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Abstract

Traditionally, the field of computational
Bayesian statistics has been divided into two
main subfields: variational methods and Markov
chain Monte Carlo (MCMC). In recent years,
however, several methods have been proposed
based on combining variational Bayesian infer-
ence and MCMC simulation in order to improve
their overall accuracy and computational effi-
ciency. This marriage of fast evaluation and
flexible approximation provides a promising
means of designing scalable Bayesian inference
methods. In this paper, we explore the possibility
of incorporating variational approximation into
a state-of-the-art MCMC method, Hamiltonian
Monte Carlo (HMC), to reduce the required
gradient computation in the simulation of
Hamiltonian flow, which is the bottleneck for
many applications of HMC in big data problems.
To this end, we use afree-formapproximation
induced by a fast and flexible surrogate function
based on single-hidden layer feedforward neural
networks. The surrogate provides sufficiently
accurate approximation while allowing for fast
exploration of parameter space, resulting in an
efficient approximate inference algorithm. We
demonstrate the advantages of our method on
both synthetic and real data problems.

1. Introduction

Bayesian inference has been successful in modern data
analysis. Given a probabilistic model for the underlying

Preliminary work. Under review by the International Conference
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mechanism of the observed data, Bayesian methods prop-
erly quantify uncertainty and reveal the landscape or global
structure of parameter space. While conceptually simple,
exact posterior inference in many Bayesian models is often
intractable. Therefore, in practice, people often resort to
approximation methods among which Markov chain Monte
Carlo (MCMC) and variational Bayesian (VB) are the two
most popular choices.

The MCMC approach is based on drawing a series of cor-
related samples with guaranteed convergence to the tar-
get distribution. Therefore, MCMC methods are asymp-
totically unbiased. Simple methods such as random-walk
Metropolis (Metropolis et al., 1953), however, often suf-
fer from slow mixing (due to their random walk nature)
when encountering complicated models with strong de-
pendencies among parameters. Introducing an auxiliary
momentum variable, Hamiltonian Monte Carlo (HMC)
(Duane et al., 1987; Neal, 2011) reduces the random walk
behavior by proposing states following a Hamiltonian flow
which preserves the target distribution. By incorporating
the geometric information of the target distribution, e.g.,
the gradient, HMC is able to generate distant proposals
with high acceptance probabilities, enabling more efficient
exploration of the parameter space than standard random-
walk proposals.

A major bottleneck of HMC, however, is the computa-
tion of the gradient of the potential energy function in or-
der to simulate the Hamiltonian flow. As the datasets in-
volved in many practical tasks, such as “big data” prob-
lems, usually have millions to billions of observations, such
gradient computations are infeasible since they need full
scans of the entire dataset. In recent years, many attempts
have been made to develop scalable MCMC algorithms that
can cope with very large data sets (Welling & Teh, 2011;
Ahn et al., 2012; Chen et al., 2014; Ding et al., 2014). The
key idea of these methods stems from stochastic optimiza-
tion where noisy estimates of the gradient based on small
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subsets of the data are utilized to scale up the algorithms.
The noise introduced by subsampling, however, could lead
to non-ignorable loss of accuracy, which in turn hinders
the exploration efficiency of standard MCMC approaches
(Betancourt, 2015).

The main alternative to MCMC is variational Bayes infer-
ence (Jordan et al., 1999; Wainwright & Jordan, 2008). As
a deterministic approach, VB transforms Bayesian infer-
ence into an optimization problem where a parametrized
distribution is introduced to fit the target posterior distribu-
tion by minimizing the Kullback-Leibler (KL) divergence
with respect to the variational parameters. Compared to
MCMC methods, VB introduces bias but is usually faster.

A natural question would be: can we combine both meth-
ods to mitigate the drawbacks and get the best of both
worlds? The first attempt in this direction was proposed by
(de Freitas et al., 2001) where a variational approximation
was used as proposal distribution in a block Metropolis-
Hasting (MH) MCMC kernel to locate the high probability
regions quickly, thus facilitating convergence. Recently, a
new synthesis of variational inference and Markov chain
Monte Carlo methods has been explored in (Salimans et al.,
2015) where one or more steps of MCMC are integrated
into variational approximation. The extra flexibility from
MCMC steps provides a rich class of distributions to find a
closer fit to the exact posterior.

In this work, we explore the possibility of utilizing varia-
tional approximation to speed up HMC for problems with
large scale datasets, by reducing the cost of gradient com-
putation. The idea is to incorporate the fast variational
approximation into the simulation of Hamiltonian flow so
that the number of potential energy (or likelihood) evalua-
tions required to achieve a reasonably accurate approxima-
tion can be drastically reduced. To this end, we approxi-
mate the potential energy function by training a computa-
tionally fast neural network surrogate via score matching
(Hyvärinen, 2005). The training data are collected while
the “modified” HMC sampler (defined based on the sur-
rogate induced Hamiltonian flow) explores the parameter
space. This variational based training and optimization al-
lows an implicit subsampling procedure that can guarantee
effective approximation of the large scale landscape while
removing redundancy and noise in the data. Rather than
annealing the stepsizes, as commonly used in subsampling-
based methods, the stepsizes in simulating the surrogate in-
duced Hamiltonian flow can be the same as that of standard
HMC while keeping a comparable acceptance probability.
Therefore, we do not have to sacrifice the exploration ef-
ficiency of standard HMC. Compared to traditionalfixed-
formvariational approximations, the surrogate induced dis-
tribution serves as afree-formvariational approximation
that is more flexible and thus can fit the target distribution

better.

Our paper is organized as follows. In section 2, we intro-
duce the two ingredients related to our method: Hamilto-
nian Monte Carlo andfixed-formvariational Bayesian. Sec-
tion 3 presents our method, termed Variational Hamiltonian
Monte Carlo (VHMC). We demonstrate the efficiency of
VHMC in a number of experiments in section 4 and con-
clude in section 5.

2. Background

2.1. Hamiltonian Monte Carlo

In general formulation of Bayesian inference, a set of in-
dependent observationsY = {y1, . . . , yN} are modeled by
an underlying distributionp(y|θ) with unknown parameter
θ. Given a prior distribution ofθ ∼ p(θ), the posterior
distribution is given by Bayesian formula

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝

N
∏

n=1

p(yn|θ) · p(θ) (1)

To construct the Hamiltonian dynamical system, the
position-dependent potential energy function is defined as
the negative log unnormalized posterior density

U(θ) = −
N
∑

n=1

log p(yn|θ) − log p(θ) (2)

and the kinetic energy function is defined as a quadratic
function of an auxiliary momentum variabler: K(r) =
rTM−1r, whereM is a mass matrix and is often set to
identity, I. The fictitious Hamiltonian, therefore, is de-
fined as the total energy function of the systemH(θ, r) =
U(θ) +K(r). As one of the state-of-the-art MCMC meth-
ods, Hamiltonian Monte Carlo suppresses random walk be-
havior by simulating the Hamiltonian dynamical system to
propose distant states with high acceptance probabilities.
That is, in order to sample from the posterior distribution
p(θ|Y ), HMC augments the parameter space and generates
samples from the joint distribution of(θ, r)

π(θ, r) ∝ exp(−U(θ)−K(r)) (3)

Notice thatθ and r are separated in (3), we can simply
drop the momentum samplesr and theθ samples follow the
marginal distribution which is exactly the target posterior.

To generate proposals, HMC simulates the Hamiltonian
flow governed by the following differential equations

dθ

dt
=

∂H

∂r
= M−1r (4)

dr

dt
= −

∂H

∂θ
= −∇θU(θ) (5)
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Algorithm 1 Hamiltonian Monte Carlo

Input: Starting positionθ(1) and step sizeǫ
for t = 1, 2, . . . , T do

Resample momentumr
r(t) ∼ N (0,M)
(θ0, r0) = (θ(t), r(t))
Simulate discretization of Hamiltonian dynamics:
for l = 1 to L do
rl−1 ← rl−1 −

ǫ
2∇θU(θl−1)

θl ← θl−1 + ǫM−1rl−1

rl ← rl −
ǫ
2∇θU(θl)

end for
(θ∗, r∗) = (θL, rL)
Metropolis-Hasting correction:
u ∼ Uniform[0, 1]
ρ = exp[H(θ(t), r(t))−H(θ∗, r∗)]
if u < min(1, ρ) then
θ(t+1) = θ∗

else
θ(t+1) = θ(t)

end if
end for

Over a periodt, also called trajectory length, (4) and (5)
together define a mapφt : (θ0, r0) 7→ (θ∗, r∗) in the
extended parameter space, from the starting state to the
end state. As implied by a Hamiltonian flow,φt is re-
versible, volume-preserving and also preserves the Hamil-
tonianH(θ0, r0) = H(θ∗, r∗). These allow us to construct
π-invariant Markov chains whose proposals will always be
accepted. In practice, however, (4) and (5) are not analyt-
ically solvable and we need to resort to numerical integra-
tors. As a symplectic integrator, theleapfrogscheme (see
Algorithm 1) maintains reversibility and volume preserva-
tion and hence is a common practice in HMC literatures.
The bias introduced through the discretization needs to be
corrected in an Metroplis-Hasting (MH) step. However, we
can control the stepsizes to maintain high acceptance prob-
abilities even for distant proposals.

In recent years, many variants of HMC have been devel-
oped to make the algorithm more flexible and generally
applicable in a variety of settings. For example, meth-
ods proposed in (Hoffman & Gelman, 2011; Wang et al.,
2013) enable automatically tuning of hyper-paramters such
as the stepsizeǫ and the number ofleapfrogstepsL, sav-
ing the amount of tuning-related headaches. Riemannian
Manifold HMC (Girolami & Calderhead, 2011) further im-
proves standard HMC’s efficiency by automatically adapt-
ing to local structures using Riemanian geometry of param-
eter space. These adaptive techniques could be potentially
combined with our proposed method which focuses on re-
ducing the computational complexity.

2.2. Fixed-form Variational Bayes

Instead of running a Markov chain, we can approximate
the intractable posterior distribution with a more con-
venient and tractable distribution. A popular approach
of obtaining such an approximation isfixed-form varia-
tional Bayes(Honkela et al., 2010; Saul & Jordan, 1996;
Salimans & Knowles, 2013) where a parametrized distribu-
tion qη(θ) is proposed to approximate the target posterior
p(θ|Y ) by minimizing the KL divergence

DKL(qη(θ)||p(θ|Y )) =

∫

qη(θ) log

(

qη(θ)

p(θ|Y )

)

dθ

= log(p(Y )) +

∫

qη(θ) log

(

qη(θ)

p(θ, Y )

)

dθ (6)

since log(p(Y )) is a constant (used extensively in model
selection), it suffices to minimize the second term in (6).
Usually,qη(θ) is chosen from the exponential family of dis-
tributions with the following canonical form:

qη(θ) = exp[T (θ)η −A(η)]ν(θ) (7)

whereT (θ) is a row vector of sufficient statistics,A(η) is
for normalization andν(θ) is a base measure. The column
vectorη is often called the natural parameters of the expo-
nential family distributionqη(θ). Taking this approach and
substituting into (6), we now have a parametric optimiza-
tion problem inη:

η̂ = argmin
η

Eqη(θ)[log qη(θ)− log p(θ, Y )] (8)

The above optimization problem can be solved using
gradient-based optimization or fix-point algorithms if
Eqη(θ)[log qη(θ)], Eqη(θ)[log p(θ, Y )] and its derivatives
with respect toη can be evaluated analytically. Without
assuming posterior independence and requiring conjugate
exponential models, posterior approximations of this type
are usually much more accurate than a factorized approx-
imation following the mean-field assumptions. However,
the requirement of being able to analytically evaluate those
quantities mentioned above is also very restrictive. To mit-
igate these limitations, (Salimans & Knowles, 2013) pro-
posed a new optimization algorithm which relates (8) to
stochastic linear regression. To reveal the connection, the
posterior approximate (7) is relaxed and rewritten in the
unnormalized form

q̃η̃(θ) = exp[T̃ (θ)η̃]ν(θ) (9)

where the nonlinear normalizerA(η) is removed and the
vectors of sufficient statistics and natural parameters are
augmented, i.e.T̃ (θ) = (1, T (θ)), η̃ = (η0, η

′)′. The
unnormalized version of KL divergence is utilized to deal
with q̃η̃(θ) and achieves its minimum at

η̃ = Eq[T̃ (θ)
′T̃ (θ)]−1

Eq[T̃ (θ)
′ log p(θ, Y )] (10)
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which resembles the maximum likelihood estimator
for linear regression. Based on this observation,
(Salimans & Knowles, 2013) derived a stochastic approxi-
mation algorithm using (10) as a fixed point update and ap-
proximating the involved expectations by weighted Monte
Carlo.

In the next section, we will discuss how the variational
Bayes approach can be actually utilized to accelerate HMC.
For this, we construct a fast and accurate approximation
for the computationally expensive potential energy func-
tion. The approximation is provided by variational Bayes
and is incorporated in the simulation of Hamiltonian flow.

3. Variational Hamiltonian Monte Carlo

Besides subsampling, an alternative approach that can save
computation cost is to construct fast and accurate surrogate
functions for the expensive potential energy functions (Liu,
2001; Neal, 2011). As one of the commonly used models
for emulating expensive-to-evaluate functions, Gaussian
process (GP) is used in (Rasmussen, 2003) to approximate
the potential energy and its derivatives based on true values
of these quantities collected during an initial exploratory
phase. However, a major drawback of GP-based surrogate
methods is that inference time grows cubically in the size of
training set due to the necessity of inverting a dense covari-
ance matrix. This is especially crucial in high dimensional
spaces, where large training sets are often needed before
a reasonable level of approximation accuracy is achieved.
Our goal, therefore, is to develop a method that can scale to
large training set while still maintaining a desired level of
flexibility. For this purpose, we propose to use neural net-
works along with efficient training algorithms to construct
surrogate functions. A typical single-hidden layer feedfor-
ward neural network (SLFN) with scalar output is defined
as

z(θ) =
s

∑

i=1

viσ(wi · θ + di) + b (11)

wherewi, di andvi are the input weight vector, bias and
output weight for theith hidden neuron,σ is a nonlinear
activation function andb is the output bias. Given a training
dataset

T := {(θn, tn)}
N
n=1 ∈ R

d × R (12)

the estimates of weights and bias can be obtained by mini-
mizing the mean square error (MSE) cost function. To save
training time, randomly assigned input weights{wi}si=1

and bias{di}si=1 are suggested in (Ferrari & Stengel, 2005;
Huang et al., 2006b) where the optimization is reduced to
a linear regression problem which has a fast least square
solution. Unlike a standard Gaussian process, the above
neural network based surrogate scales linearly in the size
of training data, and cubically in the number of hidden neu-

rons. This allows us to explicitly balance evaluation time
and model capacity.

3.1. Surrogate Induced Hamiltonian Flow

The neural network surrogate can be used to define a surro-
gate induced Hamiltonian flow which satisfies the follow-
ing equations:

dθ

dt
=

∂H̃

∂r
= M−1r (13)

dr

dt
= −

∂H̃

∂θ
= −∇θz(θ) (14)

where the modified Hamiltonian is̃H(θ, r) = z(θ)+K(r).
Similar to the true Hamiltonian flow, the surrogate induced
Hamiltonian flow generates proposals from the joint distri-
bution π̃(θ, r) ∝ exp(−z(θ) − K(r)) andθ thus follows
the marginal distribution

qṽ(θ) ∝ exp(−z(θ)) = exp[−
s

∑

i=1

viσ(wiθ + di)− b]

(15)
whereṽ = (−b,−v′)′.

3.2. Free-form Variational Bayes

Since our neural network surrogates approximate the po-
tential energy function, the underlying distributionqṽ(θ)
then approximates the target posterior distribution. Denote
the vector of outputs from the hidden layer byΨ(θ) =
[Ψ1(θ), . . . ,Ψs(θ)], Ψi = σ(wiθ + di), i = 1, . . . , s.
Then, (15) can be rewritten in a similar form to the unnor-
malizedfixed-formapproximation (9)

qṽ(θ) ∝ exp[Ψ̃(θ)ṽ] (16)

whereΨ̃(θ) = (1,Ψ(θ)). Here, the vector of outputs from
the hidden layer plays a similar role as the vector of suffi-
cient statistics. Moreover, a set of randomly assigned in-
put weights and bias composed linearly inside the nonlin-
ear activation function forms a set of basis functions whose
spanning space has been shown to approximate a rich class
of functions arbitrarily well (Huang et al., 2006a). As a
result, the surrogate induced approximation (16) is often
more flexible than thefixed-formapproximation. Unlike
the fixed-formapproximation, the surrogate induced ap-
proximation method generally does not allow for drawing
samples directly. However, we can simulate the surrogate
induced Hamiltonian flow (13) and (14) to generate pro-
posals and collect the values of interest, such as the po-
tential energy function and its derivatives, as training data
to improve the surrogate approximation. Since approxima-
tion (16) does not take any specific form of the exponen-
tial family of distributions, this really leads to afree-form
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variational Bayesian approach. By choosing a proper num-
ber of hidden neurons, thefree-formvariational Bayesian
approach provides an implicit subsampling procedure that
can effectively remove redundancy and noise in the data
while striking a good balance between computation cost
and approximation accuracy of the underlying distribution.

3.3. Score Matching

Note that both the surrogate induced distribution and the
posterior distribution are known up to a constant. There-
fore, we use score matching (Hyvärinen, 2005), a well
known strategy to estimate unnormalized models, to train
our free-formvariational approximation. Suppose that we
have collected training data of sizet from the Markov chain
history

T (t)
s := {(θn,∇θU(θn))}

t
n=1 ∈ R

d × R
d (17)

whereθn is then-th sample. The estimator of the output
weight vector can be obtained by optimizing the empirical
square distance between the gradients of surrogate and po-
tential energy, so-called score functions, plus an additional
regularization term:

v̂ = argmin
v

t
∑

n=1

‖∇θz(θn)−∇θU(θn)‖
2 + λ‖v‖2 (18)

which has an online updating formula summarized in the
following proposition1, see AppendixA in the supplemen-
tary material for a detailed proof and a brief introduction to
score matching as well.

Proposition 1 Suppose our current estimator of the out-
put weight vector isv(t) based on the current training
datasetT (t)

s := {(θn,∇θU(θn))}tn=1 ∈ R
d × R

d us-
ing s hidden neurons. Given a new training data point
(θt+1,∇θU(θt+1)), the updating formula for the estimator
is given by

v(t+1) = v(t) +W (t+1)(∇θU(θt+1)−At+1v
(t)) (19)

where

W (t+1) = C(t)A′

t+1

[

Id +At+1C
(t)A′

t+1

]−1

At+1 = (A1(θt+1), . . . , As(θt+1))

with Ai(θt+1) := σ′(wi · θt+1 + di)wi, andC(t) can be
updated bySherman-Morrison-Woodburyformula:

C(t+1) = C(t) −W (t+1)At+1C
(t) (20)

The estimator and inverse matrix can be initialized as
v(0) = 0, C(0) = 1

λ
Is. The online learning can be

achieved by storing the inverse matrixC and performing

the above updating formulas which costO(d3 + ds2) com-
putation andO(s2) storage, independent oft.

There are two main advantages of using score matching.
First, the drift termb in our neural network surrogate is
automatically removed. Notice thatb is only an auxiliary
variable to improve approximation and is not necessary in
neither the simulation of surrogate induced Hamiltonian
flow (13) and (14) nor the surrogate induced distribution
(16). Eliminatingb could save some computation. Second,
the gradient gives more information than a single function
value and thus reduces the required number of training data
points to achieve reasonable accuracy.

3.4. Variational HMC in Practice

The neural network based surrogate is capable of approx-
imating the potential energy function well when there is
enough training data. However, the approximation could
be poor when only few training data are available which
is true in the early stage of the Markov chain simulations.
To alleviate this issue, we propose to add an auxiliary reg-
ularizer which provides enough information for the sam-
pler at the beginning and gradually diminishes as the sur-
rogate becomes increasingly accurate. Here, we use the
Laplace’s approximation to the potential energy function
but any other fast VB approximations could be used. The
regularized surrogate approximation then takes the form

Vt(θ) = µtzt(θ) +
1

2
(1− µt)(θ − θL)′∇2

θU(θL)(θ − θL)

whereµt ∈ [0, 1] is a smooth monotone function moni-
toring the transition from the Laplace’s approximation to
the surrogate approximation. Refining the surrogate ap-
proximation by acquiring training data from simulating the
regularized surrogate induced Hamiltonian flow, we arrive
at an efficient approximate inference method:Variational
Hamiltonian Monte Carlo (VHMC)(Algorithm 2).

In practice, the surrogate approximation may achieve suf-
ficient quality and an early stopping could save us from
inefficient updating of the output weight vector. In fact,
the stopping timet0 serves as a knob to control the de-
sired approximation quality. Before stopping, VHMC acts
as afree-formvariational Bayes method that keep improv-
ing itself by collecting training data from the history of
the Markov chain. After stopping, VHMC performs as a
standard HMC algorithm which samples from the surro-
gate induced distribution. VHMC successfully combines
the advantages of both variational Bayes and Hamiltonian
Monte Carlo, resulting in higher computational efficiency
(compared to HMC) and better approximation (compared
to VB).
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Algorithm 2 Variational Hamiltonian Monte Carlo
Input: Regularization coefficientλ, transition function
µt, number of hidden neuronss, starting positionθ(1)

and HMC parameters
Find the Maximum A PosteriorθL and compute the Hes-
sian matrix∇2

θU(θL)
Randomly assign the input weights and bias:{wi}si=1

and{di}si=1

for t = 1, 2, . . . , T do
Propose(θ∗, r∗) with regularized surrogate induced
Hamiltonian flow, using∇θVt(θ)
Perform Metropolis-Hasting step according to the un-
derlying distributionπt ∼ exp(−Vt(θ)−K(r))
if New state is accepted &t < t0 then

Acquire new training data point(θt+1,∇θU(θt+1))
Update the output weight estimatev(t+1) ← (23)
and the inverse matrixC(t+1) ← (20)

else
v(t+1) = v(t), C(t+1) = C(t)

end if
end for

4. Experiments

4.1. A Beta-binomial Model for Overdispersion

We first demonstrate the performance of our variational
Hamiltonian Monte Carlo method on a toy example from
(Albert, 2009), which considers the problem of estimat-
ing the rates of death from stomach cancer for the largest
cities in Missouri. The data is available from the R pack-
age LearnBayes which consists of20 pairs(nj , yj) where
nj records the number of individuals that were at risk for
cancer in cityj, andyj is the number of cancer deaths that
occurred in that city. The countsyj are overdispersed com-
pared to what would be expected under a binomial model
with a constant probability, so (Albert, 2009) assumes a
beta-binomial model with meanm and precisionK:

p(yj |m,K) =

(

nj

yj

)

B(Km+ yj ,K(1−m) + nj − yj)

B(Km,K(1−m))

and assigns the parameters the following improper prior:

p(m,K) ∝
1

m(1 −m)

1

(1 +K)2

The resulting posterior is extremely skewed and a reparam-
eterizationx1 = logit(m), x2 = logit(K) is proposed to
ameliorate this issue.

We chooseµt = 1− exp(−t/200) as our transition sched-
ule and set up the HMC parameter to achieve around85%
acceptance. We run the variational Hamiltonian Monte
Carlo long enough so that we can estimate the full approx-
imation qualify of our surrogate. We then train the neural

network based surrogate using different numbers of hid-
den neurons and examine the resulting KL-divergence and
score matching squared distance to the true posterior den-
sity. As we can see from Figures1 and2, the neural net-
work based surrogate indeed offers a high quality approx-
imation and becomes more accurate as the number of hid-
den neurons increases. The surrogate induced Hamiltonian
flow effectively explores the parameter space and transfers
information from the posterior to the surrogate.
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Figure 1.Approximate posteriors for a varying number of hidden
neurons. Exact posterior at bottom right.
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Figure 2.KL-divergence and score matching squared distance be-
tween the surrogate approximation and the exact posterior density
using an increasing number of hidden neurons.

4.2. Bayesian Probit Regression

Next, we demonstrate the approximation performance of
our Variational HMC algorithm relative to existing varia-
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Figure 3.RMSE approximate posterior mean as a function of
the number of likelihood evaluations for difference variational
Bayesian approaches and our Variational HMC algorithm.

tional approaches on a simple Bayesian classification prob-
lem, binary probit regression, as a running example. Given
N observed data pairs{(yn, xn)|yn ∈ {0, 1}, xn ∈
R

d}Nn=1, the model comprised a probit likelihood func-
tion P (yn = 1|θ) = Φ(θTxn) and a Gaussian prior over
the parameterp(θ) = N (0, 100), whereΦ is the stan-
dard Gaussian cdf. A full covariance multivariate nor-
mal approximation is used for all variational approaches.
The synthetic data we use are simulated from the model,
with N = 10000 and d = 5. We show the per-
formance averaged over 50 runs for all methods. We
compare our algorithm to Variational Bayesian Expecta-
tion Maximization (VBEM) (Beal & Ghahramani, 2002;
Ormerod & Wand, 2010), and the fixed-form variational
approximation of (Salimans & Knowles, 2013). For all
variational approaches, we initialize the posterior approxi-
mation to the prior. For our Variational HMC algorithm, we
chooses = 100 random hidden units for the surrogate and
set the starting point to be the origin. The number of hidden
units is chosen in such a way that the surrogate is flexible
enough to fit the target well and remain fast in computa-
tion. The HMC parameters are set to make the acceptance
probability around70%. The target density is almost Gaus-
sian, and a fast transitionµt = 1− exp(−t/5) is enough to
stabilize our algorithm. The approximation performance is
accessed in terms of the root mean squared error (RMSE)
between the estimate (variational mean for VB and sam-
ple mean for VHMC) and the true parameter that is used to
generate the dataset.

Figure3 shows the performance of our Variational HMC
algorithm, as well as the performance of the other two vari-
ational Bayes methods. As we can see from the graph,

VHMC and the subsampling based fixed-form variational
approach (FF-minibatch) achieve lower RMSE than the
VBEM algorithm. That is because of the extra factoriza-
tion assumptions made by VBEM when introducing the
auxiliary variables (Ormerod & Wand, 2010). Even though
Gaussian approximation is already sufficiently accurate on
this simple example, VHMC can still arrive at a lower
RMSE due to the extra flexibility provided by thefree-form
neural network surrogate function.

4.3. Bayesian Logistic Regression

Now, we apply our Variational HMC method to a Bayesian
logistic regression model. Given thei-th input vectorxi,
the corresponding output (label)yi = {0, 1} is assumed
to follow the probabilityp(yi = 1|xi, β) = 1/(1 +
exp(−xT

i β)) and a Gaussian priorp(β) = N (0, 100) is
used for the model parameterβ. We test our proposed al-
gorithm on thea9a dataset (Lin et al., 2008). The original
dataset, which is compiled from the UCIadult dataset, has
32561 observations and 123 features. We use a50 dimen-
sion random projection of the original features. We choose
s = 2000 hidden units for the surrogate and set a transition
scheduleµt = 1−exp(−t/500) for our VHMC algorithm.
We then compare the algorithm to HMC (Duane et al.,
1987; Neal, 2011) and to SGLD (Welling & Teh, 2011).
For HMC and VHMC, we set theleap-frogstepsize such
that the acceptance rate is around70%. For SGLD we
choose batch size of 500 and use a range of fixed stepsizes.

Following (Ahn et al., 2012), we investigate the time nor-
malized effective sample size (ESS)1 averaged over the51
parameters and compare this with the relative error after a
fixed amount of computation time. The relative error of
mean (REM) and relative error of covariance (REC) is de-
fined as

REMt =

∑

i |β
t
i − βo

i |
∑

i |β
o
i |

, RECt =

∑

i |C
t
ij − Co

ij |
∑

ij |C
o
ij |

(21)
whereβt = 1

t

∑t
t′=1 βt′ , Ct = 1

t

∑t
t′=1(βt′ − βt)(βt′ −

βt)
T are the sample mean and sample covariance up to time

t and the ground truthβo, Co are obtained using a long run
(T = 500K samples) of HMC algorithm.

Figure4 shows the relative error at time T = 300, T = 3000
as a function of the time normalized mean ESS, which is
a measure of the mixing rate. The results for the mean
are shown on the top, and those for the covariance are on
the bottom. We run each algorithm with a different set-
ting of parameters that control the mixing rate: number
of leap-frogstepsL = [50, 40, 30, 20, 10, 5, 1] for HMC
andL = [50, 40, 30, 20, 10, 5] for VHMC, and stepsizes

1GivenB samples, ESS =B[1+2
∑

K

k=1
γ(k)]−1, whereγ(k)

is the sample autocorrelation at lagk (Geyer, 1992)
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Figure 4.Final error of logistic regression at time T versus mixing
rate for the mean (top) and covariance (bottom) estimates after
300 (left) and 3000 (right) seconds of computation. Each algo-
rithm is run using different setting of parameters.

ǫ = [2e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5] for SGLD.

As we decrease the stepsize, SGLD becomes less biased in
the gradient approximation, resulting in smaller relativeer-
ror. However, the exploration efficiency drops at the same
time and sampling variance gradually dominates the rela-
tive error. In contrast, HMC uses a fixedleap-frogstepsize
and therefore maintains high exploration efficiency in pa-
rameter space. The down side is the expensive computa-
tion of the full gradient and the possible turning back of the
trajectories when the number ofleap-frogsteps is unneces-
sarily large. Adopting a flexible neural network surrogate,
VHMC balances the computation cost and approximation
quality much better than subsampling and achieves lower
relative error with high mixing rates.

4.4. Independent Component Analysis

Finally, we apply our method to sample from the posterior
distribution of the unmixing matrix in Independent Com-
ponent Analysis (ICA) (Hyvärinen & Oja, 2000). Given
N d-dimensional observationsX = {xn ∈ R

d}Nn=1, we
model the data asp(x|W ) = | det(W )|

∏d
i=1 pi(w

T
i x),

wherewi is thei-th row ofW andpi is supposed to cap-
ture the true density of thei-th independent component.
Following (Welling & Teh, 2011), we use a Gaussian prior
over the unmixing matrixp(wij) = N (0, σ) and choose
pi(yi) = [4 cosh(12yi)]

−1 with yi = wT
j x. We evaluate

our method using the MEG dataset (Vigário et al., 1997),
which has 122 channels and 17730 observations. We ex-

tract the first 5 channels for our experiment which leads to
samples with25 dimensions. We then compare our algo-
rithm to standard HMC and stochastic gradient Langevin
dynamics (SGLD) (Welling & Teh, 2011). For SGLD, we
use a natural gradient (Amari et al., 1996) which has been
found to improve the efficiency of gradient descent sig-
nificantly. We setσ = 100 for the Gaussian prior. For
HMC and Variational HMC, we set theleap-frogstepsize
to keep the acceptance ratio around70% and setL = 40
to allow an efficient exploration in parameter space. For
SGLD, we choose batch size of500 and use stepsizes
from a polynomial annealing schedulea(b + t)−δ, with
a = 5 × 10−3, b = 10−4 andδ = 0.5. (This setting re-
duces the stepsize from5× 10−5 to 1× 10−6 during 1e+7
iterations). We chooses = 1000 hidden units and set the
transition scheduleµt = 1− exp(−t/2000) for our Varia-
tional HMC algorithm. To measure the convergence of the
samplers, we use the Amari distance (Amari et al., 1996)
dA(W,W0), whereW is the sample average andW0 is the
true unmixing matrix estimated using a long run (T = 100K
samples) of standard HMC algorithm.
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Figure 5.Convergence of Amari distance on the MEG data for
HMC, SGLD and our Variational HMC algorithm.

The Amari distance as a function of runtime is reported for
each of these methods in Figure5. From the graph, we
can see that SGLD converges faster than standard HMC.
The bias introduced by subsampling is compensated by the
fast exploration in parameter space which reduce the sam-
ple variance. However, the exploration efficiency of SGLD
decreases as the stepsize is annealed. By maintaining ef-
ficient exploration in parameter space (same stepsize as
HMC) while reducing the computation in simulating the
Hamiltonian flow, VHMC outperforms SGLD, arriving at
a lower Amari distance much more rapidly.
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5. Conclusion

We have presented a novel approach, Variational Hamil-
tonian Monte Carlo, for approximate Bayesian inference.
Our approach builds on the framework of HMC, but us-
ing flexible and efficient neural network surrogate func-
tions to approximate the expensive full gradient. The sur-
rogate keeps refining its approximation by collecting train-
ing data while the sampler exploring the parameter space.
This way, our algorithm can be viewed as afree-formvaria-
tional approach. Unlike subsampling-based MCMC meth-
ods, VHMC maintains the relatively high exploration effi-
ciency of its MCMC counterpart while reducing the com-
putation cost. Compared tofixed-formvariational approxi-
mation, VHMC is more flexible and thus can approximate
the target distribution better.
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Supplementary Material

A. Score Matching

We aim to approximate the target posteriorp(θ|Y ) by a
free-formunnormalized probability

qṽ(θ) ∝ exp[−z(θ)]

From (Hyvärinen, 2005), we optimize the expected squared
distance between score functions2

J(ṽ) =
1

2

∫

θ∈Rd

qṽ(θ)‖ϕṽ(θ)− ϕY (θ)‖
2 dθ

where
ϕṽ(θ) = −∇θ log qṽ(θ) = ∇θz(θ)

ϕY (θ) = −∇θ log p(θ|Y ) = ∇θU(θ)

It is easy to verify thatJ(ṽ) = 0 ⇒ ϕṽ = ϕY + C ⇒
qṽ(θ) = p(θ|Y ), soK(θ) is a well defined squared distance
and we refer to it as score matching distance.

Given the training data collected from the Markov chain
history

T (t)
s := {(θn,∇θU(θn))}

t
n=1 ∈ R

d × R
d

we can optimize the empirical version

Ĵ(ṽ) =
1

2t

t
∑

n=1

‖∇θz(θn)−∇θU(θn)‖
2

Proof of Proposition 1

v(t) = argmin
v

t
∑

n=1

‖∇θz(θn)−∇θU(θn)‖
2 + λ‖v‖2

(22)
As assumed the neural network surrogate takes the form

z(θ) =
s

∑

i=1

viσ(wi · θ + di) + b

its derivative is

∇θz(θ) =

s
∑

i=1

viσ
′(wi · θ + di)wi = A(θ)v

whereA(θ) = (A1(θ), A2(θ), . . . , As(θ)) and

Ai(θ) = σ′(wi · θ + di)wi, i = 1, . . . , s

2Note that the samples forθ now are collected from the free-
form approximation, so we change the integral weights accord-
ingly.

http://research.ics.aalto.fi/ica/eegmeg/MEG_data.html.
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Denote

A(t) =











A(θ1)
A(θ2)

...
A(θt)











, B(t) =











∇θU(θ1)
∇θU(θ2)

...
∇θU(θt)











(22) can be simplified and solved as below

v(t) = argmin
v
‖A(t)v −B(t)‖2 + λ‖v‖2

= argmin
v

v′
(

(A(t))′A(t) + λI
)

v − 2
(

B(t)
)′

A(t)v

=
(

(A(t))′A(t) + λI
)−1 (

A(t)
)′

B(t)

Similarly, given a new data point(θt+1,∇θU(θt+1)), the
new estimator is

v(t+1) =
(

(A(t+1))′A(t+1) + λI
)−1 (

A(t+1)
)′

B(t+1)

where

A(t+1) =

[

A(t)

At+1

]

, B(t+1) =

[

B(t)

Bt+1

]

At+1 = A(θt+1), Bt+1 = ∇θU(θt+1). Therefore

v(t+1) =
(

(A(t+1))′A(t+1) + λI
)−1 (

A(t+1)
)′

B(t+1)

=
(

(A(t))′A(t) +A′

t+1At+1 + λI
)−1

[

(

A(t)
)′

B(t) +A′

t+1Bt+1

]

(23)

Denote C(t) =
[

(A(t))′A(t) + λI
]−1

, by Sherman-
Morrison-Woodbury formula,

C(t+1) =
[

(A(t))′A(t) +A′

t+1At+1 + λI
]−1

= C(t) − C(t)A′

t+1

[

I +At+1C
(t)A′

t+1

]−1

At+1C
(t)

substitute into (23)

v(t+1) = C(t)

[

(

A(t)
)′

B(t) +A′

t+1Bt+1

]

−

C(t)A′

t+1

[

I +At+1C
(t)A′

t+1

]−1

At+1

C(t)

[

(

A(t)
)′

B(t) +A′

t+1Bt+1

]

= v(t) + C(t)A′

t+1

(

Bt+1−

[

I +At+1C
(t)A′

t+1

]−1

At+1C
(t)A′

t+1Bt+1

)

− C(t)A′

t+1

[

I +At+1C
(t)A′

t+1

]−1

At+1v
(t)

= v(t) +W (t+1)(Bt+1 −At+1v
(t))

where

W (t+1) = C(t)A′

t+1

[

I +At+1C
(t)A′

t+1

]−1

and the updating formula forC(t+1) can be simplified as

C(t+1) = C(t) −W (t+1)At+1C
(t)




