. The class of tense systems
with degrees of remoteness (shown in red) is also near-optimally informative when taken as
a whole (p < 0.001), although Zulu is further away from the minimal cost system than other
languages in this class.

Why are most languages efficient on this analysis, and a few languages not? The dis-
tribution of need probabilities shown in Figure 5.2 suggests an answer. Past and present
locations have high need probability, therefore any information loss concerning those tem-
poral locations is heavily weighted in Equation 5.5. Information loss results from broad,
uninformative categories; in consequence, categories in the past and present are under espe-
cially great pressure to minimize information loss by being semantically precise or narrow.
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To the extent that this usage pattern appears across languages, it helps to explain why lan-
guages are more likely to subdivide past than future into finer-grained categories (Comrie,
1985: 85).2 Most of the languages in the sample we tested specify past and present tenses–
but Greenlandic Eskimo does not and is penalized for it. Figure 5.3c confirms this line of
reasoning by showing the theoretically optimal tense systems: those systems that exhibit
minimum cost at different complexities. Note that at complexity k = 2, the optimal system
is one that assigns a category to present, and a second category to the remainder of the time
line, reflecting the importance of present in contributing to communicative efficiency. This
optimal system is attested in Hawaiian, as shown in panels (a) and (b).

Why then are there languages that appear inefficient on this analysis? One possibility is
that our theory is simply inadequate, but there are also other possibilities. In some instances,
there appears to be a discrepancy between Dahl’s coding and other reports in the literature.
For example, Dahl codes Mandarin Chinese as having the same suboptimal tense system as
Greenlandic Eskimo, but other works have suggested that Mandarin Chinese is tenseless (Lin,
2012), which would render it (trivially) optimal, like Cebuano. Another possibility is that
tense and aspect are inseparable dimensions of temporal situations (Binnick, 2012), and that
some languages appear inefficient only because we are considering an isolated part of this
larger system of temporal reference. A final possibility is that need probabilities may vary
substantially across cultures. Calculating need probabilities on a per-language basis could
change the efficiency assessment of many languages–either toward greater efficiency, or away
from it. Exploring these possibilities is a topic for future research.

5.6 Conclusion

We have presented evidence that tense systems across languages support efficient communica-
tion, and that this principle may explain cross-language variation in tense systems. Notably,
our analysis has the potential to explain the tendency of languages to have finer-grained
categories in the past than in the future (Comrie, 1985). Our present findings theoretically
align the study of tense with existing work that explains cross-language semantic variation
in the domains of color, kinship, space and number in terms of the same principles.

We find that a small number of tense systems are not communicatively efficient. In more
recent work, Mollica et al. (2020) show an improved fit to the data using an information-
theoretic formulation of these same ideas. If this drive for efficiency is indeed behind the
semantic typology of tense systems, then building this bias into neural models may be a way
to make them more human-like.

2Regier and Kemp (2012) used analogous reasoning to explain markedness asymmetries in kinship ter-
minologies.
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Figure 5.3: Efficiency analyses of tense systems. a) Near-optimal tradeoff between com-
municative cost and complexity. Attested languages are circled with 3-letter abbreviations
and correspond to: Cebuano, Hawaiian, Greenlandic Eskimo, English, Spanish, Sotho, Zulu
and Kikuyu; parentheses indicate multiple languages that have identical categorizations of
the time line. “-dor” and “+dor” correspond to tense systems without and with degrees of
remoteness respectively. b) Theoretically optimal systems at different complexities. Cate-
gories are indicated by different colors. c) Densities of hypothetical systems juxtaposed with
attested systems of equal complexities.
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Chapter 6

Conclusions

6.1 Findings and implications

Where does knowledge of language come from? The knowledge that speakers have of their
language’s grammar and lexicon is at once vast and subtle. Yet famously, they come to posses
this knowledge exposed only to noisy and limited data. How are they able to acquire such rich
knowledge in the face of such impoverished data? This dissertation examines this question by
exploring the linguistic knowledge acquired by neural networks exposed only to distributional
data, providing insights at the level of phonology, morphosyntax and semantics, and drawing
on data from more than 80 languages to achieve cross-linguistic generality. Taken together,
the results of this dissertation illustrate that neural networks trained on distributional data
are fairly accurate yet imperfect models of language. Furthermore, this dissertation suggests
that incorporating the domain-general drive for efficient communication that helps explain
the typology of tense systems is a promising direction forward for improving these models.

The first three studies in this dissertation seek to characterize the linguistic knowledge
of neural networks at the level of phonology, morphosyntax and semantics. The first of
these studies focuses on binary-valued phonological features, the standard representation of
phonemes since Jakobson (1941). Specifically, in Chapter 2 I examine whether four standard
models of learning latent features from distributional data, word2vec and three variants of
recurrent neural networks, are capable of learning human-like representations. Using data
from 77 languages, I show that the more powerful recurrent neural networks do learn human-
like representations, while word2vec does not. The extent to which the models match human
representations is strongly correlated with the amount of training data available. This finding
provides evidence for the view that phonological features need not be innate and suggests
that neural language models can acquire substantial levels of linguistic knowledge.

The second study, in Chapter 3, investigates linguistic competence at the morphosyn-
tactic level. Pre-training large language models, such as BERT Devlin et al. (2018), is a
standard approach to producing models with general-purpose linguistic competence (Howard
and Ruder, 2018; Peters et al., 2018). Many core linguistic phenomena that one would like to
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capture in general-purpose language models depend on syntactic structure Chomsky (1965);
Everaert et al. (2015). Even though such models lack explicit syntactic representations,
there is evidence that they can approximate structure-dependent phenomena under certain
conditions Hewitt and Manning (2019); Clark et al. (2019); Linzen et al. (2016), in addition
to their widespread success in practical tasks. However, most studies are restricted either
to English Goldberg (2019); Marvin and Linzen (2018) or to number agreement between
subjects and verbs Gulordava et al. (2018); Linzen et al. (2016). In Chapter 3, I introduce
a new dataset that contains over two million examples of four types of agreement relations
across 33 languages covering four language families, and is publicly available. I use this new
dataset to evaluate the English and multilingual BERT models, finding that they capture
syntax-sensitive agreement patterns well in simple cases, but that performance degrades in
more challenging linguistic contexts. My results use an evaluation method refined from pre-
vious work, which takes into account a significantly larger portion of the lexicon. Thus, this
chapter broadens the findings of Chapter 2, which also showed an accurate but imperfect fit
to human data.

Much as the Chapter 3 results on morphosyntactic agreement build on the Chapter 2
results on phonological features, Chapter 4 builds on the results of both preceding chapters
by extending the same finding to the level of semantics. This third study looks at the
lexical semantics of visual concepts in two domains (visual verbs and color), comparing
neural models to both sighted and blind speakers’ representations. Recent psycholinguistic
work Bedny et al. (2019); Saysani et al. (2018) has demonstrated that blind and sighted
speakers have qualitatively similar semantic representations of visual concepts. Where does
this knowledge come from? Previous computational work has suggested that some of this
knowledge may be derived from language use. To explore this idea more comprehensively,
I studied eight computational models that have access only to distributional information,
to ascertain whether language use could be the source of this knowledge. In both English
verbs and color terms, I show that these models capture some human-like visual knowledge,
but not all. Only some of the models perform well, and these tend not to fully capture
the fine-grained structure of the domain. My findings reinforce recent claims that some but
not all of blind speakers’ knowledge of visual concepts could come from the distributional
information in language use in the absence of first-person sensory experience.

Taken together, these first three studies in Chapters 2-4 support the argument that neural
networks are fairly accurate yet imperfect models of language. They characterize the extent
to which neural models, as domain-general learners exposed only to distributional data,
display human-like linguistic competence. At all three levels of phonology, morphosyntax
and semantics, a qualitatively identical picture emerges in which neural models show a
surprising degree of correspondence with human knowledge, although this correspondence
degrades in more challenging examples or as we dive deeper into human-like knowledge. The
experiments that led to these results are performed in over 80 languages, providing a level
of cross-linguistic generality not present in other work. These studies shed new light on the
age-old question of the origins of linguistic knowledge, suggesting that it may, in part but
not in full, be derived from the distributional data of language use.
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These first three studies compared neural networks to human data directly, finding an
accurate yet imperfect correspondence between them. This overarching finding raises an
important question: how can we improve neural models to better model human linguistic
competence? The final study of this dissertation suggests one way forward. Generativist the-
ories of language are strongly influenced by typological concerns, and in Chapter 5 I suggest
that neural models should be too. To that end, Chapter 5 investigates the semantic typology
of tense systems. Languages differ widely in their grammatical tenses systems, yet similar
systems develop in unrelated languages. This pattern of wide but constrained variation in
semantic typology appears in numerous domains, such as color, kinship and spatial relations.
Recent work has shown that the cross-linguistic structure of these domains is well explained
by the need to support efficient communication, a trade-off between informativeness and
simplicity. In Chapter 5, I show that this same principle helps explain why tense systems
look the way they do. Using data from 64 diversely sampled languages, I demonstrate that
most languages in the sample support near-optimally efficient communication. Given the do-
main generality of this principle, I then argue that incorporating this same communicative
pressure into neural models is a promising direction for developing more human-like neural
models of language.

Altogether, the four studies in this dissertation paint a clearer picture of where the vast
and subtle knowledge of language that speakers have comes from. Distributional knowledge
can lead to human-like phonological (Chapter 2), morphosyntactic (Chapter 3) and semantic
(Chapter 4) knowledge when used in standard neural network architectures from natural
language processing. The work in this dissertation strives for cross-linguistic generality by
running experiments in more than 80 languages. However, this dissertation also highlights
that current neural network architectures trained on distributional data do not lead to the
full range of human linguistic competence that speakers have. As domain-general and low-
bias learners, neural networks do not make use of known properties of language, such as
the drive for efficient communication that was shown to help explain the typology of tense
systems in Chapter 5.

6.2 Concluding remarks

Neural networks have proven to be enormously successful in applied natural language pro-
cessing tasks, an observation which has suggested that they acquire human-like linguistic
competence on the basis of distributional data. Understanding whether neural networks
genuinely do acquire substantial knowledge of language, or whether they are merely model-
ing complex co-occurrence statistics, is an important question for both linguistics and natural
language processing. This dissertation seeks to characterize what neural networks do learn
about language using data from over 80 languages while pointing to a promising direction
for improving them. As a whole, these studies add to a deeper understanding of language
acquisition, as well as the development of natural language processing models that better
model human language.
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