UC Irvine
UC Irvine Previously Published Works

Title
Variational Hamiltonian Monte Carlo via Score Matching

Permalink
https://escholarship.org/uc/item/8qw4t1pZ

Journal
Bayesian Analysis, 13(2)

ISSN
1936-0975

Authors

Zhang, Cheng
Shahbaba, Babak
Zhao, Hongkai

Publication Date
2018-06-01

DOI
10.1214/17-bal060

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8qw4t1pz
https://escholarship.org
http://www.cdlib.org/

arXiv:1602.02219v1 [stat.CO] 6 Feb 2016

Variational Hamiltonian Monte Carlo via Score Matching

Cheng Zhang CHENGZ4@UCI.EDU
Department of Mathematics, UC Irvine, Irvine, CA 92697
Babak Shahbaba BABAKS @UCI.EDU

Department of Statistics, UC Irvine, Irvine, CA 92697

Hongkai Zhao ZHAO@MATH .UCI.EDU

Department of Mathematics, UC Irvine, Irvine, CA 92697

Abstract

Traditionally, the field of computational
Bayesian statistics has been divided into two
main subfields: variational methods and Markov
chain Monte Carlo (MCMC). In recent years,
however, several methods have been proposed
based on combining variational Bayesian infer-
ence and MCMC simulation in order to improve
their overall accuracy and computational effi-
ciency. This marriage of fast evaluation and
flexible approximation provides a promising
means of designing scalable Bayesian inference
methods. In this paper, we explore the possibility
of incorporating variational approximation into
a state-of-the-art MCMC method, Hamiltonian
Monte Carlo (HMC), to reduce the required
gradient computation in the simulation of
Hamiltonian flow, which is the bottleneck for
many applications of HMC in big data problems.
To this end, we use &ee-formapproximation
induced by a fast and flexible surrogate function
based on single-hidden layer feedforward neural
networks. The surrogate provides sufficiently
accurate approximation while allowing for fast
exploration of parameter space, resulting in an
efficient approximate inference algorithm. We
demonstrate the advantages of our method on
both synthetic and real data problems.

mechanism of the observed data, Bayesian methods prop-
erly quantify uncertainty and reveal the landscape or dloba
structure of parameter space. While conceptually simple,
exact posterior inference in many Bayesian models is often
intractable. Therefore, in practice, people often resmrt t
approximation methods among which Markov chain Monte
Carlo (MCMC) and variational Bayesian (VB) are the two
most popular choices.

The MCMC approach is based on drawing a series of cor-
related samples with guaranteed convergence to the tar-
get distribution. Therefore, MCMC methods are asymp-
totically unbiased. Simple methods such as random-walk
Metropolis (Metropolis et al. 1953, however, often suf-

fer from slow mixing (due to their random walk nature)
when encountering complicated models with strong de-
pendencies among parameters. Introducing an auxiliary
momentum variable, Hamiltonian Monte Carlo (HMC)
(Duane et a].1987 Neal 2017 reduces the random walk
behavior by proposing states following a Hamiltonian flow
which preserves the target distribution. By incorporating
the geometric information of the target distribution, e.g.
the gradient, HMC is able to generate distant proposals
with high acceptance probabilities, enabling more efficien
exploration of the parameter space than standard random-
walk proposals.

A major bottleneck of HMC, however, is the computa-
tion of the gradient of the potential energy function in or-
der to simulate the Hamiltonian flow. As the datasets in-
volved in many practical tasks, such as “big data” prob-
lems, usually have millions to billions of observations;lsu

1. Introduction gradient computations are infeasible since they need full
Bayesian inference has been successful in modern dafgans of the entire dataset. In recent years, many attempts
analysis. Given a probabilistic model for the underlying N@ve been made to develop scalable MCMC algorithms that
can cope with very large data seW/dlling & Teh, 2017

Ahn et al, 2012 Chen et al.2014 Ding et al, 2014. The

key idea of these methods stems from stochastic optimiza-
tion where noisy estimates of the gradient based on small

Preliminary work. Under review by the International Coefece
on Machine Learning (ICML). Do not distribute.
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subsets of the data are utilized to scale up the algorithmdetter.
The noise introduced by subsampling, however, could Iea% . . . .
ur paper is organized as follows. In section 2, we intro-

to non-lgnor_able IQS.‘S of accuracy, which in wm hlndersduce the two ingredients related to our method: Hamilto-
the exploration efficiency of standard MCMC approaches_. o .
(Betancourt2019 nian Monte Carlo anﬂxed—forrwarlatmnal _Baye3|an. _Sec_—

' ' tion 3 presents our method, termed Variational Hamiltonian
The main alternative to MCMC is variational Bayes infer- Monte Carlo (VHMC). We demonstrate the efficiency of
ence (Jordan et a).1999 Wainwright & Jordan2008. As  VHMC in a number of experiments in section 4 and con-
a deterministic approach, VB transforms Bayesian infer<lude in section 5.
ence into an optimization problem where a parametrized
o_Ilstrlbut|0_n is _m_troduced to fit the ta\_rget poster!or dsir 2. Background
tion by minimizing the Kullback-Leibler (KL) divergence
with respect to the variational parameters. Compared t@.1. Hamiltonian Monte Carlo

MCMC methods, VB introduces bias but is usually faster. _ L .
In general formulation of Bayesian inference, a set of in-

A natural question would be: can we combine both meth-dependent observatio#s= {y,...,yy} are modeled by
ods to mitigate the drawbacks and get the best of bottan underlying distributiom(y|6) with unknown parameter
worlds? The first attempt in this direction was proposed byy. Given a prior distribution o) ~ p(6), the posterior
(de Freitas et 812001 where a variational approximation distribution is given by Bayesian formula

was used as proposal distribution in a block Metropolis- N

Hasting (MH) MCMC kernel to locate the high probabilit Y10)n(6

regiong ((quicIZIy, thus facilitating convergenge.pRece;rzatIyy p(OY) = % & H p(yal0) -p(0) (1)

new synthesis of variational inference and Markov chain n=1

Monte Carlo methods has been exploredalimans etal. 1o construct the Hamiltonian dynamical system, the
2013 where one or more steps of MCMC are integratedposition-dependent potential energy function is defined as

intO Variational approximation. The extra ﬂeX|b|||ty from the negative |Og unnorma“zed posterior density
MCMC steps provides a rich class of distributions to find a

closer fit to the exact posterior.

N
Ug)=- 1 nl0) —1 0 2
In this work, we explore the possibility of utilizing varia- (©) ; 08 P(yal0) — log p(0) @

tional approximation to speed up HMC for problems with
large scale datasets, by reducing the cost of gradient con@nd the kinetic energy function is defined as a quadratic
putation. The idea is to incorporate the fast variationaffunction of an auxiliary momentum variabte K(r) =
approximation into the simulation of Hamiltonian flow so 7" M ~'r, where M is a mass matrix and is often set to
that the number of potential energy (or likelihood) evalua-identity, 7. The fictitious Hamiltonian, therefore, is de-
tions required to achieve a reasonably accurate approximéined as the total energy function of the systéfty, ) =
tion can be drastically reduced. To this end, we approxil/(¢) + K(r). As one of the state-of-the-art MCMC meth-
mate the potential energy function by training a computa-0ds, Hamiltonian Monte Carlo suppresses random walk be-
tionally fast neural network surrogate via score matchinghavior by simulating the Hamiltonian dynamical system to
(Hyvarinen 2005. The training data are collected while propose distant states with high acceptance probabilities
the “modified” HMC sampler (defined based on the sur-That is, in order to sample from the posterior distribution
rogate induced Hamiltonian flow) explores the parametep(¢|Y’), HMC augments the parameter space and generates
space. This variational based training and optimizatien alsamples from the joint distribution @8, )
lows an implicit subsampling procedure that can guarantee
effective approximation of the large scale landscape while 7(0,7) oc exp(=U() — K(r)) 3)
removing redundan_cy and noise in the datz_;\. Rather th.aRlotice thatd andr are separated ir3J, we can simply
annealing the stepsizes, as commonly used in subsamphng;o the momentum samolesnd the? les follow th
based methods, the stepsizes in simulating the surrogate in Pt o npiesn samples followine
o | distribution which is exactly the target posterio
duced Hamiltonian flow can be the same as that of standard = 9" & y getp
HMC while keeping a comparable acceptance probabilityTo generate proposals, HMC simulates the Hamiltonian
Therefore, we do not have to sacrifice the exploration efflow governed by the following differential equations
ficiency of standard HMC. Compared to traditioffiaked-

formvariational approximations, the surrogate induced dis- @ _ 3_H — M-l (4)
tribution serves as &ee-formvariational approximation dt or
that is more flexible and thus can fit the target distribution dr _3_H = —VoU(0) (5)

dt 00
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Algorithm 1 Hamiltonian Monte Carlo 2.2. Fixed-form Variational Bayes
Input: Starting positiory") and step size Instead of running a Markov chain, we can approximate
fort=1,2,...,7do the intractable posterior distribution with a more con-
Rtesample momentum venient and tractable distribution. A popular approach
r() ~ N(0, M) of obtaining such an approximation fsxed-form varia-
(Qoﬂ‘o) = (,H(t)’rl(t)), o . tional Bayes(Honkela et al. 201Q Saul & Jordan 1996
Simulate discretization of Hamiltonian dynamics: Salimans & Knowles2013 where a parametrized distribu-
for/=1toLdo tion ¢,(6) is proposed to approximate the target posterior
ri-1 = 11— 5VeU(61-1) p(0]Y") by minimizing the KL divergence
O« 01 +eM 1y
_c 0
e VeU(B) Dicalan@)n617)) = [ ay(6)108 (210 ) a
9*,7’* = GL,TL
I(\/Ietrorzolis(-Hastirzg correction: =log(p(Y)) + /%(9)10%( q(g(@)) do  (6)
u ~ Uniform|0, 1] P
p = exp[H(OW r®) — H(G*,r*)] sincelog(p(Y)) is a constant (used extensively in model
if w < min(1,p)then selection), it suffices to minimize the second term@h (
o+ — g* Usually,g,(6) is chosen from the exponential family of dis-
else tributions with the following canonical form:
pt+1) — g(t)
end if qn(0) = exp[T'(0)n — A(n)]v(0) (7)
end for

whereT'(6) is a row vector of sufficient statisticsl(n) is

for normalization and/(6) is a base measure. The column
vectorn is often called the natural parameters of the expo-
Over a period, also called trajectory length4) and 6) nentiql fa_lmily distributiony,, (6). Taking this approach Qnd
together define a map, : (0o,70) — (6*,7%) in the s_ubstltutmg mto 6), we now have a parametric optimiza-
extended parameter space, from the starting state to tHion probleminy:

end state. As implied by a Hamiltonian flow, is re- ~ W E 1 0) — 1 0y 8
versible, volume-preserving and also preserves the Hamil- K argH%m w (@108 4,(8) —logp(8,Y)] - (8)

ton'anH(GOMO)k: Hr(le.’r ).hThese allow lljs tq”colnstruc:) The above optimization problem can be solved using
r-invariant Markov chains whose proposals will always egradient-based optimization or fix-point algorithms if

accepted. In practice, howeved) @nd 6) are not analyt- E, ) [108,(60)], E, o llogp(6,Y)] and its derivatives

|callyzolvable arlld vye_need o res”(;t(; numerzlncal Integray iy respect ton can be evaluated analytically. Without
;(\)Irs. . hs alsymp ectic mtegrat_(k)fl,_t %roglsc eme (see assuming posterior independence and requiring conjugate
gorithm 1) maintains reversibility and volume preserva- exponential models, posterior approximations of this type

E'r?]n ";.nd hencg IS ?jcrc])mmc;]n rp])rac(j:_tme n HMC Ilterjturez.are usually much more accurate than a factorized approx-
e bias introduced through the discretization needs 1o b, 4iin following the mean-field assumptions. However,

corrected in an Metroplis-Hasting (MH) step. However, Wethe requirement of being able to analytically evaluate¢hos

cap_gontrol the ste_p5|zes to maintain high acceptance pmlefuantities mentioned above is also very restrictive. Te mit
abilities even for distant proposals. igate these limitations,Salimans & Knowles2013 pro-

In recent years, many variants of HMC have been develposed a new optimization algorithm which relat&} 1o
oped to make the algorithm more flexible and generallystochastic linear regression. To reveal the connectian, th
applicable in a variety of settings. For example, meth-posterior approximaterj is relaxed and rewritten in the
ods proposed inHoffman & Gelman 2011 Wang etal.  unnormalized form

2013 enable automatically tuning of hyper-paramters such N ~

as the stepsizeand the number deapfrogstepsL, sav- G5 (0) = exp[T ()] (6) ©)

ing the amount of tuning-related headaches. Riemanniaynhere the nonlinear normalizet(n) is removed and the
Manifold HMC (Girolami & Calderheag2011 furtherim-  vectors of sufficient statistics and natural parameters are
proves standard HMC's efficiency by automatically adapt-gyugmented, i.e7'(6) = (1,7(0)), 7 = (no,7'). The
ing to local structures using Riemanian geometry of paramynnormalized version of KL divergence is utilized to deal
eter space. These adaptive techniques could be potentiallyii G (9) and achieves its minimum at

combined with our proposed method which focuses on re-

ducing the computational complexity. i1 =B [T(0)'T ()] 'E,[T(0) logp(8,Y)]  (10)
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which resembles the maximum likelihood estimatorrons. This allows us to explicitly balance evaluation time
for linear regression. Based on this observationand model capacity.
(Salimans & Knowles2013 derived a stochastic approxi-

mation algorithm usingl(0) as a fixed point update and ap- 3.1. Surrogate | nduced Hamiltonian Flow

proximating the involved expectations by weighted Monte _
Carlo. The neural network surrogate can be used to define a surro-

gate induced Hamiltonian flow which satisfies the follow-
In the next section, we will discuss how the variationaling equations:

Bayes approach can be actually utilized to accelerate HMC.
For this, we construct a fast and accurate approximation a9 O0H

-1
for the computationally expensive potential energy func- dar - or M= (13)
tion._ T_he approximf_;ltion is_provio_led by variz_;\tion_al Bayes dr o
and is incorporated in the simulation of Hamiltonian flow. F7ii-y —Voz(0) (14)
3. Variational Hamiltonian Monte Carlo where the modified Hamiltonian & (6, r) = z(0)+ K (r).

Similar to the true Hamiltonian flow, the surrogate induced
Besides subsampling, an alternative approach that can say@miltonian flow generates proposals from the joint distri-
computation cost is to construct fast and accurate surogahytion 7(0,7) x exp(—z(0) — K(r)) andd thus follows
functions for the expensive potential energy functidiig(  the marginal distribution
200 Neal 2011). As one of the commonly used models

for emulating expensive-to-evaluate functions, Gaussian 5

process (GP) is used iRasmusser2003 to approximate q5(0) o< exp(—z(0)) = exp[— Z vio(wif + d;) — b
the potential energy and its derivatives based on true salue =1 (15)
of these quantities collected during an initial explorgtor wheres — (—b, —v').

phase. However, a major drawback of GP-based surrogate
methods is that inference time grows cubically in the size 01‘3
training set due to the necessity of inverting a dense covari
ance matrix. This is especially crucial in high dimensionalSince our neural network surrogates approximate the po-
spaces, where large training sets are often needed beforential energy function, the underlying distributiga(6)

a reasonable level of approximation accuracy is achievedhen approximates the target posterior distribution. Deno
Our goal, therefore, is to develop a method that can scale tthe vector of outputs from the hidden layer B6) =
large training set while still maintaining a desired levél o (U, (6),..., U, (0)], ¥; = o(w;d +d;), i = 1,...,s.
flexibility. For this purpose, we propose to use neural net-Then, (L5) can be rewritten in a similar form to the unnor-
works along with efficient training algorithms to construct malizedfixed-formapproximation 9)

surrogate functions. A typical single-hidden layer feedfo

.2. Free-form Variational Bayes

ward neural network (SLFN) with scalar output is defined q5(0) o exp[¥(0)] (16)
as B
s where¥ (6) = (1, ¥(0)). Here, the vector of outputs from
2(0) = vio(w; -0 +d;) +b (11)  the hidden layer plays a similar role as the vector of suffi-
i=1 cient statistics. Moreover, a set of randomly assigned in-

wherew;, d; andv; are the input weight vector, bias and Put weights and bias composed linearly inside the nonlin-
output weight for theéth hidden neurong is a nonlinear ~€ar activation function forms a set of basis functions whose

activation function andl is the output bias. Given a training sPanning space has been shown to approximate a rich class
dataset of functions arbitrarily well Huang et al. 20063. As a

T = {0, t)}_, e REX R (12) result, thg surrogate i_nduced approximatid_ﬁ)(is oft(_en

more flexible than thdixed-formapproximation. Unlike

the estimates of weights and bias can be obtained by minthe fixed-formapproximation, the surrogate induced ap-
mizing the mean square error (MSE) cost function. To saveroximation method generally does not allow for drawing
training time, randomly assigned input weigHis; };_, samples directly. However, we can simulate the surrogate
and biag[d; };_, are suggested irfrerrari & Stengel2005 induced Hamiltonian flowX3) and (L4) to generate pro-
Huang et al.20068 where the optimization is reduced to posals and collect the values of interest, such as the po-
a linear regression problem which has a fast least squarential energy function and its derivatives, as trainintada
solution. Unlike a standard Gaussian process, the above improve the surrogate approximation. Since approxima-
neural network based surrogate scales linearly in the sizéon (16) does not take any specific form of the exponen-
of training data, and cubically in the number of hidden neu-tial family of distributions, this really leads tofeee-form
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variational Bayesian approach. By choosing a proper numthe above updating formulas which c@3td® + ds?) com-
ber of hidden neurons, theee-formvariational Bayesian putation and)(s?) storage, independent af

approach provides an implicit subsampling procedure tha‘E’here are two main advantages of using score matching
can effectively remove redundancy and noise in the data. . . 2
?—lrst, the drift termb in our neural network surrogate is

while striking a good balance between computation cos : . : ~
2 : .. ~automatically removed. Notice thatis only an auxiliary
and approximation accuracy of the underlying distribution = . . L . .
variable to improve approximation and is not necessary in

. neither the simulation of surrogate induced Hamiltonian
3.3. Score Matching flow (13) and (4) nor the surrogate induced distribution
Note that both the surrogate induced distribution and thd16). Eliminatingb could save some computation. Second,
posterior distribution are known up to a constant. Therethe gradient gives more information than a single function
fore, we use score matchinglyvarinen 2009, a well  value and thus reduces the required number of training data
known strategy to estimate unnormalized models, to traiPoints to achieve reasonable accuracy.
our free-formvariational approximation. Suppose that we
have collected training data of sizé&om the Markov chain ~ 3.4. Variational HMC in Practice

history The neural network based surrogate is capable of approx-

7-8(t) = {(0n, VoU (0,)}._, € R? x RY (17) imating the potential energy function well when there is
enough training data. However, the approximation could

whered,, is then-th sample. The estimator of the output be poor when only few training data are available which
weight vector can be obtained by optimizing the empiricalis true in the early stage of the Markov chain simulations.
square distance between the gradients of surrogate and p&e alleviate this issue, we propose to add an auxiliary reg-
tential energy, so-called score functions, plus an aduitio ularizer which provides enough information for the sam-
regularization term: pler at the beginning and gradually diminishes as the sur-
rogate becomes increasingly accurate. Here, we use the
Laplace’s approximation to the potential energy function
but any other fast VB approximations could be used. The
regularized surrogate approximation then takes the form
which has an online updating formula summarized in the
following propositionl, see AppendiA in the supplemen-
tary material_for a detailed proof and a brief introduction t Vi(0) = pez(6) + 1(1 — ) (0 — 012U (0%) (0 — 6F)
score matching as well. 2

t
0 =argmin Y _ [|Voz(6) — VoU(6)[* + Allvl|* (18)

n=1

Proposition 1 Suppose our current estimator of the out- _ ) _

put weight vector isv() based on the current training Wherep, € [0,1] is a smooth monotone function moni-

dataset7? = {(00, VoU(0,)}_, € RY x RY us- toring the transition from the Laplace’s approximation to
s A ny n = . . . .

ing s hidden neurons. Given a hew training data point the surrogate approximation. Refining the surrogate ap-

(6141, VoU(6:41)), the updating formula for the estimator proximation by acquiring training data from simulating the
is given by regularized surrogate induced Hamiltonian flow, we arrive

at an efficient approximate inference methagriational
D) — () W(t“)(VeU(HtH) _ At+1v(t)) (19)  Hamiltonian Monte Carlo (VHMCJAlgorithm 2).

In practice, the surrogate approximation may achieve suf-
ficient quality and an early stopping could save us from
inefficient updating of the output weight vector. In fact,
the stopping time, serves as a knob to control the de-
App1 = (A1(0t41), ..., As(B141)) sired approximation quality. Before stopping, VHMC acts
as afree-formvariational Bayes method that keep improv-
with  A;(041) := o’ (w; - 0441 + d;)w;, andC® canbe  ing itself by collecting training data from the history of

where

WD = c®A, g+ A OV AL

updated bysherman-Morrison-Woodbufgrmula: the Markov chain. After stopping, VHMC performs as a
(t41) ® (+41) ® standard HMC algorithm which samples from the surro-
c =0V =W A © (20) gate induced distribution. VHMC successfully combines

the advantages of both variational Bayes and Hamiltonian
The estimator and inverse matrix can be initialized asMonte Carlo, resulting in higher computational efficiency
v =0, ¢ = 1I,. The online learning can be (compared to HMC) and better approximation (compared
achieved by storing the inverse matiixand performing to VB).
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Algorithm 2 Variational Hamiltonian Monte Carlo network based surrogate using different numbers of hid-
Input: Regularization coefficienk, transition function —den neurons and examine the resulting KL-divergence and
e, number of hidden neurons starting positiorg!) score matching squared distance to the true posterior den-

and HMC parameters sity. As we can see from Figurdsand?2, the neural net-
Find the Maximum A Posteridgt” and compute the Hes- work based surrogate indeed offers a high quality approx-
sian matrixVZU (6%) imation and becomes more accurate as the number of hid-
Randomly assign the input weights and bigse; }2_, den neurons increases. The surrogate induced Hamiltonian
and{d;}s_, flow effectively explores the parameter space and transfers
fort=1,2,...,Tdo information from the posterior to the surrogate.

Propose(6*,r*) with regularized surrogate induced
Hamiltonian flow, usingvyV;(6)
Perform Metropolis-Hasting step according to the un-

6 9 12
derlying distributionr; ~ exp(—V;(0) — K(r))
if New state is accepted &< ¢, then R g R
Acquire new training data poir{t. 1, VoU (0:41)) 5 5 5
. N -7.5-7 -6.5 -6 -75-7-6.5-6 -75-7-6.5 -6
Update the output weight estimatét!) « (23) logit m logit m logit m
and the inverse matrig'(*+1) « (20) * ® 2
else < 10 < 10 < 10
(D) — ,U(t)7 Cct+1) — o) ke ; ] ] S ;
end |f -7.5-7 -6.5 -6 -75-7 -6.5 -6 -7.5-7 -6.5 -6
logit m logit m logit m
end for e p ovact
< 10 <10 < 10
4' Exper I mmts -7.5-7 -6.5 -6 -75-7-6.5-6 -75-7-6.5 -6
logit m logit m logit m

4.1. A Beta-binomial Model for Overdispersion

We first demonstrate the performance of our variational . . . , _
iitoni Carl hod le f Figure 1.Approximate posteriors for a varying number of hidden

Hamiltonian Mont(_e ario met 0d on a toy examp € Ir0M heyrons. Exact posterior at bottom right.

(Albert, 2009, which considers the problem of estimat-

ing the rates of death from stomach cancer for the largest

cities in Missouri. The data is available from the R pack-

age LearnBayes which consists2f pairs(n;, y;) where » KL divergence and SM squared distance
n; records the number of individuals that were at risk for | -=-KL ||
cancer in cityj, andy; is the number of cancer deaths that N ~+-SM
occurred in that city. The counig are overdispersed com- Ler ’ ]
pared to what would be expected under a binomial mode L4t
with a constant probability, scA{bert, 2009 assumes a 12t ‘
beta-binomial model with mean and precisiori’: 1l E
'.V‘..’.
n;\ B(Km+y;, K(1—m)+n; —y;) 08
p(yjlm,K)—< J) ! — 0l Y
Yj B(Km,K(1—m)) :
041 Ry
and assigns the parameters the following improper prior: - R S ‘.. .
. i Y
1 1 0 T [, SR s =
m, K) x 6 9 12 15 18 21 24 27
p( ) m(l —m) (1+ K)? number of hidden neurons

The resulting posterior is extremely skewed and a reparam- ) , ,
eterizationz; = logit(m), a2 = logit(K) is proposed to Figure 2.KL-divergence anq score matching squared dls.tapce be-
. . tween the surrogate approximation and the exact postezimity

ameliorate this issue. . : . )
using an increasing number of hidden neurons.

We choosgi; = 1 — exp(—t/200) as our transition sched-

ule and set up the HMC paranjet_er to ach|e_ve a\_r(ﬁﬁ% 4.2. Bayesian Probit Regression
acceptance. We run the variational Hamiltonian Monte
Carlo long enough so that we can estimate the full approxNext, we demonstrate the approximation performance of
imation qualify of our surrogate. We then train the neuralour Variational HMC algorithm relative to existing varia-
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VHMC and the subsampling based fixed-form variational
approach (FF-minibatch) achieve lower RMSE than the
! ;: VBEM algorithm. That is because of the extra factoriza-
5 A tion assumptions made by VBEM when introducing the
i auxiliary variables@rmerod & Wand2010. Even though
i Gaussian approximation is already sufficiently accurate on
’-\ this simple example, VHMC can still arrive at a lower
N * RMSE due to the extra flexibility provided by tfree-form
i neural network surrogate function.

0.016

A== — —

A
0.0155 + \ AAAAAAAAAAAL

g Tmo
0.015} RN

-
e I

RO SRS . . .
A 4.3. Bayesian L ogistic Regression

A-VBEM Now, we apply our Variational HMC method to a Bayesian
—y ChAinibatch logistic regression model. Given thieth input vectorz;,
0.0145 3 - e - the corresponding output (labe)) = {0,1} is assumed
number of likelihood evaluations to follow the probabilityp(y; = 1[z;,8) = 1/(1 +

exp(—zX3)) and a Gaussian prigr(3) = N(0,100) is
Figure 3RMSE approximate posterior mean as a function ofused for the model parametér We test our proposed al-
the number of likelihood evaluations for difference vadaal ~ gorithm on thea9a datasetl(in et al, 2008. The original
Bayesian approaches and our Variational HMC algorithm. dataset, which is compiled from the U&dult dataset, has

32561 observations and 123 features. We us@ @men-

sion random projection of the original features. We choose

tional approaches on a simple Bayesian classification probt = 2000 hidden units for the surrogate and set a transition
lem, binary probit regression, as a running example. Giverschedulg, = 1—exp(—¢/500) for our VHMC algorithm.
N observed data pair§(yn,zn)ly. € {0,1}, z, €  We then compare the algorithm to.HMCDtﬁane etal.
RN the model comprised a probit likelihood func- 1987 Neal 2011 and to SGLD Welling & Teh, 2011).

n=1"

tion P(y, = 1|0) = ®(#x,) and a Gaussian prior over For HMC and VHMC, we set théeap-frogstepsize such

the parametep(d) = N(0,100), where® is the stan- that the acceptance rate is arouro. For S_GLD we
dard Gaussian cdf. A full covariance multivariate nor- choose batch size of 500 and use a range of fixed stepsizes.

mal approximation is used for all variational approachesFoHOWing (Ahn et al, 2012, we investigate the time nor-
The synthetic data we use are simulated from the modely,5jized effective sample size (E$S\veraged over thel

with N = 10000 andd = 5. We show the per- ,arameters and compare this with the relative error after a
formance averaged over 50 runs for all methods. Wgixed amount of computation time. The relative error of

compare our algorithm to Variational Bayesian Expectaean (REM) and relative error of covariance (REC) is de-
tion Maximization (VBEM) Beal & Ghahramani2002  fined as

Ormerod & Wand 2010, and the fixed-form variational

RMSE approximate posterior mean
g
I
[ ]

approximation of alimans & Knowles2013. For all Y, |5_f - B2 > |ij - Cg
variational approaches, we initialize the posterior agpro ~ REM; = TS REC, = TSl
mation to the prior. For our Variational HMC algorithm, we R R 1)

chooses = 100 random hidden units for the surrogate and 27 1t 1t =

) ) o i wherest = + >, By, Ct = 2>, (By — r—
set the starting point to be the origin. The number of hidden—-, ;- P e 7 2= (B .ﬁt)wt .

L . . . B¢)" are the sample mean and sample covariance up to time

units is chosen in such a way that the surrogate is flexibl o o . .

. . . and the ground truth®, C° are obtained using a long run
enough to fit the target well and remain fast in computa- T = 500K samples) of HMC algorithm
tion. The HMC parameters are set to make the acceptanée - P 9 '
probability around’0%. The target density is almost Gaus- Figure4 shows the relative error at time T = 300, T = 3000
sian, and a fast transitign = 1 —exp(—t/5) isenoughto as a function of the time normalized mean ESS, which is
stabilize our algorithm. The approximation performance isa measure of the mixing rate. The results for the mean
accessed in terms of the root mean squared error (RMSHre shown on the top, and those for the covariance are on
between the estimate (variational mean for VB and samthe bottom. We run each algorithm with a different set-
ple mean for VHMC) and the true parameter that is used taing of parameters that control the mixing rate: number
generate the dataset. of leap-frogstepsL = [50, 40, 30,20, 10, 5, 1] for HMC

Figure 3 shows the performance of our Variational HMC and L = [50,40,30,20,10, 5] for VHMC, and stepsizes

algorithm, as well as the performance of the other two vari-  Gjven B samples, ESS B[1+2 SSK (k)] 7, wherey(k)
ational Bayes methods. As we can see from the graphs the sample autocorrelation at lagGeyer 1992
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tract the first 5 channels for our experiment which leads to
. samples witi25 dimensions. We then compare our algo-
MY rithm to standard HMC and stochastic gradient Langevin
e, dynamics (SGLD)\Velling & Teh, 2011). For SGLD, we
use a natural gradienf(nari et al, 1996 which has been
found to improve the efficiency of gradient descent sig-
nificantly. We setr = 100 for the Gaussian prior. For
HMC and Variational HMC, we set thieap-frogstepsize
il i i w ~ to keep the acceptance ratio aroufido and setl = 40
vemesss " to allow an efficient exploration in parameter space. For
i i SGLD, we choose batch size 600 and use stepsizes
vy Dysivra from a polynomial annealing scheduigb + ¢)~?, with
o a=5x10"3b=10"*andé = 0.5. (This setting re-
duces the stepsize frobx 107°to 1 x 10~% during 1e+7
iterations). We choose = 1000 hidden units and set the
PR transition schedulg; = 1 — exp(—t/2000) for our Varia-
tional HMC algorithm. To measure the convergence of the
w  samplers, we use the Amari distander(ari et al, 1996
da(W,Wy), wherelV is the sample average afid, is the
Figure 4 Final error of logistic regression at time T versus mixing frueé unmixing matrix estimated using a long run (T = 100K
rate for the mean (top) and covariance (bottom) estimates af samples) of standard HMC algorithm.
300 (left) and 3000 (right) seconds of computation. Eacle-alg
rithm is run using different setting of parameters.
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1
¢ = [2¢-3, 1¢-3, 5e-4, 1e-4, 5¢-5, 1e-5] for SGLD. 10 ' ' s
As we decrease the stepsize, SGLD becomes less biased 100‘ :\S/ﬁ;%
the gradient approximation, resulting in smaller relagve
ror. However, the exploration efficiency drops at the same g
time and sampling variance gradually dominates the rela élo'l
tive error. In contrast, HMC uses a fixézhp-frogstepsize o)
and therefore maintains high exploration efficiency in pa- glo-z
rameter space. The down side is the expensive computi <
tion of the full gradient and the possible turning back of the R
trajectories when the number lefap-frogsteps is unneces- 10
sarily large. Adopting a flexible neural network surrogate,
VHMC balances the computation cost and approximatior 1077 200 200 600 800 1000
quality much better than subsampling and achieves lowe Wall Clock Time (secs)

relative error with high mixing rates.
Figure 5.Convergence of Amari distance on the MEG data for
4.4. Independent Component Analysis HMC, SGLD and our Variational HMC algorithm.

Finally, we apply our method to sample from the posterior

distribution of the unmixing matrix in Independent Com- The Amari distance as a function of runtime is reported for
ponent Analysis (ICA) lyvarinen & Oja 2000. Given  each of these methods in Figube From the graph, we

N d-dimensional observations = {z, € R‘})_,, we  can see that SGLD converges faster than standard HMC.
model the data ap(x|W) = |det(W)] Hlepi(w;fx), The bias introduced by subsampling is compensated by the
wherew; is thei-th row of W andp; is supposed to cap- fast exploration in parameter space which reduce the sam-
ture the true density of théth independent component. ple variance. However, the exploration efficiency of SGLD
Following (Welling & Teh, 2017, we use a Gaussian prior decreases as the stepsize is annealed. By maintaining ef-
over the unmixing matrip(w;;) = N(0,0) and choose ficient exploration in parameter space (same stepsize as
pi(y;) = [dcosh(Sy;)] ™! with y; = wl'z. We evaluate HMC) while reducing the computation in simulating the
our method using the MEG datas#fidario et al, 1997, Hamiltonian flow, VHMC outperforms SGLD, arriving at
which has 122 channels and 17730 observations. We e lower Amari distance much more rapidly.
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5. Conclusion Duane, S., Kennedy, A. D., Pendleton, B J., and Roweth,
L . D. Hybrid Monte Carlo.Physics Letters B195(2):216
We have presented a novel approach, Variational Hamil- 222 1987

tonian Monte Carlo, for approximate Bayesian inference.
Our approach builds on the framework of HMC, but us-Ferrari, S. and Stengel, R. F. Smooth function approxi-
ing flexible and efficient neural network surrogate func- mation using neural networkéEEE Trans. Neural Net-
tions to approximate the expensive full gradient. The sur- work, 16(1):24—38, 2005.
rogate keeps refining its approximation by collecting train _ _ o
ing data while the sampler exploring the parameter spacéseyer, C. J. Practical Markov Chain Monte Caigiatisti-
This way, our algorithm can be viewed aSee-formvaria- cal Science7:473-483, 1992.
tional approach_. Ur?llke subsarr_lpllng-_based MCMC me'Fh-GiroIami, M. and Calderhead, B. Riemann manifold
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: : . : Langevin and Hamiltonian Monte Carlo methodsur-
ciency of its MCMC counterpart while reducing the com- | of the Roval Statistical Soci ith di ion) 73
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Denote
A(Gl) VHU(GI)
A0 1%
A — (. 2) , B® — VHU_( 2)
A(6y) VoU(6;)

(22) can be simplified and solved as below

o) = arg min Ay — BO|2 4 \|j]|?
= argmin v’ ((A(t))'A(t) + /\I) v—2 (B(t))/ Ay
_ ((A<t>)/A<t> n M)*l (A<t>)’3<t>

Similarly, given a new data poir{f; 11, VoU (6¢+1)), the
new estimator is

1) — ((A(t+l))/A(t+1) n /\I)_l (A(H—l))’B(t-H)

where

A+ [A(t)] B+ — [B(t)]
1] By

Aii1 = A(O141), Bry1 = VeU(0441). Therefore
oD — ((A(t+1))/A(t+1) n /\I)_l (A(t+1))/B(t+l)
-1
= ((A(t))/A(t) 4 A;+1At+1 4 )\])
/
{(A(t)) BY + A;+1Bt+l] (23)

Denote C) = [(AW)YA® + AT] -
Morrison-Woodbury formula,

by Sherman-

—1
Clt+1) — [(A(t))’A(t) + A;+1At+1 =+ /\I}

-1
=0 _ C'(t)AQJrl {I + At+1C<t>AQ+1} At+lc(t)

substitute into 23)
D) — o) [(A(t))/ B + A;+1Bt+1} -
—1
cWa; {I+At+1c(t)A:e+l} At
t 0\ g !
o® {(/ﬁ >) 0 +At+lBt+1]
=0 + WAL, (BtH_
1+ 4000 4, rA COALLB )
t+1 41 t+1 t+15t+1

—1
-cWA4, [I“L At+10(t)AQ+1] Appq0®
=o® WD (B, 1 — Ay 0®)

where

WD) — o) g

o [T+ A0V AL

and the updating formula far(*+1) can be simplified as

cttY = c® _ w4, c®





