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Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the
treatment of haematological cancers and is currently being investigated for
solid tumours, including high-grade glioma brain tumours. There is a despe-
rate need to quantitatively study the factors that contribute to the efficacy of
CAR T-cell therapy in solid tumours. In this work, we use a mathematical
model of predator–prey dynamics to explore the kinetics of CAR T-cell killing
in glioma: the Chimeric Antigen Receptor T-cell treatment Response in
GliOma (CARRGO) model. The model includes rates of cancer cell prolifer-
ation, CAR T-cell killing, proliferation, exhaustion, and persistence. We use
patient-derived and engineered cancer cell lines with an in vitro real-time cell
analyser to parametrize the CARRGO model. We observe that CAR T-cell
dose correlates inversely with the killing rate and correlates directly with the
net rate of proliferation and exhaustion. This suggests that at a lower dose of
CAR T-cells, individual T-cells kill more cancer cells but become more
exhausted when compared with higher doses. Furthermore, the exhaustion
rate was observed to increase significantly with tumour growth rate and was
dependent on level of antigen expression. The CARRGO model highlights
nonlinear dynamics involved in CAR T-cell therapy and provides novel
insights into the kinetics of CAR T-cell killing. The model suggests that CAR
T-cell treatmentmay be tailored to individual tumour characteristics including
tumour growth rate and antigen level to maximize therapeutic benefit.
1. Statement of significance
We use a mathematical model to deconvolute the nonlinear contributions of chi-
meric antigen receptor (CAR) T-cell proliferation and exhaustion to predict
therapeutic efficacyanddependence onCART-cell dose and target antigen levels.
2. Introduction
CAR T-cell therapy is a targeted immunotherapy, demonstrating remarkable
anti-tumour efficacy, particularly in the treatment of haematologic cancers
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Table 1. CARRGO model parameters. All parameters are assumed to be
non-negative except κ2 which may be positive or negative.

parameter description unit

ρ cancer cell net growth rate day−1

K carrying capacity cell

κ1 CAR T-cell killing rate day−1 cell−1

κ2 net rate of proliferation and

exhaustion of CAR T-cells when

stimulated by cancer cells

day−1 cell−1

θ CAR T-cell death rate (persistence) day−1
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[1,2]. CAR T-cell therapy is a specific type of immunotherapy
where T-cells are genetically modified to recognize a tumour
antigen thereby specifically redirecting T-cell cytolytic
activity. Inspired by the success of CAR T-cell therapy in
liquid tumours, there has been great interest in expanding
the use of CAR T-cells for the treatment of solid tumours,
such as glioblastoma (GBM), a highly aggressive form of pri-
mary brain cancer. Several clinical trials using CAR T-cells to
treat GBM have been initiated all over the world [3–6]. At this
early stage of clinical development, CAR T-cells offer much
promise in solid tumours. However, the diversity of current
clinical trials employing varying types of CARs for different
solid tumours, target patient populations, preconditioning
regimes and cell origins (autologous versus allogeneic) pre-
sents a significant challenge in identifying which aspects of
a given CAR T-cell treatment protocol are most critical for
its effectiveness. An additional critical challenge for CAR T-
cell therapy is the potential for transient progression, where
the cancer appears to progress before eventually responding
to the treatment [7,8].

In order to address these challenges in CAR T-cell therapy
for solid tumours, we endeavoured to study the kinetics of
CAR T-cell killing with an in vitro system and a mathematical
model. Mathematical models are useful to describe, quantify
and predict multifaceted behaviour of complex systems, such
as interactions between cells. A mathematical model is a for-
malized method to hypothesize systems dynamics, and yield
solutions that predict the system’s behaviour with a given set
of parameters and initial conditions. Mathematical models
can be versatile and tested with clinical data which may be
obtained in vivo from non-invasive imaging [9–11] and the
models can be refined when additional information about
the system becomes available. Many mathematical models
have been developed to understand tumour progression to
guide refinement of cancer therapy regimens [12–14].

As CAR T-cell therapy is a newly advanced treatment
modality, relatively few studies have used computational
modelling to understand and improve this cell-based
therapy. Recently, computational models have been devel-
oped to investigate cytokine release syndrome for toxicity
management [15–17], effect of cytokine release syndrome
on CAR T-cell proliferation [18], mechanisms of CAR T-cell
activation [19,20], and dosing strategies [21]. However, it
remains an open challenge how to use mathematical model-
ling to study and ultimately predict dynamics of CAR T-
cell mediated cancer cell killing with respect to CAR T-cell
dose, donor-dependent T-cell differences, cancer cell prolifer-
ation, target antigen expression, and how these factors
contribute to the overall effectiveness of CAR T-cell therapy.

Based upon our pre-clinical and clinical experiencewith our
well-characterized IL13Rα2-targeted CAR T-cell therapy for
recurrent GBM [22,23], we have identified several factors
which contribute to the effectiveness of CAR T-cells, namely:
rates of proliferation, exhaustion, persistence and target cell kill-
ing. To study these various facets of CAR T-cell killing kinetics,
wemodelled thedynamics between cancercells andCART-cells
as a predator–prey system with a mathematical model we call
CARRGO: Chimeric Antigen Receptor T-cell treatment
Response inGliOma.Weusea real-time cell analyserexperimen-
tal systemtoestimateparameters of themathematicalmodel and
then apply the model to in vivo human data. The long-term aim
of thiswork is todevelopamodelwhich couldbeused topredict
and eventually to optimize response to CAR T-cell therapy.
3. Methods
The CARRGO mathematical model is a variation on the classic
Lotka–Volterra [24,25] predator–prey equations:

dX
dt

z}|{
cancer cell
rate of change

¼ rX 1�X
K

� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
logistic growth
of cancer cells

� k1XY
zfflffl}|fflffl{

CAR T-cell
induced cancer cell death

ð3:1Þ
and

dY
dt

z}|{
CAR T-cell

rate of change

¼ k2XY|fflffl{zfflffl}
cancer cell stimulated proliferation

or exhaustion of CAR T-cells

� uY|{z}
CAR T-cell death

,

ð3:2Þ
where X represents the density of cancer cells, Y is the density of
CAR T-cells, ρ is the net growth rate of cancer cells, K is the
cancer cell carrying capacity, k1 is the killing rate of the CAR
T-cells, k2 is the net rate of proliferation including exhaustion
of CAR T-cells when encountered by a cancer cell and u is the
death rate of CAR T-cells. The parameters ρ, K, k1, u are constants
and assumed to be non-negative except for k2 which can be
either positive or negative (table 1). A positive value of k2 indi-
cates an increased rate of CAR T-cell proliferation when
stimulated by interaction with a cancer cell. A negative value
of k2 indicates exhaustion or limited activation of CAR T-cells
resulting from interaction with a cancer cell. Exhaustion and
hypoactivation of CAR T-cells are combined into a single value
and are not modelled individually.

We chose to model the net number of cancer cells and simple
interactions between cancer cells and CAR T-cells because the
output data from the culture system are limited to cell number
over time. We therefore are only able to infer dynamics at this
scale and dimension (i.e. number of cells and time). Moreover,
we performed a system identifiability analysis to demonstrate
the parameters of the model can be uniquely determined from
the data in this experiment (see electronic supplementary
material, methods) [26–29]. Future studies may examine more
complex dynamics such as individual cell antigen levels, hetero-
geneity, resistant and sensitive sub-populations, repeated
treatments, etc. with other experimental designs which directly
measure these features.

3.1. Model assumptions
The CARRGO model treats cancer cell–CAR T-cell dynamics in
this experimental condition as a closed predator–prey system.
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Figure 1. Possible dynamics from the CARRGO model. Dynamics are represented as trajectories in a two-dimensional phase-space (x,y) ¼ (cancer cells, CAR T-cells). (a)
Case 1: successful CAR T-cell treatment (A = 0, B = 0.2). This situation predicts all long-term dynamics to result in eradication of cancer cells with varying levels of
residual CAR T-cells. (b) Case 2: CAR T-cell treatment failure (A = 0, B =−0.2). This situation predicts all long-term dynamics to result in cancer cells growing to carrying
capacity and eventual elimination of CAR T-cells. (c) Case 3: pseudo-failure/pseudo-response (A = 0.14, B = 1.6). This situation predicts long-term coexistence of cancer
cells and CAR T-cells, denoted P3 (red circle). In this situation, cancer cell and CAR T-cell populations increase, then decrease, then increase in an oscillatory manner. The
dark blue regions show cancer cell response and the light grey regions show cancer cell progression. We note that all three dynamics predicted by the CARRGO model
include periods of transient increase or decrease in the cancer cell population, pointing to pseudo-progression of cancer, which is a critical challenge in CAR T-cell
treatment. (Online version in colour.)
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The model assumes (1) the populations are well mixed, (2) cancer
cell growth is limited by space and nutrients (culture media) in
the in vitro culture system and therefore grow logistically, (3)
CAR T-cells kill cancer cells when they interact via the law of
mass action, (4) the CAR T-cell killing rate does not explicitly
assume a dependence on antigen density, (5) CAR T-cells may
be stimulated to proliferate or to undergo loss of effector func-
tion—defined as exhaustion—upon contact with a cancer cell
[30], and (6) the CAR T-cell death rate is independent of cancer
cell density. We chose the logistic growth model for the cancer
cell population because the fixed growth rate and carrying
capacity parameters were the biological quantities of interest
when comparing CAR T-cell killing kinetics across cell lines.
Witzel et al. compared several sigmoidal growth laws including
logistic, Gompertz and Richards, and showed that all these
models can be fitted equally well to this form of experimental
data [31]. Data supporting our model assumptions are given in
electronic supplementary material, figures S1 and S2.

3.2. Dynamical system analysis of the CARRGO model
Closed form solutions cannot be obtained for the relatively
simple CARRGO model. To study the possible dynamics of the
CARRGO model, we perform classical dynamical system analy-
sis. Detailed mathematical analysis of this model can be found in
several textbooks on dynamical systems [25,32]. In the interest of
informing the reader, we briefly summarize the main points here.
We begin by (1) scaling (non-dimensionalizing) the variables in
the system and then (2) identify stationary points and classify
their stability and finally (3) interpret the stationary points and
system dynamics in terms of the initial numbers of cancer cells
and CAR T-cells.

First, we scale the variables in the CARRGO model to obtain
a model without physical units in order to study the intrinsic
dynamics of the system. We scale time, the cancer cell and
CAR T-cell populations as t ¼ tr, y ¼ ðk1=rÞY, x ¼ X=K:

These variables are substituted into the CARRGO model
(equations (3.1) and (3.2)) to obtain the scaled dimensionless
system

dx
dt

¼ x(1� x)� xy ð3:3Þ
and

dy
dt

¼ Bxy� Ay,

with dimensionless constants A ¼ u

r
, B ¼ k2K

r
:

9>>=
>>; ð3:4Þ

The steady-state solutions of this system (equations (3.3) and
(3.4)) are obtained by setting the time derivatives equal to zero.
The values of the dimensionless parameters A and B determine
the dynamics of the system which may be represented as trajec-
tories in a two-dimensional phase-space of cancer cells and CAR
T-cells (x, y). Three stationary points corresponding to steady-
state solutions are denoted by Pi ¼ (x,y): P1 ¼ (0,0) where both
the cancer cells and CAR T-cells are eliminated, P2 ¼ (1,0)
where the cancer cell population reaches the carrying capacity
and CAR T-cells are eliminated, and a coexistence of both popu-
lations, P3 ¼ (A=B, ð 1� ðA=BÞÞ). For a given initial condition,
three possible dynamics can result from this model depending
on the values of A and B (figure 1).
3.2.1. Case 1: successful CAR T-cell treatment ðA ¼ 0, B . 0Þ
This situation occurs when the death rate of CAR T-cells is neg-
ligible ðu � 0Þ relative to the proliferation rate of cancer cells (ρ),
and the CAR T-cells are stimulated to proliferate when encoun-
tering a cancer cell ðk2 . 0Þ. In this case, the equilibrium points
are when the cancer cells are eliminated with some remaining
CAR T-cells (0,y) and when the cancer cells reach carrying
capacity with no remaining CAR T-cells (K,0). Cancer cell elimin-
ation (0,y) is stable only if the product of the rate of CAR T-cell
killing and the number of CAR T-cells is greater than the prolifer-
ation rate of the cancer cells ðY . r=k1Þ. If the initial CAR T-cell
population satisfies the inequality Y , ðr=k1Þ � ðrX=Kk1Þ, the
CARRGO model predicts a transient progression of cancer cells
before eventual response (grey region). The point (K,0) is an
unstable repulsor state (figure 1a).
3.2.2. Case 2: CAR T-cell treatment failure ðA ¼ 0, B , 0Þ
This situation occurs when the proliferation rate of CAR T-cells is
less than the exhaustion rate of CAR T-cells due to interaction with
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cancer cells. In this case, the fixed points (0,y) and (K,0) are the
same as in case 1. However, the point (K,0) is now a stable attractor
state, corresponding to the extinction of CAR T-cells and the
cancer cells eventually growing to carrying capacity. Again,
cancer cell elimination (0,y) is stable only if the CAR T-cell popu-
lation is larger than the ratio of cancer cell proliferation and CAR
T-cell killing rate ðY . r=k1Þ. If the initial CAR T-cell population
satisfies the inequality Y . ðr=k1Þ � ðrX=Kk1Þ, the CARRGO
model predicts a transient regression of cancer cells before eventual
rapid progression (grey region). This case is a failure of CAR T-cell
treatment (figure 1b).

3.2.3. Case 3: pseudo-failure or pseudo-response
ðA . 0, B . 0Þ

In this situation, the third stationary point P3 corresponding to
cancer cell and CAR T-cell coexistence lies in the first quadrant
(positive numbers of cancer cells and CAR T-cells) only if
A � B. The point P3 ¼ AðB� AÞ=B is then a stable sink (figure 1c).
This case results in an oscillating behaviour of an increase in
cancer cells corresponding to tumour progression followed by a
decrease in tumour cells corresponding to treatment response.
The transient and oscillatory nature of these dynamics may be
interpreted as a ‘pseudo’-failure and ‘pseudo’-response to the
therapy. We note that cancer progression and treatment occur on
finite and sometimes small time scales and therefore oscillatory
dynamics may not be observed in vivo due to insufficient time
to observe these changes.

3.3. Cell lines
Low-passage primary brain tumour (PBT) lines were derived from
GBM patients that had undergone tumour resections at City of
Hope as previously described [23,33]. Fibrosarcoma line HT1080
was obtained from the American Tissue Culture Collection
(ATCC) and maintained according to recommendations. The cell
line PBT030 endogenously expresses high level of IL13Rα2.
HT1080 and PBT138 do not express IL13Rα2 and were lentivirally
engineered to express varied levels based on different promoter
strengths to investigate the relationship between killing kinetics
and antigen expression level: high (greater than 70%+) driven by
the EF1α promoter, medium (between 40%+ and 70%+) driven
by the PGK promoter, low (less than 20%+) driven by the attenu-
ated PGK100 promoter [34,35]. These cell lines are denoted with
H, M, L, respectively (e.g. HT1080-H). These tumour cell lines
were selected because they differ in aggressiveness (proliferation
rates) and antigen expression levels (endogenous or engineered).

CAR T-cells were derived from healthy donor CD62 L+
CD45RO+ central memory T-cell population and lentivirally trans-
duced with second-generation IL13Rα2-targeting CARs: IL13BBζ
or IL1328ζ [23,33,36,37]. Transduced product was enriched for
CAR and expanded in X-Vivo media with 10% fetal bovine
serum until 17 days in culture and cryopreserved. Non-transduced
T-cells expanded under the same condition were used as mock
control.

3.4. Experimental design
Real-time monitoring of cancer cell growth was performed by
using xCELLigence cell analyser system [38]. This system uses
electrical impedance to non-invasively quantify adherent cell
density with a dimensionless number referred to as cell-index
(CI). The cell-index read-out is strongly positively correlated
with the number of cells in the well (r2 > 0.9) and can be used
as a measure of cell number [31]. We therefore report
CARRGO parameter values in units CI which can be translated
into units per cell based on the linear relation. Real-time cytotox-
icity assay was performed using xCELLigence system in
disposable 96 well E-Plates. Prior to seeding, tumour cells were
enzymatically single-celled and seeded at 25 × 103, 12.5 × 103 or
2 × 103 cells per well depending on the cell line. Cells were
either left untreated (triplicates per cell line) or treated with
CAR T-cells at effector to target ratios (E : T) of 1 : 5, 1 : 10 and
1 : 20. CAR T-cells were added to the wells about 24 h after
cancer cell seeding. Growth curves were recorded over 4 days
with temporal resolution of 15 min (figure 2). Each cell line
was treated with three IL13Rα2-targeted CAR T-cells: BBζ, 28ζ
and mock. At the end of the experiment, flow cytometry was per-
formed to measure the residual CAR T-cells, cancer cells and
IL13Rα2 expression level. The details of cancer cell seeding and
effector to target ratios used for the experiments are given in elec-
tronic supplementary material, table S1. The cancer cell
dynamics of all the wells of 96 well E-plate for all cell lines are
given in electronic supplementary material, figure S3.

3.5. CARRGO model fitting to experimental data
The first 24 h of the time series describes the process of cell
attachment to the bottom of the plate (figure 2). The spatial pro-
cess of cell adhesion and spreading in the well can be modelled
as a reaction–diffusion process, described in electronic sup-
plementary material, figure S4. Since we are interested in cell
growth kinetics, we omitted the data from the first 24 h during
the attachment process. The final time point is determined
when the cells reach confluency which varies by cell line.
Observed time of confluency for the PBT cell line was around
120 h from the time of seeding while HT1080 reached confluency
within 80 h. The data points from CAR T-cell administration
(24 h after seeding) up to 80% of maximum CI value (confluency)
were used for model fitting to estimate the parameters. At greater
than 80% of the maximum CI, the linear relationship between CI
and cell number no longer holds [31].

Cancer cell net growth rate r and carrying capacity K (equation
(3.1)) were computed by fitting logistic growth to untreated cancer
cell time-series data. The CAR T-cell killing rate k1, growth rate k2
and death rate u were computed by fitting the solution of the
CARRGO model (equations (3.1) and (3.2)) to treated cancer cell
time-series data by minimizing the root mean square error. Linear
regression was used to determine the quality of model fitting
(R2). All optimization computations were performed in Matlab
with fmincon.

3.6. CARRGO model fitting to human data
A patient with recurrent glioma received CAR T-cells engineered
for IL13Rα2 and showed complete tumour regression, which was
published as a brief report by Brown et al. in 2016 [23]. We retro-
spectively collected the magnetic resonance imaging (MRI) data
of this patient and calculated tumour volumes to be used to fit
the CARRGO model. Three lesions were selected using the
lesion labelling reported in Brown et al. [23]: lesions T6, T7
which responded to IL13Rα2 targeted CAR T-cells and lesion
T9 which was a lesion that appeared later on which did not
respond to the therapy. Tumour volumes for each lesion were
estimated by manual segmentation of contrast-enhancing lesions
from T1-weighted post-contrast MRIs. The number of cancer cells
(CC) was estimated by calculating CC = [tumour volume (µm3)]/
[GBM cell size (µm3)] with the average cell diameter assumed to
be 20 µm [39]. The volume of a spherical cell is then given by
V ¼ ð4p=3Þð10 mmÞ3. These relationships were used to estimate
the total number of cancer cells in a tumour volume. The
tumour growth rate (ρ) for lesions T6 and T7 was computed
from two subsequent imaging time points following the first
appearance of the lesion on MRI. Lesion T9 underwent surgical
resection prior to CAR T-cell administration. The tumour
growth rate for lesion T9 was computed from the pre-surgical
MRI data. CAR T-cells were administered first directly into the
tumour tissue and subsequently into the cerebrospinal fluid via
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the intraventricular injection. Because the CAR T-cells migrated
to several tumour foci in the patient, we assumed a small fraction
(5–10%) of the infused dose reached each individual lesion at
each infusion. The CARRGO model was fitted to the time-
series MRI-derived tumour volume data by minimizing the
root mean square error for MRIs before and during CAR T-cell
treatment to compute the rates of CAR T-cell killing k1, exhaus-
tion k2 and death θ. For lesion T9, the CARRGO model was fitted
to the MRI data following CAR T-cell administration which
occurred after the partial surgical resection.
4. Results
4.1. Model/data fitting to in vitro data
A high goodness of fit of the CARRGO model to the xCELLi-
gence data was observed across all cell lines (R2 ¼ 0:93+ 0:1,
figure 3; electronic supplementary material, figure S3). To inves-
tigate the sensitivity of our model fitting to sampling frequency,
we down-sampled the data by taking time intervals of 2, 5 and
10 h. No significant variation was observed in the model par-
ameters k1, k2 and u to the down-sampled data (repeated
measure ANOVA p> 0.1) (electronic supplementary material,
figure S5 and S6). We consistently observed very small values
of the CAR T-cell death rate ðu , 10�3Þ. Uniqueness of the par-
ameters was tested by choosing 100 different combinations of
values of the parameters across several orders of magnitude
for the model fitting optimization procedure. We found that if
the optimization converged, it converged to unique values of
the parameters, which is a direct consequence of the identifiabil-
ity analysis of the model and minimum number of points
required to resolve the model (see electronic supplementary
material, S1, figure S7 and movie S1).

4.2. Validation of xCELLigence dynamics with flow
cytometry

Because the xCELLigence system is an indirect measure of
cell number, we validated the previously reported linear
relationship [38] between the cell index read-out from the
machine and the number of cells measured with flow cytome-
try (R2 > 0.9; electronic supplementary material, S2 and figure
S8). Because cell index measures the change in electrical
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impedance caused by both cancer cells and CAR T-cells
adhering to the well, CAR T-cell dynamics are not directly
measured by the system, so we compared the cancer cell
(CC) to T-cell ratio (TC) from flow cytometry to that pre-
dicted from the CARRGO model. The model predicted ratio
CC/TC at end time point shows a similar trend to that
measured with flow cytometry, indicating the CARRGO
model-predicted CAR T-cell dynamics derived from the
xCELLigence data are consistent with flow cytometry
measurements. This trend was observed in PBT030 and
PBT138 for BBζ and 28ζ CAR T-cells and for all doses
(electronic supplementary material, S2 and figure S9).

4.3. CAR T-cell dose-dependent dynamics
We examined the effect of varying the effector to target ratio,
i.e. CAR T-cell dose, for all cell lines. The CAR T-cell death
rate parameter was found to be very small (u , 10�3 day−1)
for all cancer cell lines and all CAR T-cells and doses. The kill-
ing rate parameter k1 shows a negative correlation while k2
shows positive correlation with respect to the CAR T-cell
dose. The parameter k2 was negative only for tumour line
HT1080-H which indicates the exhaustion rate being much
stronger than the proliferation rate of the CAR T-cells. A posi-
tive correlation of k1 with CAR T-cell dose indicates that
higher dose of CAR T-cell results in a lower killing rate,
since each individual CAR T-cell has fewer number of
cancer cells to encounter. The range of values for k1 and k2
varied with cancer cell line as the growth rate of each cell
line is different from each other; however, the overall trends
were preserved across the cell lines. Plots of u, k1 and k2 for
PBT030, PBT138 (seeding 12.5 × 103) and HT1080-H treated
with BBζ CAR T-cells are shown in figure 4. Other cell lines
and parameters for 28ζ CAR T-cells are given in electronic
supplementary material, S2 and figure S10.
4.4. Relating k1, k2 with tumour growth rate and
antigen expression

Tumour growth rate r varies significantly ( p < 0.01) among
different cell lines and with antigen expression level (see elec-
tronic supplementary material S2 and figure S11a). To
investigate the relationship between tumour growth rate
and CAR T-cell killing k1 and exhaustion k2, we evaluated
cell lines with antigen levels greater than 80% and treated
with BBζ CAR T-cells at an effector to target ratio of 1 : 5.
No significant correlation was found between the cancer
cell proliferation rate r and killing rate (k1) (electronic sup-
plementary material, figure S11b). However, the exhaustion
rate k2 is significantly correlated with tumour growth rate
(electronic supplementary material, figure S11c) with Pearson
correlation coefficient r ¼ �0:9, p < 0.001. Similar results were
observed for the cells treated with 28ζ IL13Rα2-CARs.
Figure 5 shows the density of IL13Rα2 level on cancer cell
surface and its relation to CAR T-cell killing for cell line
HT1080-H and PBT138-H. We observed that k1 shows a
decreasing trend from medium to high antigen level
(figure 5c) suggesting that high levels of antigen expression
may not result in faster rates of CAR T-cell killing. The rate
constant k2 increases from low to medium antigen expression
and plateaus with high levels (figure 5d ). This suggests lim-
ited activation of CAR T-cell at lower antigen expression
and exhaustion rate from medium to high antigen may not
change significantly and may be the result of over-activation
of the CAR T-cells.
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4.5. CARRGO model applied to in vivo human data
To translate the in vitro dynamics of the model to clinical data
[23], we fit the CARRGO model to MRI-derived tumour
volumes during CAR T-cell treatment (figure 6). The
CARRGO model is able to fit the tumour growth dynamics
quite accurately for lesions T6 and T7 with the same set of
parameters k1 ¼ 6� 10�9(day−1 cell−1), k2 ¼ 0:3� 10�10

(day−1 cell−1), u ¼ 0:1� 10�5(day−1) and lesion T9 with
k1 ¼ 9� 10�8(day−1 cell−1), k2 ¼ �2� 10�13 (day−1 cell−1),
u ¼ 5� 10�5 (day−1). In the case of lesion T9, although the
CARRGO model is consistent with the overall tumour
dynamics, it does not fit the later time points following CAR
T-cell treatmentwell. This is because lesionT9 received radiation
treatment between day 200 and 300,which is not included in the
CARRGO model. We note the negative correlation between
the tumour growth rate (r ¼ 0:06, 0:07 and 0.2 day−1 for T6,
T7 and T9, respectively) with the CAR T-cell exhaustion rate
k2 in the patient data, which is consistent with that observed
in the experimental data (electronic supplementary material,
figure S11c). We remark that the parameters k1 and k2 are of
the order of O(10�13), which appear to be very small; however,
these parameters are scaledby the carrying capacityK in units of
cells, which is of order Oð109Þ. Therefore, these parameter
values are comparablewith the in vitrodatawhen scaled relative
to the carrying capacity (figure 4).
5. Discussion
The CARRGO model is a simple representation of cancer
cell–T-cell interactions. We developed the CARRGO model
with the aim of understanding CAR T-cell efficacy in terms
of rates of killing, proliferation, exhaustion, and persistence
with a real-time cell analyser in a simple, controlled in vitro
system. The CARRGO model fitted remarkably well to the
highly temporally resolved experimental data and as well
as to data derived from a patient treated with IL13Rα2 BBζ
CAR T-cells. Although the predator–prey mathematical
model formalism has been widely used in a number of
biological settings, the novelty of this model is in the appli-
cation to a novel form of cancer therapy with a high
temporal resolution cell monitoring experimental design
which provides nearly continuous data on killing kinetics.

With the CARRGO model we show that the rate of cancer
cell killing by CART-cells is inversely related to the CART-cell
dose. With a fixed number of cancer cells as an initial
condition, as the number of CAR T-cells increases (dose),
any individual T-cell will encounter fewer number of cancer
cells to kill, indicating that increasing dose does not result in
a maximal rate of killing on a per T-cell basis. For example,
the PBT138 cell line shows complete killing within 80 and
100 h for effector to target ratios 1 : 5 and 1 : 10, respectively.
This result suggests that a lower dose of CAR T-cells may
change the time to complete cancer cell killing but shows the
same overall cancer cell killing effectiveness. Moreover, we
observed that k2 positively correlated with CAR T-cell dose.
Because the parameter k2 is a net measure of CAR T-cell pro-
liferation and exhaustion or lack of activation and the T-cell
proliferation is not dose-dependent [18], the trend observed
in k2 with dose is dominated by the exhaustion rate: the
higher the dose, the lower the exhaustion rate, resulting in
an increased value of k2. The death rate of CAR T-cells was
very small when compared with the cancer cell proliferation
rate for all conditions. This is likely due to the short
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time scale of the experiment and because the T-cells were
stimulated to proliferate by the presence of cancer cells.

We observed that the cancer cell growth showed no
relation with CAR T-cell killing rate and an inverse relation-
ship with k2. This may explain variations in patient-specific
responses even for the same CAR T-cell dose. For a fixed
CAR T-dose, k2 is the principal determinant of treatment fail-
ure or success as shown in phase-plane analysis (figure 1),
which is also observed in patient data (figure 6). This
result, driven by the CARRGO model analysis suggests that
the balance between proliferation and exhaustion of CAR T-
cells may contribute more than the rate of CAR T-cell
mediated cancer cell killing in determining treatment success
or failure. Moreover, the CARRGO model predicts transient
progression of cancer cells even in the case of successful
CAR T-cell therapy. This prediction may be consistent with
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the clinical phenomenon of pseudo-progression, in which the
cancer is seen to progress during therapy before eventually
responding [7,8]. Identifying characteristics of the patient
and the CAR T-cells which may result in pseudo-progression
could have a profound effect on interpretation of these
dynamics observed in the clinic.

Interestingly, we found k1 decreases and k2 plateaued
from medium antigen level to higher level of antigen
expression. One of the possible explanations of this behaviour
could be the antigen density is more heterogeneous in the
higher antigen level cell population when compared with
medium and low antigen levels (figure 5a). More heterogen-
eity in the density of antigen expression intensity in the
cancer cells within the initial population may cause clustering
of CAR T-cells resulting in their exhaustion [20,40]. Another
confounding factor can be the dependence of the detected
antigen signal intensity on both the number of antigen-posi-
tive tumour cells and their individual antigen expression
intensity. Elucidating these factors individually can better
tune the model parameters and the prediction of the
tumour response dynamics. However, more studies are
required to examine effect of cell and population level antigen
density on CAR T-cell killing kinetics.

There are some important limitations to consider with this
model and experimental system. Perhaps the most obvious is
that the in vitro system is not a model for the human immune
system or tumour microenvironment. It does not include
cytokines, stromal cells or additional immune cells such as
myeloid cells which contribute to CAR T-cell activity in
vivo. Another limitation is the assumption that the popu-
lations are well mixed. In practice, this assumption may
depend on the route of CAR T-cell administration, with intra-
cavitary and intraventricular injections potentially resulting
in spatially heterogeneous densities of CAR T-cells or
cancer cells, although methods to assess the distribution of
CAR T-cells in vivo remain an open challenge [41,42]. To
address this limitation, the well-mixed assumption may be
relaxed and CAR T-cell killing dynamics interrogated with
spatial or agent-based models [43]. Another limitation is
with regard to the experimental system: the change in electri-
cal impedance measured by the cell index does not
differentiate cell detachment from cell killing. This is only a
minor consideration as the cell lines used are very adherent
to the plate and were not observed to detach. Finally, the
experimental system does not directly measure dynamics of
CAR T-cells. However, our model is initialized with known
numbers of cancer cells and CAR T-cells and the model-pre-
dicted cancer cell to CAR T-cell ratio at the experimental
endpoint was validated with flow cytometry, giving confi-
dence to our model predictions and parameter estimates.
To address this limitation, the CARRGO model CAR T-cell
dynamics can be validated by labelling the CAR T-cells and
directly measuring their dynamics with live cell imaging-
based methods [44]. Despite these limitations, the CARRGO
model succeeded in revealing nonlinear dynamics, quantify-
ing kinetics of killing, and generating hypotheses which may
be tested in other in vitro systems, and other computational or
in vivo models.

An interesting application of this model would be to
adapt the system to evaluate differences between donor
T-cells—either autologous or allogeneic. The intrinsic fitness
of the T-cell used for CAR T-cell manufacturing is known
to be a critical differentiator between responding and
non-responding patients [45], and this model may be able
to predict T-cell products with high proliferative potential
versus products more prone to exhaustion. While our studies
used an allogeneic co-culture platform for the predator–prey
modelling of effector activity, we expect these findings to be
translatable to autologous CAR T-cell therapies, as CAR
T-cells recognize targets in an MHC-independent manner.
Future studies could specifically evaluate allogeneic and
autologous donor-dependent differences to assess the fit of
the mathematical model, and guide potential adjustments
to the model. The ability to differentiate key quality attributes
of the therapeutic product could potentially provide power-
ful predictions of CAR T-cell product efficacy and facilitate
patient treatment management.

In summary, CAR T-cells have shown promise in hemato-
logic malignancies and are being actively investigated in solid
tumours. We aimed to use mathematical modelling to inves-
tigate factors which contribute to the kinetics of CAR T-cell
mediated cancer cell killing in a simple isolated in vitro
system. We were able to fit the CARRGO model to in vitro
and in vivo human data with remarkable accuracy. We
demonstrated that we can consistently and reproducibly esti-
mate rate constants in the CARRGO model and investigate
their dependence on CAR T-cell dose and antigen expression
levels. The CARRGO model may be combined with other
mathematical models which estimate cancer cell growth
and proliferation rates non-invasively with MRI data
[9,11,46] to produce a fine-tuned and benchmarked suite of
mathematical models, which may aide in optimization of
dosing and scheduling of CAR T-cells for greater individua-
lized and personalized therapy.
Data accessibility. All raw experimental data are included in the elec-
tronic supplementary material.

Authors’ contributions. P.S., X.Y., C.B., R.R. conceived of the study and
performed the experiments, mathematical modelling and analysis.
D.A., D.M., V.A., D.F., H.C., V.M., D.W., M.B., M.G., S.B. provided
development, analysis and interpretation of mathematical model
and data. All authors contributed to writing and approving the
final manuscript.

Competing interest. Patents associated with CAR design, T-cell manufac-
turing and delivery have been licensed by Mustang Bio., Inc, for
which C.E.B. receives licensing and consulting payments. The other
authors declare no potential conflicts of interest.
Funding. The research reported in this publication was supported by
the California Institute for Regenerative Medicine (CLIN2-10248)
and the National Cancer Institute of the National Institutes of
Health under grant numbers R01CA236500, P30CA033572. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the official views of the California Institute for
Regenerative Medicine or National Institutes of Health.
References
1. Brentjens RJ et al. 2003 Eradication of systemic B-cell
tumors by genetically targeted human T
lymphocytes co-stimulated by CD80 and interleukin-
15. Nat. Med. 9, 279–286. (doi:10.1038/nm827)
2. Milone MC et al. 2009 Chimeric receptors containing
CD137 signal transduction domains mediate

http://dx.doi.org/10.1038/nm827


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190734

10
enhanced survival of T cells and increased
antileukemic efficacy in vivo. Mol. Ther. 17,
1453–1464. (doi:10.1038/mt.2009.83)

3. Filley AC, Henriquez M, Dey M. 2018 CART
immunotherapy: development, success, and translation
to malignant gliomas and other solid tumors. Front.
Oncol. 8, 453. (doi:10.3389/fonc.2018.00453)

4. Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q.
2018 Chimeric antigen receptor T cell (CAR-T)
immunotherapy for solid tumors: lessons learned
and strategies for moving forward. J. Hematol.
Oncol. 11, 22. (doi:10.1186/s13045-018-0568-6)

5. Newick K, Moon E, Albelda SM. 2016 Chimeric antigen
receptor T-cell therapy for solid tumors. Mol. Ther.
Oncolytics 3, 16006. (doi:10.1038/MTO.2016.6)

6. Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke
DM. 2018 CAR T-cell therapy for glioblastoma: recent
clinical advances and future challenges. Neuro. Oncol.
20, 1429–1438. (doi:10.1093/neuonc/noy032)

7. Ranjan S et al. 2018 Clinical decision making in the
era of immunotherapy for high grade-glioma: report
of four cases. BMC Cancer 18, 239. (doi:10.1186/
s12885-018-4131-1)

8. Thust SC, van den Bent MJ, Smits M. 2018
Pseudoprogression of brain tumors. J. Magn. Reson.
Imaging 48, 571. (doi:10.1002/jmri.26171)

9. Rockne R et al. 2010 Predicting efficacy of radiotherapy
in individual glioblastoma patients in vivo: a
mathematical modeling approach. Phys. Med. Biol. 55,
3271–3285. (doi:10.1088/0031-9155/55/12/001)

10. Gaw N et al. 2019 Integration of machine learning
and mechanistic models accurately predicts variation
in cell density of glioblastoma using
multiparametric MRI. Sci. Rep. 9, 10063. (doi:10.
1038/s41598-019-46296-4)

11. Rayfield CA et al. 2018 Distinct phenotypic clusters
of glioblastoma growth and response kinetics
predict survival. JCO Clin. Cancer Inform. 1, 1–14.
(doi:10.1200/CCI.17.00080)

12. Eftimie R, Bramson JL, Earn DJD. 2011 Interactions
between the immune system and cancer: a brief
review of non-spatial mathematical models. Bull.
Math. Biol. 73, 2–32. (doi:10.1007/s11538-010-
9526-3)

13. de Pillis LG, Radunskaya AE, Wiseman CL. 2005 A
validated mathematical model of cell-mediated
immune response to tumor growth. Cancer Res. 65,
7950–7958. (doi:10.1158/0008-5472.CAN-05-0564)

14. Frascoli F, Kim PS, Hughes BD, Landman KA. 2014 A
dynamical model of tumour immunotherapy. Math.
Biosci. 253, 50–62. (doi:10.1016/j.mbs.2014.04.003)

15. Hardiansyah D, Ng CM. 2019 Quantitative systems
pharmacology model of chimeric antigen receptor
T-cell therapy. Clin. Transl. Sci. 12, cts.12636.
(doi:10.1111/cts.12636)

16. Stein AM et al. 2017 CTL019 model-based cellular
kinetic analysis of chimeric antigen receptor (CAR)
T cells to characterize the impact of tocilizumab on
expansion and to identify correlates of cytokine
release syndrome severity. Blood 130, 2561. (doi:10.
1182/blood-2017-04-779405)

17. Hopkins B, Tucker M, Pan Y, Fang N, Huang ZJ. 2018
A model-based investigation of cytokine storm for
T-cell therapy. IFAC-PapersOnLine 51, 76–79.
(doi:10.1016/J.IFACOL.2018.09.039)

18. Stein AM et al. 2019 Tisagenlecleucel model-based
cellular kinetic analysis of chimeric antigen
receptor–T cells. CPT Pharmacometrics Syst.
Pharmacol. 8, 285–295. (doi:10.1002/psp4.12388)

19. Rohrs JA, Wang P, Finley SD. 2019 Understanding the
dynamics of T-cell activation in health and disease
through the lens of computational modeling. JCO Clin.
Cancer Inform. 3, 1–8. (doi:10.1200/CCI.18.00057)

20. Harris DT. 2018 Comparison of T cell activities mediated
by human TCRs and CARs that use the same recognition
domains. J. Immunol. 200, 1088–1100. (doi:10.4049/
jimmunol.1700236.Comparison)

21. Kimmel GJ, Locke FL, Altrock PM. 2019 Evolutionary
dynamics of CAR T cell therapy. bioRxiv 717074.
(doi:10.1101/717074)

22. Brown CE et al. 2018 Optimization of IL13Rα2-targeted
chimeric antigen receptor T cells for improved anti-
tumor efficacy against glioblastoma. Mol. Ther. 26,
31–44. (doi:10.1016/j.ymthe.2017.10.002)

23. Brown CE et al. 2016 Regression of glioblastoma
after chimeric antigen receptor T-cell therapy.
N. Engl. J. Med. 375, 2561–2569. (doi:10.1056/
NEJMoa1610497)

24. Murray JD. 2002 Mathematical biology I: an
introduction, 3rd edn. New York, NY: Springer.

25. Edelstein-Keshet L. 2005 Mathematical models in
biology. Philadelphia, PA: Society for Industrial and
Applied Mathematics.

26. Villaverde AF. 2019 Observability and structural
identifiability of nonlinear biological systems. Complexity
2019, 8497093. (doi:10.1155/2019/8497093)

27. Ligon TS, Fröhlich F, Chiş OT, Banga JR, Balsa-Canto
E, Hasenauer J. 2018 GenSSI 2.0: multi-experiment
structural identifiability analysis of SBML models.
Bioinformatics 34, 1421–1423. (doi:10.1093/
bioinformatics/btx735)

28. Sontag ED. 2017 Dynamic compensation, parameter
identifiability, and equivariances. PLoS Comput. Biol.
13, e1005447. (doi:10.1371/journal.pcbi.1005447)

29. Villaverde AF, Barreiro A, Papachristodoulou A. 2016
Structural identifiability of dynamic systems biology
models. PLoS Comput. Biol. 12, e1005153. (doi:10.
1371/journal.pcbi.1005153)

30. Mayer A, Zhang Y, Perelson AS, Wingreen NS. 2019
Regulation of T cell expansion by antigen
presentation dynamics. Proc. Natl Acad. Sci. USA
116, 5914–5919. (doi:10.1073/pnas.1812800116)

31. Witzel F, Fritsche-Guenther R, Lehmann N, Sieber A,
Blüthgen N. 2015 Analysis of impedance-based
cellular growth assays. Bioinformatics 31,
2705–2712. (doi:10.1093/bioinformatics/btv216)

32. Murray JD. 1993 Models for interacting populations. In
Mathematical biology I. An introduction. Interdisciplinary
Applied Mathematics, vol. 17, pp. 79–118. New York,
NY: Springer. (doi:10.1007/978-0-387-22437-4_3)

33. Brown CE, Starr R, Aguilar B, Shami AF, Martinez C,
D’Apuzzo M, Barish ME, Forman SJ, Jensen MC. 2012
Stem-like tumor-initiating cells isolated from IL13Rα2
expressing gliomas are targeted and killed by
IL13-zetakine-redirected T cells. Clin. Cancer Res. 18,
2199–2209. (doi:10.1158/1078-0432.CCR-11-1669)
34. Priceman SJ et al. 2018 Co-stimulatory signaling
determines tumor antigen sensitivity and
persistence of CAR T cells targeting PSCA+
metastatic prostate cancer. Oncoimmunology 7,
e1380764. (doi:10.1080/2162402X.2017.1380764)

35. Frigault MJ et al. 2015 Identification of chimeric
antigen receptors that mediate constitutive or
inducible proliferation of T cells. Cancer Immunol. Res.
3, 356–367. (doi:10.1158/2326-6066.CIR-14-0186)

36. Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie
GY. 1999 Receptor for interleukin 13 is a marker and
therapeutic target for human high-grade gliomas.
Clin. Cancer Res. 5, 985–990.

37. Kahlon KS, Brown C, Cooper LJN, Raubitschek A,
Forman SJ, Jensen MC. 2004 Specific recognition
and killing of glioblastoma multiforme by
interleukin 13-zetakine redirected cytolytic T cells.
Cancer Res. 64, 9160–9166. (doi:10.1158/0008-
5472.CAN-04-0454)

38. Roshan MM, Young A, Reinheimer K, Rayat J, Dai L-
J, Warnock GL. 2015 Dynamic assessment of cell
viability, proliferation and migration using real time
cell analyzer system (RTCA). Cytotechnology 67,
379–386. (doi:10.1007/s10616-014-9692-5)

39. Oraiopoulou M-E, Tzamali E, Tzedakis G, Vakis A,
Papamatheakis J, Sakkalis V. 2017 In vitro/in silico
study on the role of doubling time heterogeneity
among primary glioblastoma cell lines. Biomed Res.
Int. 2017, 8569328. (doi:10.1155/2017/8569328)

40. Utzschneider DT, Alfei F, Roelli P, Barras D,
Chennupati V, Darbre S, Delorenzi M, Pinschewer
DD, Zehn D. 2016 High antigen levels induce an
exhausted phenotype in a chronic infection without
impairing T cell expansion and survival. J. Exp. Med.
213, 1819–1834. (doi:10.1084/jem.20150598)

41. Weist MR et al. 2018 Positron emission tomography
of adoptively transferred chimeric antigen receptor T
cells with zirconium-89 oxine. J. Nucl. Med. 2018,
jnumed.117.206714. (doi:10.2967/jnumed.117.
206714)

42. Keu KV et al. 2017 Reporter gene imaging of
targeted T cell immunotherapy in recurrent glioma.
Sci. Transl. Med. 9, eaag2196. (doi:10.1126/
scitranslmed.aag2196)

43. Ghaffarizadeh A, Heiland R, Friedman SH,
Mumenthaler SM, Macklin P. 2018 PhysiCell: an
open source physics-based cell simulator for 3-D
multicellular systems. PLoS Comput. Biol. 14,
e1005991. (doi:10.1371/journal.pcbi.1005991)

44. Gelles JD, Chipuk JE. 2016 Robust high-throughput
kinetic analysis of apoptosis with real-time high-
content live-cell imaging. Cell Death Dis. 7, e2493.
(doi:10.1038/cddis.2016.332)

45. Fraietta JA et al. 2018 Determinants of response
and resistance to CD19 chimeric antigen receptor
(CAR) T cell therapy of chronic lymphocytic
leukemia. Nat. Med. 24, 563–571. (doi:10.1038/
s41591-018-0010-1)

46. Wang CH et al. 2009 Prognostic significance of
growth kinetics in newly diagnosed glioblastomas
revealed by combining serial imaging with a novel
biomathematical model. Cancer Res. 69,
9133–9140. (doi:10.1158/0008-5472.CAN-08-3863)

http://dx.doi.org/10.1038/mt.2009.83
http://dx.doi.org/10.3389/fonc.2018.00453
http://dx.doi.org/10.1186/s13045-018-0568-6
http://dx.doi.org/10.1038/MTO.2016.6
http://dx.doi.org/10.1093/neuonc/noy032
http://dx.doi.org/10.1186/s12885-018-4131-1
http://dx.doi.org/10.1186/s12885-018-4131-1
http://dx.doi.org/10.1002/jmri.26171
http://dx.doi.org/10.1088/0031-9155/55/12/001
http://dx.doi.org/10.1038/s41598-019-46296-4
http://dx.doi.org/10.1038/s41598-019-46296-4
http://dx.doi.org/10.1200/CCI.17.00080
http://dx.doi.org/10.1007/s11538-010-9526-3
http://dx.doi.org/10.1007/s11538-010-9526-3
http://dx.doi.org/10.1158/0008-5472.CAN-05-0564
http://dx.doi.org/10.1016/j.mbs.2014.04.003
http://dx.doi.org/10.1111/cts.12636
http://dx.doi.org/10.1182/blood-2017-04-779405
http://dx.doi.org/10.1182/blood-2017-04-779405
http://dx.doi.org/10.1016/J.IFACOL.2018.09.039
http://dx.doi.org/10.1002/psp4.12388
http://dx.doi.org/10.1200/CCI.18.00057
http://dx.doi.org/10.4049/jimmunol.1700236.Comparison
http://dx.doi.org/10.4049/jimmunol.1700236.Comparison
http://dx.doi.org/10.1016/j.ymthe.2017.10.002
http://dx.doi.org/10.1056/NEJMoa1610497
http://dx.doi.org/10.1056/NEJMoa1610497
http://dx.doi.org/10.1155/2019/8497093
http://dx.doi.org/10.1093/bioinformatics/btx735
http://dx.doi.org/10.1093/bioinformatics/btx735
http://dx.doi.org/10.1371/journal.pcbi.1005447
http://dx.doi.org/10.1371/journal.pcbi.1005153
http://dx.doi.org/10.1371/journal.pcbi.1005153
http://dx.doi.org/10.1073/pnas.1812800116
http://dx.doi.org/10.1093/bioinformatics/btv216
http://dx.doi.org/10.1007/978-0-387-22437-4_3
http://dx.doi.org/10.1158/1078-0432.CCR-11-1669
http://dx.doi.org/10.1080/2162402X.2017.1380764
http://dx.doi.org/10.1158/2326-6066.CIR-14-0186
http://dx.doi.org/10.1158/0008-5472.CAN-04-0454
http://dx.doi.org/10.1158/0008-5472.CAN-04-0454
http://dx.doi.org/10.1007/s10616-014-9692-5
http://dx.doi.org/10.1155/2017/8569328
http://dx.doi.org/10.1084/jem.20150598
http://dx.doi.org/10.2967/jnumed.117.206714
http://dx.doi.org/10.2967/jnumed.117.206714
http://dx.doi.org/10.1126/scitranslmed.aag2196
http://dx.doi.org/10.1126/scitranslmed.aag2196
http://dx.doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1038/cddis.2016.332
http://dx.doi.org/10.1038/s41591-018-0010-1
http://dx.doi.org/10.1038/s41591-018-0010-1
http://dx.doi.org/10.1158/0008-5472.CAN-08-3863

	Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data
	Statement of significance
	Introduction
	Methods
	Model assumptions
	Dynamical system analysis of the CARRGO model
	Case 1: successful CAR T-cell treatment ( A = 0\comma \; B \gt 0) 
	Case 2: CAR T-cell treatment failure ( A = 0\comma \; B \lt 0) 
	Case 3: pseudo-failure or pseudo-response ( A \gt 0\comma \; B \gt 0) 

	Cell lines
	Experimental design
	CARRGO model fitting to experimental data
	CARRGO model fitting to human data

	Results
	Model/data fitting to in vitro data
	Validation of xCELLigence dynamics with flow cytometry
	CAR T-cell dose-dependent dynamics
	Relating \kappa _1, \kappa _2 with tumour growth rate and antigen expression
	CARRGO model applied to in vivo human data

	Discussion
	Data accessibility
	Authors' contributions
	Competing interest
	Funding
	References




