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ABSTRACT

In this paper, we consider a dynamic linear system in state-
space form where the observation equation depends linearly
on a set of parameters. We address the problem of how to dy-
namically calculate these parameters in order to minimize the
mean-squared error (MSE) of the state estimate achieved by a
Kalman filter. We formulate and solve two kinds of problems
under a quadratic constraint on the observation parameters:
minimizing the sum MSE (Min-Sum-MSE) or minimizing
the maximum MSE (Min-Max-MSE). In each case, the opti-
mization problem is divided into two sub-problems for which
optimal solutions can be found: a semidefinite programming
(SDP) problem followed by a constrained least-squares mini-
mization. A more direct solution is shown to exist for the spe-
cial case of a scalar observation; in particular, the Min-Sum-
MSE problem is optimally solved utilizing Rayleigh quotient,
and the Min-Max-MSE problem reduces to an SDP feasibility
test that can be solved via the bisection method.

Index Terms— Linear dynamic model, Vector Kalman
filter, Linearly reconfigurable Kalman filter, MSE minimiza-
tion.

1. INTRODUCTION

Dynamic state-space models in which the observation equa-
tion depends on parameters that can be adaptively tuned to
improve performance have recently been proposed by several
authors. For example, in [1], dynamic wireless channel pa-
rameters such as the delay of arrival, the angle of arrival, the
angle of departure, etc, are tracked via a Kalman filter whose
performance depends on properties of the antenna array. In
[2], the parameters to be estimated are the position and veloc-
ity of a target and the observations at a set of mobile sensors
are the time delay and Doppler shift of the signal reflected by
the target. The positions of the mobile sensors are adjusted
in order to minimize the tracking error of a standard extended
Kalman filter. In [3], a distributed sensor network problem
is considered where the observed signal is a linear function
of the transmission gain of each sensor, and optimal values
for these gains are found under different power constraintsto

minimize the mean-squared error (MSE) of a scalar variable
at the fusion center.

In this paper, we consider a scenario that generalizes the
one assumed in [3] by allowing the estimated parameters and
the observations to be vector- rather than scalar-valued. The
state-space observation matrix is assumed to depend linearly
on a set of parameters, and we consider the problem of op-
timizing these parameters in order to minimize the MSE ob-
tained by a Kalman filter that tracks the unknown state. Two
different optimization problems are considered: one that min-
imizes the sum MSE (Min-Sum-MSE) over all the parame-
ters, and another that minimizes the maximum MSE (Min-
Max-MSE) of all parameters. In the general case, we divide
the overall problem into two sub-problems whose optimal so-
lutions can be found. The first sub-problem estimates the opti-
mal observation matrix without taking the linear structureinto
account, and the second finds the set of parameters that are
closest to the resulting observation matrix under a quadratic
constraint on the parameters themselves. Dividing the prob-
lem into these two steps will cause a performance loss, but
simulations demonstrate that the loss is minimal, and perfor-
mance is close to the lower bound given by the solution to
the unconstrained problem. We also consider the special case
of a scalar observation, and show that in this case the Min-
Sum-MSE problem is converted to a Rayleigh quotient maxi-
mization problem, for which an optimal closed-form solution
is obtained, and we show that for the Min-Max-MSE prob-
lem, a relaxed version of the problem leads to a simple SDP
feasibility test that can be solved via the bisection algorithm.
Simulation results show that in most cases, the solution to the
relaxed and unrelaxed problems are the same.

2. VECTOR OBSERVATION MODEL

We assume the dynamic parameter to be estimated is a
complex-valued vector that obeys the following state-space
model:

θn+1 = Fθn + un,

whereθn+1 ∈ CM×1 is the parameter at time stepn+1,F ∈
CM×M is the state transition matrix, andun ∼ CN (0,Q) is
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the process noise. The observed signal vector is given by

yn = Cθn + vn,

wherevn ∼ CN (0, σ2
vIL) is the observation noise,IL is the

L×L identity matrix andC ∈ CL×M is the observation ma-
trix. We assume thatC is a linear function of some parameters
a ∈ C

N×1 such thatvec[C] = Ga for a givenG ∈ C
LM×N .

The MSE of the state estimate is found via the standard
Kalman filtering equations [4]:

• Prediction MSE Matrix

Mn|n−1 = FMn−1|n−1F
H +Q

• Kalman Gain Matrix

Kn = Mn|n−1C
H(σ2

vIL +CMn|n−1C
H)−1

• MSE matrix

Mn|n = (IM −KnC)Mn|n−1

=

(

M−1
n|n−1 +

1

σ2
v

CHC

)−1

.

2.1. Minimize Sum MSE

In this section we consider the problem of minimizing the
sum-MSE under a quadratic constraint ofa. The ideal opti-
mization problem is formulated as

min
a

tr(Mn|n) (1)

s.t. ‖C(a)‖2F ≤ P .

The solution to (1) is difficult to obtain directly, so instead we
divide the optimization problem into two subproblems. We
first find an unconstrainedC∗ that minimizestr(Mn|n), and
then based onC∗, we obtain the approximate solutiona∗.

The first step is to solve

min
C

tr(Mn|n) (2)

s.t. ‖C‖2F ≤ P .

DefiningC̃ = CHC, we can rewrite (2) as

min
C̃

tr(D) (3)

s.t. D−1 = M−1
n|n−1 +

1

σ2
v

C̃

tr(C̃) ≤ P

C̃ � 0 .

Replacing the equality in the first constraint of (3) with an
inequality yields an equivalent optimization problem:

min
C̃,D

tr(D) (4)

s.t. D−1 � M−1
n|n−1 +

1

σ2
v

C̃

tr(C̃) ≤ P

C̃ � 0 .

The problem in (4) is equivalent to (3) in the sense that for
the optimal solution of problem (4) the equality of the first
constraint must hold. According to the Schur complement
[5], the first constraint in (4) is equivalent to :

[

M−1
n|n−1 +

1
σ2
v

C̃ IM

IM D

]

� 0 . (5)

Plugging (5) into (4), we have

min
C̃,D

tr(D) (6)

s.t.

[

M−1
n|n−1 +

1
σ2
v

C̃ IM

IM D

]

� 0

tr(C̃) ≤ P

C̃ � 0 .

By converting the constraints of problem (6) into a large block
diagonal linear matrix inequality, we can transform the prob-
lem into a standard SDP form, which can be efficiently solved
using the interior point method.

Denote the optimal solution to problem (6) asC̃∗, and
define the singular value decomposition ofC̃∗ as C̃∗ =

UΣUH , so thatC∗ = Σ
1

2UH . The performance ofC∗

provides a lower bound for problem (1). To estimatea∗, we
solve1

min
a

‖vec(C∗)−Ga‖22

s.t. aHGHGa = P ,

which directly leads to

a∗ = γ(GHG)−1GHvec(C∗) , (7)

whereγ is defined asγ =
√

P
vec(C∗)HG(GHG)−1GHvec(C∗) .

2.2. Minimize the Maximum MSE

When the maximum MSE is to be minimized, the parameter
optimization problem can be stated as

min
a

max
i

[Mn|n]i,i (8)

s.t. ‖C(a)‖2F ≤ P .

Similar to (1), when treatingC as the variable to be opti-
mized, we can rewrite problem (8) as

min
C

max
i

[Mn|n]i,i (9)

s.t. ‖C‖2F ≤ P .

Introducing an auxiliary variablet, we can rewrite (9) as

min
C,t

t (10)

s.t. t ≥ [Mn|n]i,i ,

‖C‖2F ≤ P .

1At the optimal solution of (1), the constraint should attainequality.



Defineei as the vector with all zeros except for a 1 in theith
position, so that (10) is equivalent to

min
C,t

t (11)

s.t. t ≥ eTi Mn|nei ,

‖C‖2F ≤ P .

Again, we utilize the Schur complement to rewrite the first
constraint in (11) and we have

min
C̃,t

t (12)

s.t.

[

t ei

eTi M−1
n|n−1 +

1
σ2
v

C̃

]

� 0, i = 1, · · · , N

tr(C̃) ≤ P

C̃ � 0

Similar to (6), we can write the constraints of problem (12)
in a large block diagonal linear matrix inequality and convert
the problem to a standard SDP form. After obtainingC̃∗, we
can use (7) to find the solutiona∗.

3. SCALAR OBSERVATION MODEL

For a scalar observation, we have

yn = cHθn + vn,

wherec = Ga and as beforeG ∈ CM×N . The MSE of the
estimated state is given by

Mn|n = Mn|n−1 −
Mn|n−1cc

HMn|n−1

σ2
n + cHMn|n−1c

. (13)

3.1. Minimize Sum MSE

For a scalar observation, the sum MSE is computed as

tr(Mn|n) = tr(Mn|n−1)−
cHM2

n|n−1c

σ2
n + cHMn|n−1c

,

and we formulate the following optimization problem:

max
a

aHGHM2
n|n−1Ga

σ2
n + aHGHMn|n−1Ga

(14)

s.t. aHGHGa ≤ P .

Since the objective function in (14) is monotonically increas-
ing with the norm ofc, the constraint must be active at the
optimal solution and we can rewrite the problem as

max
a

aHGHM2
n|n−1Ga

aH(
σ2
n

P
GHG+GHMn|n−1G)a

s.t. aHGHGa = P .

The solution to the above problem can be found directly as

c∗ =

√

P

uHBu
B− 1

2u,

whereB =
σ2

n

P
GHG+GHMn|n−1G, andu is the eigenvec-

tor corresponding to the largest eigenvalue ofB− 1

2GHM2
n|nGB− 1

2 .

3.2. Minimize Maximum MSE

When the maximum MSE is to be minimized, the optimiza-
tion problem becomes

min
a

max
i

[Mn|n]i,i (15)

s.t. aHGHGa ≤ P .

Substituting (13) into (15), we have

min
a

max
i

[Mn|n−1]i,i −
eTi Mn|n−1GaaHGHMn|n−1ei

σ2
n + aHGHMn|n−1Ga

s.t. aHGHGa ≤ P .

Introducing the auxiliary variablet, we have

min
a

t (16)

s.t. [Mn|n−1]i,i −
eTi Mn|n−1GaaHGHMn|n−1ei

σ2
n + aHGHMn|n−1Ga

≤ t,

i = 1, · · · , N

aHGHGa ≤ P .

After some mathematical manipulation, we can rewrite prob-
lem (16) into the following form

min
a

t (17)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ aHEia, i = 1, · · · , N

aHGHGa ≤ P,

whereEi is defined asEi = GH(Mn|n−1eie
T
i Mn|n−1 −

([Mn|n−1]i,i − t)Mn|n−1)G. Problem (17) is equivalent to

min
a

t

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N

tr(AGHG) ≤ P

rank(A) = 1

A � 0 .

At this point, we see that the problem could be efficiently
solved without the rank constraint. Consequently, we relax
this constraint to yield a quasi-convex problem:

min
a

t (18)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N

tr(AGHG) ≤ P

A � 0 .



In the above problem, given a deterministict, all the con-
straints are convex. Denote the optimal value of problem (18)
as t∗, so that for ãt that makes the problem (18) feasible,
we havet∗ ≤ t̃, while if the problem is infeasible, we have
t∗ > t̃. To findt∗, we search overt using the bisection method
[6]. For a givent, we solve the SDP feasibility problem:

find A

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N

tr(AGHG) ≤ P

A � 0

to obtain the optimalt∗, then we plug thist∗ into problem (18)
to find A∗. If rank(A∗) = 1, thenA∗ is the optimal solu-
tion to problem (15), otherwise, a rank-one solutiona∗ can
be reconstructed. The optimal valuet∗ of problem (18) can
be used as a lower bound for the minimum MSE of problem
(15). Our simulations indicate that in most cases, the rank
of A∗ is one, which indicates the performance ofa∗ is very
close to the lower bound provided byA∗.
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Fig. 1. Sum MSE vs. the value of constraintP

4. SIMULATIONS

In the following simulations, the dimension ofθn anda are
M = 4 andN = 3 respectively andL is set to4. The obser-
vation noise variance is set toσ2

v = 0.5, and the covariance
Q is assumed to be an identity matrix. The matrixF and
theG are generated as complex Gaussian matrices with inde-
pendent unit variance elements, andF is scaled to guarantee
convergence of the Kalman filter. Once they are generated,
F andG are kept constant in the simulation. The MSE per-
formance for different constraintsP are calculated after con-
vergence of the Kalman filter. In Figs. 1-2, for the vector-
observation case the lower bound corresponds to the MSE
calculated usingC∗. The performance gap between the lower
bound and the proposed method represents the performance

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

P

M
S

E

 

 

Min−Sum−MSE
Min−Max−MSE
Min−Max−MSE (Lower Bound)
Min−Max−MSE
Min−Sum−MSE
Min−Max−MSE (Lower Bound)
Min−Sum−MSE (Lower Bound)

Vector Observation

Scalar Observation

Fig. 2. Maximum MSE vs. the value of constraintP

loss introduced by reducing the number of control parameters
from 16 to 3. When theP is small, the proposed method can
achieve a performance close to the lower bound,e.g., when
P = 0.5 (corresponding to the first point on the curve), the
performance degradation in the sum MSE is less than10%.
For the scalar observation case, we see as expected that the
Min-Sum algorithm has the lowest sum-MSE and the Min-
Max algorithm has the lowest maximum MSE. Surprisingly,
however, in the vector case the performance of the Min-Sum
and Min-Max algorithms is essentially identical. The perfor-
mance of the Min-Max-MSE algorithm appears to be equal
to the lower bound which indicates that the solutionA∗ to
problem (18) is very likely rank-one even with the constraint
relaxed. With increasingP , a performance floor exists for the
scalar-observation case, while in the vector-observationcase
the MSE performance continues to improve.

5. CONCLUSION

In this paper, we investigated the problem of a Kalman fil-
ter with a linearly reconfigurable observation matrix. Two
kinds of problems were formulated: Min-Sum-MSE or Min-
Max-MSE. For the vector observation model, both of the op-
timization problems are difficult to solve directly, and we di-
vided the problem into two simpler sub-problems that are eas-
ier to solve. Simulation results show that when the quadratic
constraint is small, the proposed approach provides perfor-
mance close to the MSE lower bound. For the scalar obser-
vation model, the Min-Sum-MSE problem is converted to a
Rayleigh quotient maximization problem, for which an opti-
mal closed-form solution is obtained, and for the Min-Max-
MSE problem, we relax the rank-one constraint on the obser-
vation parameters and transform the optimization problem to
an SDP feasibility problem. Based on the solution to the SDP
feasibility problem, a rank-one solution can be reconstructed.
Simulation results show that with a very high probability the
solution of the relaxed problem is indeed rank-one.
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