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ABSTRACT OF THE DISSERTATION

Resource Allocation in Communication, Quantization, and Localization

By

Jie Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2015

Professor A. Lee Swindlehurst, Chair

With the advancement of signal processing and other enabling technologies, new products

and services have appeared in large numbers over the past decade, and are changing people’s

daily lives quickly and profoundly. They could not have occurred without the rapid devel-

opment in areas like digital communications, information theory, detection and estimation,

where resource allocation plays a crucial role.

In this work, we study resource allocation for two classes of problems. The first class is rate

allocation in digital systems. The functionality of modern digital systems can be broadly

divided into two parts: communications and source coding. For communications, we sys-

tematically study the allocation problem from a game theory perspective for the multiuser

downlink broadcast channel, and apply the solutions to the special case where spatial block

diagonalization is combined with time-sharing to multiplex a subset of the users. For source

coding, we consider the achievable sum-rate/distortion tradeoff for the Gaussian central es-

timation officer problem with a scalar source having arbitrary memory. We formulate the

variational problem of minimizing the sum rate subject to a distortion constraint, and the

conventional Lagrange method is extended to solve the problem. A sufficient condition is

also found that can be used to verify if the necessary solution results in the minimal sum

rate.

xiv



The second class of problems is target localization. We analyze the performance of a reduced-

dimension separable space-time adaptive processing algorithm for radar systems under the

large array assumption. The study shows that in the asymptotic sense the simplified scheme

performs as well as the fully adaptive algorithm with a significant saving in computational

complexity. For target localization in wireless systems, we propose a two-stage approach

in order to handle non-line-of-sight transmission based on mild assumptions regarding the

propagation environments. For the first stage of positioning, we analyze the cases of scatter-

ing and reflection respectively, and propose methods to estimate the position and velocity of

the moving target. Once the estimation is done, the results can be used as the initial values

of extended Kalman filters in the second stage to track the subsequent movements of the

target.
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Chapter 1

Introduction

With the advancement of signal processing and other enabling technologies, new products

and services have appeared in large numbers over the past two decades, and are changing

people’s daily lives quickly and profoundly. For example, high-speed wireless communications

allow people to watch videos from websites like YouTube on mobile terminals in real time.

Location based services help people find local restaurants and attractions easily, and thus

create new business models across a broad range of industries. High-definition television and

digital broadcasting completely redefine the viewing experience with revolutionary video

and audio compression techniques. The application of automotive radar makes driving safer

and even ignites the interest of manufacturing computer-controlled driverless cars. Satellite

based navigation technologies are wildly used in automobiles and maritime vessels to replace

conventional maps and guidance instruments. The list is endless.

These products and services are what people see and use today, which could not have oc-

curred without the rapid development in areas like signal processing, digital communications,

information theory, detection and estimation. In a general sense, resource allocation can be

defined as how productive assets are distributed among different uses. As it plays a cru-

1
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Figure 1.1: Resource allocation: the subject of study.

cial role in economics, health care and education, resource allocation is of great importance

in the technological areas, where resources can be power, rate, bandwidth, accuracy, etc.

How to allocate resources efficiently is fundamental and pivotal to the performance of all

aforementioned systems.

As illustrated in Fig. 1.1, we study resource allocation for two important classes of problems

in this work. The first class is rate allocation in digital systems. The functionality of modern

digital systems can be broadly divided into two parts: communications and source coding.

For both of them, allocated rates compete with other factors in systems, and naturally trade-

offs have to be made among the competing requirements. For example, user multiplexing is

regarded as an important technology for increasing the flexibility and efficiency of wireless

communication systems, where the sum rate and the fairness for all users in the system

can hardly be maximized simultaneously. A well-behaved resource allocation strategy is

2



crucial for the performance of such systems. For source coding, the competing pair is the

quantization rate and the distortion in recovered data, where more accurate recovery of the

original data requires higher quantization resolution. The second class of problems is target

localization. Radar is a target detection technology dealing with line-of-sight (LOS) signals.

Motivated by the studies of massive multi-input multi-output (MIMO) in wireless communi-

cations which have recently attracted significant research interest, the benefits of very large

arrays can also be exploited in other applications such as space-time adaptive processing

(STAP) for radar systems in order to save computing resources at the cost of significantly

increased number of antenna elements. For target localization in civilian uses, radio posi-

tioning has received increasing attention in recent years and found applications in various

areas. However, the existence of non-line-of-sight (NLOS) paths introduces considerable po-

sitioning errors. To combat NLOS effects, we can either deploy more measuring devices in

positioning systems in the hope of obtaining LOS observation of signals, or we can keep the

infrastructure unchanged and design smart algorithms to exploit the information contained

in all LOS and NLOS paths. Investing on the deployment of more nodes or the enhance-

ment of measuring and estimation capability of existing nodes is well worth consideration.

Table 1.1 summarizes all the tradeoffs we consider in this work.

1.1 Organization of the Thesis

In Chapter 2, we systematically study the allocation problem from a game theory perspec-

tive for the multiuser downlink broadcast channel. First, we investigate the application of

the Nash and Kalai-Smorodinsky bargaining games to a general resource allocation problem

and propose algorithms to find the corresponding solutions. Then we apply the general so-

lutions to the special case where spatial block diagonalization is combined with time-sharing

to multiplex a subset of the users on every subcarrier. To reduce the computational com-

3



Table 1.1: Resource Allocation Tradeoffs

Domain Factor I Factor II

Wireless Communications Sum rate in communi-
cation

User fairness

Multiterminal Source Coding Sum rate in quantiza-
tion

Distortion

Ground Target Indication Size of antenna array Requirement on
computing resources

Mobile Terminal Positioning Measuring and posi-
tioning capability of a
single node

Number of deployed
nodes

plexity, a framework for simplifying the resulting algorithms is also given. Numerical results

and analysis are provided to compare the performance of the different resource allocation

methods.

In Chapter 3, we consider the achievable sum-rate/distortion tradeoff for the Gaussian central

estimation officer (CEO) problem with a scalar source having arbitrary memory. We describe

how the arbitrary memory problem can be fully characterized by using known results for the

vector CEO problem, and then we formulate the variational problem of minimizing the sum

rate subject to a distortion constraint. To solve the problem, we extend the conventional

Lagrange method and show that if the solution exists, it should consist of a zero part and

a non-zero part, where the non-zero part is determined by solving a set of Euler equations.

By calculating the second variation of the min-sum-rate problem, a sufficient condition is

also found that can be used to determine if the necessary solution results in the minimal

sum rate. The special case of two terminals is examined in detail, and it is shown that

an analytical solution is possible in this case. Analysis and discussion with examples are

provided to illustrate the theoretical results. The general solution obtained in this chapter is
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shown to be compatible with previous results for cases such as the problem of rate evaluation

for sources without memory.

In Chapter 4, we analyze the performance of a reduced-dimension separable STAP algorithm

under the large array assumption. We study its performance for clairvoyant interference co-

variance matrices based on the asymptotic orthogonality of the steering vectors, and we also

provide a scaling law for the signal-to-interference plus noise ratio (SINR) loss as the num-

ber of antennas grows. The study shows that in the asymptotic sense the simplified scheme

performs as well as the fully adaptive STAP method with a significant saving in computa-

tional complexity. Appealing to random matrix theory, we finally perform an analysis for

the SINR as a function of the number of training samples when the covariance matrix is

estimated using a finite collection of secondary data.

In Chapter 5, we propose a two-stage approach in order to handle NLOS scenarios based on

mild assumptions regarding the propagation environments. For the first stage of positioning,

we analyze the cases of scattering and reflection respectively, and use least squares method

to estimate the position and velocity of the moving target. Once the estimation is done, the

results can be used as the initial values of extended Kalman filters in the second stage to track

the subsequent movements of the target. Compared with previous studies, a minimal set of

measurements is required for positioning in our work, i.e., no meaningful estimation could

be done with less measurements. Simulation results are provided to show the performance

of both stages.

Conclusions are presented in Chapter 6, as well as a description of additional high level

questions and technical extensions that are motivated by this work.

5



Chapter 2

Bargaining Based Resource Allocation

in MIMO-OFDMA Systems

2.1 Introduction

The general broadcast or downlink MIMO channel has been studied by many researchers,

and the corresponding rate region has been rigorously defined [33, 112]. When the channel

state information (CSI) is known at the transmitter, capacity can be achieved by multiuser

(MU)-MIMO techniques based on dirty paper coding (DPC) [23]. However, such techniques

are computationally prohibitive and not currently suited for application in real systems.

Suboptimal but less complex algorithms based on linear processing (e.g., beamforming) have

been considered instead for implementation in current wireless standards. A comprehensive

discussion of MU-MIMO techniques can be found in [96, 51].

Because of its ability to combat fading in a straightforward way, Orthogonal Frequency Divi-

sion Modulation (OFDM) has become the basis for most wireless communication standards

proposed for the future. Orthogonal Frequency Division Multiple Access (OFDMA) refers to
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the use of OFDM in allowing multiple users access to a wireless channel, through allocation

of the available subcarriers to them. OFDMA provides considerable flexibility in multiuser

scenarios, supports various quality of service (QoS) levels, and allows for efficient exploitation

of diversity in both the time and frequency domains. Due to the advantages of OFDMA and

the potential increase in spectral efficiency from MIMO techniques, many current and almost

all newly proposed wireless systems, such as 3GPP LTE [1], LTE-Advanced [3], WiMAX [49]

and IEEE 802.16m [50], base their air interfaces on MIMO-OFDMA.

For a multiuser MIMO-OFDMA system, a reasonable allocation of available resources such

as power, subcarriers and spatial channels, is crucial to system performance, and there has

been considerable research on this topic. Many papers have focused on allocating resources to

maximize the sum rate of the system [104, 103, 98], while others have attempted to maintain

fairness in terms of QoS among the users, usually according to some heuristic metrics. For

instance, [92] tackles the fair allocation problem by assigning different priorities to users and

[67] treats requested data rates as weighting factors and then schedules users via a weighted

proportional-fair algorithm.

Recently, researchers have begun to interpret wireless communication problems from a game

theory perspective, which provides a more formal mechanism for solving resource allocation

problems. As a branch of game theory, bargaining games and their corresponding axiomatic

solutions have been applied to wireless networks [52, 42] in order to attain a useful tradeoff

between overall system efficiency and user fairness. In [69], the scheduling problem for the

multiple-input single-output (MISO) interference channel was studied. In [122], the Nash

Bargaining Solution (NBS) [68] is applied to a two-user relay setting. The authors of [99]

develop a distributed algorithm for spectrum sharing that reasonably approximates the NBS.

In [9], the authors show that the NBS can be extended to log-convex utility sets and then

study a general wireless scenario where the inter-user interference is the dominating factor for

transmission performance. Application of the NBS to 2- and N -player interference channels
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has been studied in [60, 61, 120, 62]. By generalizing the Kalai-Smorodinsky Bargaining

Solution (KSBS) [54] to the multi-player case, the authors of [45] provided load allocation

strategies for virtual network sharing.

In this chapter, we focus on the use of bargaining techniques for the MIMO-OFDMA down-

link, where a base station (BS) must allocate available resources in order to simultaneously

communicate with multiple users. Although the BS sets the transmission parameters in a

cellular downlink setting, and the users do not directly cooperate or negotiate with each

other, the use of game-theoretic bargaining is still a relevant concept. As stated in [86], a

bargaining solution “can be interpreted as an arbitration procedure; i.e., a rule which tells

an arbitrator what outcome to select. So long as the arbitration procedure is intended to

reflect the relative advantages which the game gives to the players, this interpretation need

not be at odds with the interpretation of a solution as a model of the bargaining process.”

In other words, the basic assumption behind a game-theoretic bargaining solution between

several players is that it be identical to what an impartial arbitrator would recommend. In

our cellular network application, the BS acts as an arbitrator. It is aware of the payoffs

(downlink rates) for each user, and it can enforce the selected outcome. The bargaining so-

lutions serve as the mechanism for making the arbitration decision. In our work, we consider

the use of the Nash and Kalai-Smorodinsky bargaining approaches as vehicles for provid-

ing a systematic and axiomatic way to address fairness in the multiuser MIMO-OFDMA

downlink. An earlier version of this approach was presented in [19].

In [16] and [121], heuristic approximations of bargaining solutions for downlink OFDMA

resource allocation are developed, and these papers tackle problems similar to the one we

address in this chapter. However, the problem we consider here is more complicated. We

attempt to determine the solution in a multi-antenna, multi-carrier setting, which adds

significant complexity to the original OFDMA resource allocation problem. Furthermore,

we are interested in finding the exact NBS and KSBS (under certain constraints) instead of
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heuristic approximations. In [48], the empirical performance of the NBS and KSBS is studied

for the single-antenna case. The authors of [26] study resource allocation in a similar scenario

and derive elegant analytical expressions for both the Nash and KS bargaining solutions.

However these closed-form results only hold for very special rate region geometries in which

every point on the Pareto boundary corresponds to a max sum-rate solution.

To solve the more general problem, we first establish a mathematical formulation for the

bargaining game applied to the downlink MIMO-OFDMA problem. Next, we show that

if the resource set is convex and the performance metric with respect to the resource set

is concave, then the NBS can be immediately obtained via standard convex optimization

techniques. However, the KSBS case is more difficult, and consequently we devise two

algorithms with guaranteed convergence that can be used to find the true KSBS. We also

present a method for extending KSBS to handle long-term average rate allocation problems,

similar to how the proportional-fair algorithm implements a long-term average for the NBS

[56, 59]. We demonstrate the use of these algorithms for a special case where the transmitter

employs the so-called block diagonalization (BD) algorithm [97] for the transmit precoders

on each subcarrier. We show that this special case meets the necessary convexity conditions,

and provide details on how to implement the algorithms for this case. Finally we develop

a suboptimal but low-complexity algorithmic framework that provides performance close to

that obtained with the exact solutions.

The rest of the chapter is organized as follows. In Section 2.2, we describe the system model

and formulate the resource allocation problem for the MIMO-OFDMA broadcast channel. In

Section 2.3, we provide a brief introduction to the bargaining techniques used in the chapter,

and discuss how they can be applied to the resource allocation problem. Section 2.4 proposes

methods to solve the problem by using convex optimization techniques, and illustrates the

long-term average implementation of the KSBS. Section 2.5 discusses the application of the

bargaining solutions for the special case of BD MIMO-OFDMA, followed by a complexity
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discussion and a simplified algorithmic framework for computing the bargaining solutions

in a suboptimal but more practical manner. Numerical simulation results are presented in

Section 2.6 and the tradeoffs between efficiency and equity for cases with equal or non-equal

pathloss are studied.

2.2 System Model

We consider an MU-MIMO downlink channel with nT transmit antennas and K users, where

user k is equipped with n
(k)
R receive antennas. We also assume an N -subcarrier OFDM

modulation scheme and that each subcarrier experiences flat fading. This models a typical

cellular downlink transmission scenario. With the assumption that linear transmit precoding

is performed, the signal received by user k on subcarrier n is

d̂k,n = Dk,n

(

Hk,n

K∑

l=1

Ml,ndl,n + nk,n

)

, (2.1)

where dk,n ∈ Cmk,n carries mk,n data symbols for user k on subcarrier n, Hk,n ∈ Cn
(k)
R

×nT

is the channel matrix, Mk,n ∈ CnT×mk,n is the transmit precoding matrix, Dk,n ∈ Cmk,n×n(k)
R

is the receive decoding matrix, and nk,n ∈ Cn
(k)
R is a complex white Gaussian noise vector.

Note that, in general, only a subset of the users will actually use a given subcarrier n for

data transmission. Users who are not allocated power for subcarrier n will set dk,n = 0 and

no precoder will be computed.

The generic MIMO-OFDMA resource allocation problem consists of determining which sub-

carriers are assigned to each user (in the MIMO case, several users will in general share each

subcarrier), how much power is allocated to each user on each subcarrier, and what trans-

mit precoders will be used. We use the general variable G to denote the possible resource

assignments. For example, G could be a tuple (p,ϕ) where p is the power allocation over
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all users and subcarriers and ϕ is the subcarrier occupancy indicator. Given an allocation

strategy G, we use RG
k to denote the achievable rate for user k and RG ⊂ RK to denote the

entire rate region, which in general may or may not be convex.

Based on this system model, the K-user resource allocation problem can be mathematically

generalized into a class of optimization problems. Each of these problems has the same

constraints, but different objective functions, as follows:

max
G

U(RG
1 , . . . , R

G
K) (2.2)

s.t. (RG
1 , . . . , R

G
K) ∈ RG , (2.3)

where the utility U can have various definitions depending on the specific adopted criterion,

such as

Max-sum rate: U =

K∑

k=1

RG
k (2.4)

Max-min rate: U = min
k=1,...,K

RG
k . (2.5)

For the max-sum-rate case, a larger share of resources are typically allocated to users with

better channel conditions, and weak users often end up with very little throughput. On the

other hand, in the max-min case, fairness in the strictest sense becomes the major concern,

which typically results in an inefficient resource utilization. In Section 2.3 we will see that

game-theoretic bargaining approaches for this problem can be cast in the general framework

of (2.2)–(2.3), and used to obtain a meaningful trade-off between overall performance and

fairness for individual users.
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2.3 Game Theoretic Bargaining Solutions

In this section, we begin by briefly explaining two well-known bargaining solutions [68, 54],

and then show how these solutions can be applied to the MIMO-OFDMA resource allocation

problem.

2.3.1 Nash Bargaining Solution

A bargaining problem is defined as a pair (S,d), where S ⊂ RK is the set of feasible payoffs

and d ∈ S is the status-quo or disagreement point. The disagreement point corresponds to

the payoffs that the users can obtain in the absence of bargaining, or in our case in the absence

of any arbitration by the BS. A single K-dimensional point u = (u1, . . . , uK) represents a

utility vector for K players. For our downlink communications problem, the elements of this

vector will correspond to the downlink rates achieved for each user. The axiomatic definition

of the NBS is introduced in [68], and for our problem the NBS is equivalent to (2.2)–(2.3)

with the following cost function U :

NBS: U =
K∏

k=1

(RG
k −RSQ

k ) , (2.6)

where RSQ
k represents the status quo rate of user k. The status quo rate RSQ

k for our appli-

cation can be chosen to be the minimum rate requirement for user k, which can reasonably

be assumed to lie in the rate region through the use of mechanisms such as call admission

control.
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2.3.2 Kalai-Smorodinsky Bargaining Solution

Others have formulated the game-theoretic bargaining problem with different axiomatic def-

initions, leading to alternative approaches. One of these is the so-called Kalai-Smorodinsky

bargaining solution [54]. In the KSBS formulation, the payoff for the players satisfies

u1 − uSQ1
umax1 − uSQ1

= · · · = uK − uSQK
umaxK − uSQK

, (2.7)

where uSQk denotes the status quo utility for player k, umaxk denotes the maximum possible

payoff for player k, and {umaxk }Kk=1 is referred to as the “utopia” point. For our problem,

achieving umaxk corresponds to allowing user k to occupy all resources, and thus it is easy

to determine. Thus, in the KSBS solution, every user gets the same fraction of his/her

maximum possible rate. This interpretation has considerable intuitive appeal, and makes

KSBS an attractive approach in situations where one wishes to balance individual fairness

with overall system performance. Like the other allocation algorithms considered, the KSBS

can also be formulated as the solution to an optimization problem like that in (2.2). The

corresponding objective function U is

KSBS: U = r where r =
RG
k −RSQ

k

Rmax
k −RSQ

k

, ∀k . (2.8)

Note that we have switched notation from the general utility uk for user k to the specific value

RG
k denoting user k’s rate under allocation G, and umaxk = Rmax

k . For notational simplicity,

from now on we will assume that the status quo point for each user is zero in both the NBS

and KSBS cases; generalizing our approach for a non-zero status quo is straightforward.

When the status quo point is zero, the KSBS is similar to the weighted rate balancing

problem, which is discussed in [109] for downlink MIMO beamforming.
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2.4 Finding the Bargaining Solutions

Although the task of finding the bargaining solutions can be transformed into optimization

problems such as (2.6) and (2.8), the resulting problems will in general be difficult to solve

for arbitrary transmission schemes. However, if we can make the following two assumptions:

• (A1) the rate function RG
k is strictly concave with respect to G, and

• (A2) any constraints on G are convex,

then the optimization problems become easier to solve. By the function composition argu-

ment [11], it is straightforward to verify that the negative logarithm of (2.6) is strictly convex

with respect to G. Under these assumptions, the NBS can be found using standard numerical

techniques, such as the primal-dual interior point method. Note that while assumptions (A1)

and (A2) are strong, there are many non-trivial cases where they are satisfied, and hence

could be solved using the techniques outlined in this chapter. Some examples include down-

link orthogonal CDMA [32], downlink channel inversion MISO-SDMA [79], and downlink

MIMO zero-forcing dirty paper coding [12].

Finding the KSBS is more challenging, even with assumptions (A1) and (A2). To see this

we rewrite the optimization problem for KSBS here as

max
G

r

s.t. r =
RG
k

Rmax
k

, k = 1, 2, . . . , K .

We cannot obtain the KSBS by directly solving this problem with convex optimization

techniques due to the fact that the additional equality constraints r =
RG

k

Rmax
k

, k = 1, · · · , K,

are not affine with respect to r and G [11]. To circumvent this problem, in the sections below

we propose two different approaches that allow us to find the KSBS in an efficient way.
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2.4.1 Bisection Search

The first approach is based on the bisection search method, similar to that used in [69]

for applying KSBS to MISO inference networks. To see how this method is implemented,

recall that the KSBS corresponds to the intersection of the rate region boundary and the line

segment from the origin to the utopia point. The goal of the bisection method is to efficiently

search along this line segment until the point of intersection is found. The line segment is

sequentially bisected, and a feasibility test is conducted to determine if the current bisection

point r′ =
RG

k

Rmax
k

corresponds to a rate pair that can be achieved for some G. Fortunately, this

feasibility test corresponds to a convex optimization problem that is solvable. If the point is

feasible, it becomes the new left endpoint of the line segment and the process is repeated.

If the point is not feasible, it becomes the new right endpoint of the segment instead. The

process continues until the difference between the rate ratios at the endpoints of the line

segment is less than some prespecified tolerance, indicating that we are at least that close to

the KSBS solution on the boundary of the rate region. The feasibility test at each iteration

can be formulated as:

RG
k

Rmax
k

≥ r′, k = 1, 2, . . . , K .

Due to the assumption that RG
k is strictly concave with respect to G, we can see that the

inequality constraints are strictly convex and therefore this test can be performed by a

standard numerical method.

2.4.2 Preference Function Formulation

In [13], the two-user bargaining problem was analyzed, and it was shown that a number of

well-known bargaining problems can be unified under one mathematical umbrella through
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the introduction of the so-called preference function. In [45] and [27], the authors show that

the preference function concept can be extended to cases involving more than two users. For

our problem, we can accordingly define the preference function for user k as

Qk =
RG
k

Rmax
k

+
β

K − 1

K∑

s=1,s 6=k

(

1− RG
s

Rmax
s

)

, (2.9)

and the overall objective function as

U =

K∏

k=1

Qk =

K∏

k=1

[

RG
k

Rmax
k

+
β

K − 1

K∑

s=1,s 6=k

(

1− RG
s

Rmax
s

)]

. (2.10)

We can utilize the preference function concept to find the KSBS for our resource allocation

problem by maximizing (2.10) for β = 1 and finding the corresponding optimal r and G.

A further investigation reveals that (2.10) is strictly concave with respect to {RG
k }Kk=1 for

0 ≤ β < 1, but not strictly concave when β = 1. This results because, in the β = 1 case,

multiple {RG
k }Kk=1 tuples can maximize (2.10) only if the ratios { RG

k

Rmax
k

}Kk=1 are all equal to

r. This means that the different choices of initial point in the numerical search process may

lead to different {RG
k }Kk=1 tuples that have the same ratio r but are not necessarily Pareto

optimal. Among these {RG
k }Kk=1 tuples, only the one on the rate region boundary, i.e., the

one that is Pareto optimal, is the true KSBS. To get around this difficulty, we propose the

following iterative approach to find the KSBS:

1. Select a suitable positive and increasing sequence {βi}∞i=1 satisfying βi < 1 for all i,

but with the sequence converging to 1.

2. At the ith iteration, plug βi into (2.10) and solve the optimization problem. Since U

is strictly concave when 0 ≤ β < 1, we can uniquely find the solution {RG∗
k (βi)}Kk=1.

3. Increase i and repeat step 2 until the distance between {RG∗
k (βi−1)}Kk=1 and {RG∗

k (βi)}Kk=1

is below a predefined tolerance.
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The following theorem indicates that this iterative approach converges to the KSBS.

Theorem 2.1. As β goes to 1, {RG∗
k (β)}Kk=1 converges to the KSBS.

Proof. See Appendix A.1.

2.4.3 KSBS associated with average rate

The discussion thus far has focused on finding the KSBS for the instantaneous rate allocation

problem. In some applications, it is more practical to base the scheduling decisions on long-

term rate averages instead. The proportional fair scheduling algorithm is a good example; it

is well known that this algorithm results in an average rate allocation that is equivalent to

the NBS [56, 59]. In this section, we show that a similar type of solution can be formulated

to implement the KSBS for the average user rates.

Assume Tw is the length of the time window over which the rate averaging is to occur, so

that the average rate of user k at time n can be expressed as:

R
G

k (n) =

(

1− 1

Tw

)

R
G

k (n− 1) +
1

Tw
RG
k (n) , (2.11)

where RG
k (n) is the rate allocated to user k at time n. We want to find a rule to schedule

users for transmission so that in the long run the average rate allocation is the KSBS. Again

we use the preference function concept to find the rule. Define

f
(

{RG

k (n)}Kk=1

)

= log
K∏

k=1

[

R
G

k (n)

R
max

k

+
1

K − 1

K∑

s=1,s 6=k

(

1− R
G

s (n)

R
max

s

)]

. (2.12)

It is easy to verify that f is concave with respect to G. Let R
G∗

denote the long term average

KSBS. Thus, R
G∗

should maximize f and fulfill the following optimality condition [11] for
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arbitrary RG:

∇f(RG∗
)(RG −R

G∗
) ≤ 0, (2.13)

where ∇ is the gradient operator, i.e., ∇f =
[
∂f
∂RG

1
, . . . , ∂f

∂RG
K

]

.

The first order derivative of f is given by

∂f

∂RG
k (n)

=

1/Tw
R

max
k

R
G
k (n)

R
max
k

+ 1
K−1

∑K
s=1,s 6=k

(

1− R
G
s (n)

R
max
s

) +

K∑

s=1,s 6=k

1
K−1

(

− 1/Tw
R

max
k

)

R
G
s (n)

R
max
s

+ 1
K−1

∑K
t=1,t6=s

(

1− R
G
t (n)

R
max
t

) .

(2.14)

Plugging (2.14) into (2.13) yields the optimization condition

K∑

k=1







1/Tw
R

max
k

R
G
k (n)

R
max
k

+ 1
K−1

∑K
s=1,s 6=k

(

1− R
G
s (n)

R
max
s

) +

K∑

s=1,s 6=k

1
K−1

(

− 1/Tw
R

max
k

)

R
G
s (n)

R
max
s

+ 1
K−1

∑K
t=1,t6=s

(

1− R
G
t (n)

R
max
t

)







×
(
RG
k (n)−RG∗

k (n)
)
≤ 0 . (2.15)

Note that R
G

k (n) is a function of RG
k (n). The length of the time window Tw is usually set to

be very large, so the filtered rate changes very slowly and we can approximately assume that

R
G

k (n) = R
G

k (n− 1). Denote this filtered average rate by Rk. For every scheduling interval

n, the optimality condition (2.15) leads to the following rate allocation rule:

RG∗(n) = argmax
RG(n)

K∑

k=1







1
R
max
k

Rk
R
max
k

+ 1
K−1

∑K
s=1,s6=k

(

1− Rs
R
max
s

) +
∑K

s=1,s 6=k

1
K−1

(

− 1
R
max
k

)

Rs
R
max
s

+ 1
K−1

∑K
t=1,t 6=s

(

1− Rt
R
max
t

)







×RG
k (n) . (2.16)
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If there is more than one rate vector RG(n) that maximizes (2.16), we choose the one that

is component-wise greater than the others, since the KSBS resides on the boundary of the

rate region. In practical wireless systems the candidate rate vector set is discrete and the

size of the set is usually small, so an exhaustive search can be used to find the solution. Note

that in this case we may not be able to find the exact KSBS, but simulations show that this

rule can approximate the KSBS quite well. The form of the KSBS rule is compared with

the proportional-fair approach in the equations below for the two-user case:

RG∗(n) = argmax
RG(n)

2∑

k=1

1
R

max
k

(
R{1,2}\{k}

R
max
{1,2}\{k}

− Rk

R
max
k

)

1−
(

R2

R
max
2
− R1

R
max
1

)2 × RG
k (n) (KSBS) (2.17)

RG∗(n) = argmax
RG(n)

2∑

k=1

1

Rk

× RG
k (n) (NBS) . (2.18)

2.5 Application to the MIMO-OFDMA Downlink with

Block Diagonalization

The approaches introduced in Section 2.4 are quite general, and can be used to find bargain-

ing solutions for any resource allocation problems provided the rate function RG
k is strictly

concave with respect to G and the constraints on G are convex. In this section we apply the

proposed approaches to a special scenario where we use the BD method [97] to calculate the

transmit precoders on each subcarrier.

2.5.1 Block Diagonalization

To describe the BD scheme implemented on a given subcarrier n, suppose Ln users have

been assigned to this subcarrier, and let Ln = {l1, . . . , lLn
} denote the indices corresponding
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to these users. To compute the precoder for user lj ∈ Ln, we form the following matrix:

H̃j,n = [HT
l1,n · · · HT

lj−1,n
HT
lj+1,n

· · · HT
lLn ,n

]T , (2.19)

which is of dimension
∑

l∈Ln−lj n
(l)
R × nT . For the BD approach [97], Mj,n must lie in the

null space of H̃j,n, which can be found by the singular value decomposition (SVD), provided

that nT is large enough:

H̃j,n = Ũj,nΣ̃j,n[Ṽ
(1)
j,n Ṽ

(0)
j,n]

H , (2.20)

where (·)H denotes the complex conjugate transpose, Ṽ
(1)
j,n ∈ C

nT×rank(H̃j,n) holds the first

rank(H̃j,n) right singular vectors, and Ṽ
(0)
j,n ∈ CnT×(nT−rank(H̃j,n)) forms a basis for the null

space of H̃j,n.

With another SVD operation on the matrix Hj,nṼ
(0)
j,n, we can find the basis of user j’s

precoder. The concatenation of all the precoders can be expressed as

Mn = [Ml1,n Ml2,n · · · MlLn ,n
] = [Ṽ

(0)
l1,n

V
(1)
l1,n

Ṽ
(0)
l2,n

V
(1)
l2,n
· · · Ṽ(0)

lLn ,n
V

(1)
lLn ,n

]Λ
1
2
n ,

where Λn is a diagonal matrix of size
∑

j∈Ln
rank(Hj,nṼ

(0)
j,n), whose elements are the power

loading factors for each spatial stream, and V
(1)
j,n ∈ C

(nT−rank(H̃j,n))×rank(Hj,nṼ
(0)
j,n) are the right

singular vectors of Hj,nṼ
(0)
j,n. In [97], the authors show that maximizing the sum capacity for

the system under the zero-interference constraint requires water-filling on the power loading

factorsΛn. On the other hand, for our problem, the elements ofΛn are adjustable parameters

to be allocated by the bargaining solution.

The resulting rate for user k under BD in a MIMO-OFDMA setting will be

RG
k =

N∑

n=1

log2

∣
∣
∣
∣
I+

1

Nk,n
Σ2
k,nΛk,n

∣
∣
∣
∣
, (2.21)

20



where I is the identity matrix, Nk,n is the noise power, Λk,n is the submatrix of Λn corre-

sponding to user k’s power loading factors, and Σk,n is the diagonal matrix containing the

singular values of user k’s channel on subcarrier n.

In general, for the required nullspace to exist, the BD scheme assumes that nT ≥
∑

l∈Ln
n
(l)
R

on every subcarrier n. For situations where nT is relatively small, a suboptimal approach can

be used in order to still implement BD [97]. In this approach, the receiver uses a beamformer

to reduce the effective number of spatial channels prior to water-filling. For example, the

receiver could choose a subset of the principal left singular vectors of the channel to limit

the number of data streams it can receive. In effect, this is like reducing the number of

receive antennas, and provides BD with additional degrees of freedom to find a nullspace. In

this case the channel Hk,n is regarded as the effective channel formed by the product of the

fixed receive beamformers with the actual channel. For our problem, such an approach would

have to be implemented suboptimally, with fixed rather than optimized receive beamformers,

since the convexity of the problem would be lost if the dimension-reducing beamformers were

included as parameters in G.

2.5.2 Time Sharing

In this section, we apply a relaxation to the original model and show that, together with

the restriction to BD precoding, a convex programming problem results. Note that, with

K users, there are a total of 2K different user combinations that could be assigned to a

given subcarrier n. Some of these combinations will not be feasible for BD, since the sum of

the number of receive antennas for users on a given subcarrier cannot exceed nT . Suppose

that after eliminating these infeasible cases, we are left with I possible user combinations

on any given subcarrier, and let {ϕn,i : n = 1, . . . , N and i = 1, . . . , I} denote the set of

all possible user combinations over all subcarriers. Furthermore, let 0 ≤ ωn,i ≤ 1 represent
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the fraction of the time that user combination ϕn,i is used on subcarrier n. To interpret the

physical meaning of ωn,i, consider a block fading transmission scenario in which the channel

condition remains unchanged for M consecutive OFDM symbols. During this period, the

active users in combination ϕn,i are allocated ⌊Mωn,i⌋ symbols by the BS. As we will see

later, introducing the time sharing factor ωn,i and allowing a variable power allocation over

the time slots [32] make the problem convex and thus more tractable. Similar approaches

for modeling subcarrier allocations have been adopted in [14, 83]. Under these assumptions,

the rate for user k can now be expressed as

RG
k =

N∑

n=1

I∑

i=1

ωn,i log2

∣
∣
∣
∣
I+

1

ωn,iNk,n
Σ2
k,n,iΛk,n,i

∣
∣
∣
∣

=

N∑

n=1

I∑

i=1

n
(k)
R∑

t=1

ωn,i log2

(

1 +
σ2
k,n,i,tλk,n,i,t

ωn,iNk,n

)

. (2.22)

Each term in the above sum is strictly concave with respect to G = [ω λ], and thus RG
k is

strictly concave in G. Note here that ω = {ωn,i}|∀n,i and λ = {λk,n,i,t}|∀k,n,i,t.

Based on this system model, the K-user resource allocation problem can be generalized into

a class of optimization problems with the same constraints, but different objective functions,

as follows:

max
ω,λ

U (2.23)

s.t. ωn,i ≥ 0, ∀n, i (2.24)

λk,n,i,t ≥ 0, ∀k, n, i, t (2.25)

I∑

i=1

ωn,i ≤ 1, ∀n (2.26)

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λk,n,i,t ≤ P , (2.27)
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where U is the objective function of the optimization problem, (2.26) is the time-sharing

constraint, and (2.27) is the constraint on the total transmitted power. A similar description

can also be found in [42].

We provide a proof in Appendix A.2 that shows the rate region of {RG
k }Kk=1 is convex. Now

we can apply the approaches introduced in Section 2.4 to the MIMO-OFDMA problem based

on BD.

2.5.3 Convex Optimization for NBS

The NBS can be obtained by solving the following optimization problem, which is equivalent

to (2.10) implemented with β = 0:

min
ω,λ
− log

( K∏

k=1

RG
k

Rmax
k

)

(2.28)

s.t. − ωn,i ≤ 0, ∀n, i (2.29)

− λk,n,i,t ≤ 0, ∀k, n, i, t (2.30)

I∑

i=1

ωn,i − 1 ≤ 0, ∀n (2.31)

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λk,n,i,t − P ≤ 0 . (2.32)

Since the logarithm function is monotonic and we know RG
k is strictly concave, (2.28) is

strictly convex and therefore can be iteratively solved using a technique such as the primal-

dual interior point method.
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2.5.4 Bisection Search for KSBS

The feasibility test for a given r can be formulated as:

RG
k

Rmax
k

≥ r, k = 1, 2, . . . , K

ωn,i ≥ 0, ∀n, i

λk,n,i,t ≥ 0, ∀k, n, i, t
I∑

i=1

ωn,i ≤ 1, ∀n

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λk,n,i,t ≤ P .

To put this problem into a more standard form for convex optimization, we introduce an

artificial variable s and restate the problem as follows:

min
ω,λ

s (2.33)

s.t. r − RG
k

Rmax
k

− s ≤ 0, ∀k (2.34)

− ωn,i ≤ 0, ∀n, i (2.35)

− λk,n,i,t ≤ 0, ∀k, n, i, t (2.36)

I∑

i=1

ωn,i − 1 ≤ 0, ∀n (2.37)

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λk,n,i,t − P ≤ 0 . (2.38)

We can see that this new optimization problem is convex by checking the objective function

and the constraints. The objective function s and the left-hand side of the constraints

except (2.34) are affine, so they are trivially convex. For (2.34), we already know that RG
k is

concave with respect to G. If the resulting solution for s is no greater than 0, the resource

allocation G = [ω λ] is feasible. Otherwise, the feasibility test fails. Pseudo-code for this
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Algorithm 1 Bisection Search Algorithm

INPUT: Channel matrices Hn,k, power constraint P , noise power Nk,n, and tolerance ǫ.
OUTPUT: Optimal KSBS ratio r∗ and corresponding resource allocation result ω∗, λ∗.

1: Pick suitable initial feasible vectors ω0 and λ0.
2: For all k, Rmax

k ← ∑N
n=1

∑I
i=1 ωn,i log2 |I + 1

ωn,iNk,n
Σ2
k,n,iΛk,n,i| {To compute the utopia

point, all resources are being allocated to user k.}
3: rmax ← 1
4: rmin ← 0
5: while rmax − rmin > ǫ do
6: r ← 1

2
(rmax − rmin)

7: Optimize s using ω0 and λ0 as an initialization point. The optimum is attained at ω
and λ.

8: if s > 0 then

9: rmax ← r {infeasible branch}
10: else

11: rmin ← r {feasible branch}
12: r∗ ← r, ω∗ ← ω, λ∗ ← λ

13: end if

14: end while

approach is outlined in Algorithm 1.

2.5.5 Preference Function Method for KSBS

Applying the negative logarithm to (2.10), the preference function optimization for our

problem can be written in standard form as

min
ω,λ
− log

K∏

k=1

[

RG
k

Rmax
k

+
β

K − 1

K∑

s=1,s 6=k
(1− RG

s

Rmax
s

)

]

(2.39)

s.t. − ωn,i ≤ 0, ∀n, i (2.40)

− λk,n,i,t ≤ 0, ∀k, n, i, t (2.41)

I∑

i=1

ωn,i − 1 ≤ 0, ∀n (2.42)

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λk,n,i,t − P ≤ 0 . (2.43)
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Algorithm 2 Preference Function Based Algorithm

INPUT: Channel matrices Hn,k, power constraint P , noise power Nk,n, tolerance ǫ, initial
guess β0, and scale factor t.
OUTPUT: Optimal KSBS ratio r∗ and corresponding resource allocation result ω∗, λ∗.

1: Pick suitable initial feasible vectors ω0 and λ0.
2: For all k, Rmax

k ← ∑N
n=1

∑I
i=1 ωn,i log2 |I + 1

ωn,iNk,n
Σ2
k,n,iΛk,n,i| {To compute the utopia

point, all resources are being allocated to user k.}
3: β ← β0
4: while max{ RG

k

Rmax
k

} −min{ RG
k

Rmax
k

} > ǫ do

5: Optimize the objective function in (2.39) using ω0 and λ0 as an initialization point.
The optimum is attained at ω and λ.

6: r∗ ← r, ω∗ ← ω, λ∗ ← λ, β ← 1− t(1− β)
7: end while

We know from the above that this is a convex problem, except when β = 1. The method

introduced in Section 2.4 can be exploited as summarized in Algorithm 2. First we choose

an arbitrary β ∈ [0, 1) and check whether it is close enough to the actual KSBS by checking

to see if the ratio requirement in (2.7) is satisfied. If not, we increase β and repeat the

optimization process. If it is, we can safely claim the solution is good enough and may be

used as the KSBS. Comparing this algorithm to Algorithm 1, the first approach is a search

along the line segment from the origin to the utopia point, while the second is a search along

the boundary of the rate region.

2.5.6 Algorithm Simplification

The solutions presented above have reasonable complexity for situations involving a relatively

small number of downlink users. However, the total number I of possible user combinations

per subcarrier grows exponentially fast with K, and can make the algorithms computation-

ally intractable when the number of users is large. Although the algorithms can still be used

to find performance bounds, simpler approaches may be required for practical implementa-

tion. To simplify the algorithms, we can limit the number of possible candidates on each

subcarrier. In this section, we discuss how to achieve this goal in two steps. First, for each
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Algorithm 3 Reduced Complexity Algorithm

INPUT: Channel matrices Hn,k, maximum number of users on a single subcarrier Nu

and maximum number of combinations Nc.
OUTPUT: Optimal KSBS ratio r∗ and corresponding resource allocation result ω∗, λ∗.

1: for n = 1 to N do

2: Select the Nu users whose channel matrix has the largest norm on subcarrier n.
3: Generate all valid combinations of the Nu users, and let Cn denote the number of

combinations.
4: for un = 1 to Nu do

5: Compute the eigenvalues of the channel matrix of user un.
6: end for

7: for cn = 1 to Cn do

8: Compute the product of the eigenvalues of every user in combination cn.
9: end for

10: Select the Nc combinations whose eigenvalue product is the greatest.
11: end for

12: Use Algorithm 1 or Algorithm 2 with the selected user combinations on each subcarrier
to finish the optimization process and obtain r∗, ω∗ and λ∗.

subcarrier, we sort the users based on the strength of their channel on that subcarrier, and

we select only the Nu users with the strongest channels for consideration. With sufficient

frequency diversity, a different set of users will be chosen for each subcarrier. Second, we

only consider a subset of the possible user combinations for that subcarrier by examining

the eigenvalues of the channel matrices of all users assigned to a given combination. In

particular, we only select the Nc combinations that yield the largest eigenvalue product,

considering only those channels that are active in each combination. With these two steps,

the optimal algorithms described above can be simplified as outlined in Algorithm 3, which

has polynomial complexity in the number of users. Note that if the number of subcarriers N

is large enough, the chance for weak users to end up never being one of the Nu users selected

on any subcarrier is very small. The algorithm is outlined below for the KSBS case, but it

can be used for the NBS as well with obvious modifications.
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Figure 2.1: Performance comparison of allocation schemes for one channel realization.

2.6 Numerical Results

In this section we present some numerical results to illustrate the performance of the pro-

posed algorithms. To evaluate the effectiveness of the bargaining solutions, we simulated

four resource allocation schemes, namely NBS, KSBS, max-sum-rate and the round robin

approach, assuming i.i.d. Gaussian MIMO channels. For NBS and KSBS, both the com-

plete and the simplified algorithms are simulated. The max-sum-rate allocation is obtained

by solving the optimization problem (2.4). For the round robin allocation, users are sequen-

tially selected to form groups for which the total number of antennas is less than or equal

to nT , then the subcarriers are allocated to each group one after the other. In all of the

simulations, the number of antennas at the transmit side is nT = 4, while the number of

antennas at the receive side is nR = 2. The total number of subcarriers is N = 8 and in

the first set of plots there are 6 users in the system. We choose Nu = 2 and Nc = 2 for the

complexity-reduced algorithm. In this simulation, we assume the noise power density for all
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Figure 2.2: Average sum rate vs. SNR: equal pathloss case (left: full algorithm implemen-
tation, right: simplified algorithms.)
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Figure 2.3: Average minimum rate vs. SNR: equal pathloss case (left: full algorithm imple-
mentation, right: simplified algorithms.)

users is the same, i.e., Nk,n = N0 for all k and n.

Fig. 2.1 shows the results of the respective allocation schemes for one representative channel

realization. The theoretical maximum rate Rmax
k for each user is calculated and is also

depicted in the figure. Fig. 2.2 and Fig. 2.3 respectively show the average sum and minimum

rate for an SNR range from 0 to 20 dB, where all users experience the same relative pathloss,

i.e., where the expected value of the channel norm is the same for all users. As expected, the

max-sum-rate algorithm always outperforms the others in terms of sum rate, while the NBS
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Figure 2.4: Average sum rate vs. SNR: unequal pathloss case (left: full algorithm imple-
mentation, right: simplified algorithms.)
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Figure 2.5: Average minimum rate vs. SNR: unequal pathloss case (left: full algorithm
implementation, right: simplified algorithms.)

and the KSBS provide a tradeoff between the sum and minimum rate. For this case the rate

region is symmetric, which explains why there is little difference in performance between

the full implementations of NBS and KSBS. We also notice that the simplified versions of

the algorithms do not incur much performance degradation in the low SNR regime, but a

more pronounced performance loss at high SNR. This situation can be improved by choosing

larger values for Nu and Nc.

Using the same simulation parameters except for the channel gains, Fig. 2.4 and Fig. 2.5
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Figure 2.6: Average sum rate for various numbers of users: equal pathloss case (left: full
algorithm implementation, right: simplified algorithms.)
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Figure 2.7: Average minimum rate for various numbers of users: equal pathloss case (left:
full algorithm implementation, right: simplified algorithms.)

show the performance of the various allocation schemes for the case that half of the users

experience an additional 20 dB pathloss. Here, the bargaining solutions provide a more

obvious gain in terms of minimum rate.

In Figs. 2.6 and 2.7 we observe the performance of the bargaining solutions from a different

perspective. Here we fix the SNR to 10 dB and assume equal pathloss for all users, but

we let the number of users vary from 2 to 10. Fig. 2.6 shows the average sum rate and

Fig. 2.7 shows the average minimum rate. Clearly, the average sum rate of the round robin
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Figure 2.8: Empirical average rates over 150 intervals for 3 users.

algorithm does not change, while the other three algorithms yield a much better sum rate

performance. We can also see that the NBS tends slightly more towards the max-sum rate

solution, while KSBS tends slightly towards a more equitable solution. Both bargaining

solutions significantly outperform the simple round robin algorithm.

In our final simulation example, we implement the scheduling rule described in Section 2.4.3

with recursive average rate updating. The parameter settings are the same as those in the

first set of simulation results. Fig. 2.8 shows the evolution of the average rates for 3 users

over 150 scheduling intervals. We can see that the average allocated rates become stable

quite quickly and the resulting ratios of Rk

R
max
k

for the different users are nearly equal, as

expected: (0.299, 0.300, 0.300). In this case, all three users get approximately 30% of the

maximum rate they could achieve in the single-user scenario.
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Chapter 3

The Gaussian CEO Problem for

Scalar Sources with Arbitrary

Memory

3.1 Introduction

Wireless sensor networks have been the subject of active research for the past decade, and

they find many uses in civil, industrial, commercial, and military applications. Such networks

are often used for distributed sensing, in which geographically distributed sensors make mea-

surements or local estimates and forward them to a fusion center, which conducts further

processing to extract useful information from the data. In practice, the local measurements

are typically quantized prior to transmission, and there is clearly a trade-off between the

level of quantization (or equivalently the sensors’ transmission rates) and the final estima-

tion accuracy. With knowledge of the required accuracy and the statistical characteristics

of the source and noise, the fusion center can optimally determine the sensors’ individual
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transmission rates and feed this information back to the sensors in order to efficiently use

the available computing and communication resources.

This type of system is equivalent to indirect multiterminal source coding, first studied in

[8] and referred to as the CEO problem. In contrast to the direct multiterminal source

coding problem [7], where sensors separately measure different but correlated sources and

the fusion center attempts to rebuild every source as accurately as possible subject to a sum-

rate constraint, each of the sensors in the CEO problem receives a noisy observation of the

same source, which is later reconstructed at the fusion center. In order to characterize the

rate region for the CEO problem with a Gaussian source, Yamamoto and Itoh first studied the

problem in [116] for the two-terminal case, and later it was also discussed independently by

Flynn and Gray in [29]. The rate region of the CEO problem was completely characterized for

a memoryless Gaussian scalar source with an arbitrary number of observers in [70, 80, 21]. As

an extension to the scalar problem, the CEO model with a vector source was also considered

in [102, 113, 20].

In recent years, researchers have further attempted to extend the CEO problem in various

ways. Pandya et al. generalized the Gaussian CEO problem to the case of a Gaussian vector

source where the observation is a noise-corrupted linear transformation of the source signal,

and derived an upper bound on the sum rate [74]. Compared to [74], Oohama’s model in [71]

is more general, allowing the dimension of the source and observation vectors to be different.

In addition, [71] provides explicit inner and outer bounds for the rate-distortion region, as

well as a sufficient condition under which the lower and upper bounds are equal. This result

was later improved on by Yang et al. in [119], who provided a new outer bound using the

entropy power inequality for a class of generalized Gaussian CEO problems, together with

two sufficient conditions for equality between the outer and inner regions.

The end-to-end rate-distortion performance for different types of source-to-destination com-

munication networks has also been considered. In [114], Xiao et al. discussed the multi-
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terminal source and channel coding problem where quantized observations are sent through

an orthogonal multiple access channel to a fusion center, and showed that separate source

and channel coding strictly outperforms the use of uncoded transmissions. A variant of the

traditional CEO problem was studied in [95] where two terminals observe the same source

and deliver noisy measurements to a remote destination through an intermediate relay node.

A lower bound on the sum rate was found, and the achievable rates for two special strategies,

compute-and-forward and compress-and-forward, were also derived. In [57], Kochman et al.

discussed a joint source-channel coding scheme called rematch-and-forward for the scenario

where a Gaussian parallel relay network lies between the source and the remote fusion center.

Initiated by the proposal of designs based on generalized coset codes in [81] by Pradhan and

Ramchandran, practical coding schemes for the CEO problem also have attracted attention

in recent years. While the code design in [81] can be used to arbitrarily allocate rates among

source encoders in the achievable rate-distortion region, the gap between its performance and

the theoretical limit is still somewhat large. In [117], Yang et al. proposed a high-performance

asymmetric coding scheme for the CEO problem which is based on trellis-coded quantization

followed by LDPC channel coding, and they showed the resulting code rate is very close to

the theoretical bound for a Gaussian source. In [118], they extended the code design to

attain the entire rate region through source splitting and channel code partitioning.

Except for a brief discussion in [106], previous studies all assume the sample sequence gener-

ated by the source is memoryless. In this chapter, we study the achievable sum-rate problem

for a Gaussian scalar source with arbitrary memory. First, we describe the system model for

a source with memory and we characterize the problem using known results for the vector

CEO problem. We then formulate the sum-rate calculation as a variational calculus problem

with a distortion constraint, and show how to find a necessary condition which the solution

to the problem must satisfy. Furthermore, we provide a sufficient condition for determining

if the necessary solution achieves the minimal sum rate. A discussion of how to compute
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the rate-distortion curve is then included, and we note that the solution is compatible with

previous findings in rate-distortion theory, which supports the validity of our results. For

the special case of a system with two sensor nodes, we derive an analytic expression for the

solution to the sum-rate problem and provide further examples to illustrate the theoretical

results provided by the necessary and sufficient conditions.

The rest of the chapter is organized as follows. In Section 3.2, we describe the system

model and the necessary background and preliminary theorems found in previous work. In

Section 3.3, we formulate the sum-rate optimization problem for the L-terminal source coding

case. In Section 3.4 and Section 3.5, we present our main results. Section 3.4 provides the

necessary condition which can be used to find the solution to the sum-rate problem, while

Section 3.5 derives the sufficient condition that can be used to check the optimality of the

solution obtained in Section 3.4. Analyses and discussions of our theoretical results can also

be found in Section 3.5. Section 3.6 focuses on the two-terminal case, for which we derive

an analytic solution and present some representative examples.

3.2 System Model and Preliminaries

The indirect multiterminal source coding problem, or the so-called CEO problem, refers to

separate lossy encoding and joint decoding for multiple noise-corrupted observations of a

single data source. A block diagram model for the L-terminal CEO problem is illustrated in

Fig. 3.1.

The fusion center is interested in recovering the real-valued discrete-time source sequence

x(t), t = 0,±1, . . . , where every x(t) is a Gaussian random variable. Without loss of gen-

erality, we can take the mean value of x(t) to be zero for all t. The source sequence is

assumed to be a stationary stochastic process with arbitrary memory; i.e., in contrast to an
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Figure 3.1: Indirect multiterminal source coding (the CEO problem.)

i.i.d. Gaussian source, the power spectral density (PSD) of x(t), denoted by Φx(ω), is not

necessarily constant over frequency. We use vi(t) to indicate the measurement noise (or local

estimation error) at sensor node i, and we assume it is a real-valued zero-mean Gaussian

process and i.i.d. in time. The observation at sensor i is given by yi(t) = x(t) + vi(t), and

x̂(t) is the estimate of x(t) obtained at the fusion center. The error process is defined as

x̃(t) = x(t)− x̂(t). Naturally, the more accuracy required in recovering the source sequence

x(t), the higher the source coding rate has to be at the L terminals. We are interested in

studying the trade-off between the final fusion error and the sum source coding rate in the

Berger-Tung achievable rate sense [21].

3.2.1 Berger-Tung Inner Bound and Sum Rate

Now we describe the calculation of the Berger-Tung achievable sum rate for a scalar Gaus-

sian source with arbitrary memory. We use the method introduced in [6] to evaluate the

Berger-Tung achievable sum rate, R(D), for a given target distortion D. Instead of directly
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calculating the sum rate for an infinitely long Gaussian source sequence with arbitrary mem-

ory, we begin with the evaluation of the achievable sum rate, Rn(D), for a Gaussian source

word x = (x(1), . . . , x(n)) and the corresponding reconstructed word x̂ = (x̂(1), . . . , x̂(n))

with the distortion constraint E
{

1
n

∑n
t=1(x(t)− x̂(t))2

}
≤ D. Letting the size of the source

word x go to infinity, we then have R(D) = limn→∞Rn(D). Similarly, the distortion con-

straint becomes E{(x(t)− x̂(t))2} ≤ D due to the stationarity of the source process.

For completeness, we briefly introduce the evaluation of the Berger-Tung sum rate for the

problem of limited-size vectors. Let yi, i = 1, . . . , L denote the noise-corrupted observation

vectors at the sensor nodes. From the discussion above we know that all yi are also Gaussian

distributed. Based on [21, 102, 113], if there exist auxiliary random vectors wi, i = 1, . . . , L

such that wi → yi →
(
x,y{i}c ,w{i}c

)
forms a Markov chain for all i, and if the distortion

between x and x̂ is no greater than D, the Berger-Tung achievable rate region is the convex

hull of

R(w1, . . . ,wL) =

{

(R1, . . . , RL)
∣
∣
∣

∑

i∈A
Ri ≥ I(yA;wA|wAc), ∀A ⊆ IL

}

, (3.1)

where IL = {1, . . . , L}. Thus, the minimal sum rate is

Rn(D) = min
w1,...,wL

1

n
I(y1, . . . ,yL;w1, . . . ,wL). (3.2)

The Gaussianity of yi and wi results in [20]

Rn(D) = min
w1,...,wL

1

2n
log

det(Cy) det(Cw)

det(Cyw)
, (3.3)

where Cy, Cw, and Cyw are the covariance matrices of vectors (yT1 , . . . ,y
T
L)

T , (wT
1 , . . . ,w

T
L)

T

and (yT1 , . . . ,y
T
L ,w

T
1 , . . . ,w

T
L)

T , respectively. It is easy to show that Cy, Cw, and Cyw are

all block-symmetric matrices, and that each of their sub-blocks is Toeplitz. Throughout
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the chapter, all logarithms are assumed to take the natural base, and thus rates are always

measured in nats.

3.2.2 Extension of the Toeplitz Distribution Theorem

In [6], evaluation of the rate-distortion function for the point-to-point problem relies on the

Toeplitz distribution theorem [35]. Due to the block structure of the mutual information

matrices in (3.3), we need to apply an extension [30] of the Toeplitz distribution theorem to

our problem, as discussed next.

Let T denote a c× c block matrix with n× n Toeplitz submatrix blocks, i.e.,

T =









T1,1 . . . T1,c
...

. . .
...

Tc,1 . . . Tc,c









and

Ti,j =












Ti,j(1) . . . . . . Ti,j(−n)

Ti,j(2) Ti,j(1) . . . Ti,j(−n + 1)

...
. . .

. . .
...

Ti,j(n) . . . Ti,j(2) Ti,j(1)












.

If T is also Hermitian, then from Theorem 3 of [30] we have

lim
n→∞

1

n

cn∑

k=1

F (λk(T)) =
1

2π

∫ π

−π

c∑

u=1

F (λu(Θ(ω)))dω, (3.4)

where F is an arbitrary function, λk for k = 1, . . . , cn and λu for u = 1, . . . , c are respectively
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the eigenvalues of T and Θ(ω), and

Θ(ω) =









∑∞
k=−∞ T1,1(k)e

−jkω . . .
∑∞

k=−∞ T1,c(k)e
−jkω

...
. . .

...

∑∞
k=−∞ Tc,1(k)e

−jkω . . .
∑∞

k=−∞ Tc,c(k)e
−jkω









.

In the next section, we will see how letting the size of the word x go to infinity can help

us obtain a closed-form expression for the mutual information and the distortion, and hence

the problem formulation can be fully derived.

3.3 Problem Formulation

In this section, we provide a full formulation of our problem. In order to calculate the mutual

information, we appeal to the extension of the Toeplitz distribution theorem described above.

We also describe the optimal estimator structure and the corresponding mean squared error

(MSE), which is needed to define the distortion constraint. Finally we will see that the rate

evaluation is an infinite-dimensional variational problem.

3.3.1 Mutual Information

The calculation of mutual information is based on (3.3) and (3.4). We first assign the log

function to F in (3.4), and then let the size of the matrices in (3.3) go to infinity so that the

extension of the Toeplitz distribution theorem can be applied. After applying (3.4) to (3.3),

we get the expression of the sum rate for the source-with-memory problem:

I(y1(t), . . . , yL(t);w1(t), . . . , wL(t)) =
1

4π

∫ π

−π
log

detΦy(ω) detΦw(ω)

detΦyw(ω)
dω , (3.5)
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where

Φy(ω) =












Φy1(ω) Φy1y2(ω) · · · Φy1yL(ω)

Φy2y1(ω) Φy2(ω) · · · Φy2yL(ω)

...
...

. . .
...

ΦyLy1(ω) ΦyLy2(ω) · · · ΦyL(ω)












,

Φw(ω) =












Φw1(ω) Φw1w2(ω) · · · Φw1wL
(ω)

Φw2w1(ω) Φw2(ω) · · · Φw2wL
(ω)

...
...

. . .
...

ΦwLw1(ω) ΦwLw2(ω) · · · ΦwL
(ω)












,

Φyw(ω) =



















Φy1(ω) · · · Φy1yL(ω) Φy1w1(ω) · · · Φy1wL
(ω)

...
. . .

...
...

. . .
...

ΦyLy1(ω) · · · ΦyL(ω) ΦyLw1(ω) · · · ΦyLwL
(ω)

Φw1y1(ω) · · · Φw1yL(ω) Φw1(ω) · · · Φw1wL
(ω)

...
. . .

...
...

. . .
...

ΦwLy1(ω) · · · ΦwLyL(ω) ΦwLw1(ω) · · · ΦwL
(ω)



















,

and Φyi(ω), Φyiyj(ω), Φwi
(ω), Φwiwj

(ω), Φyiwj
(ω), Φwiyj (ω) are the auto- and cross-PSDs of

the corresponding stochastic processes.

To further evaluate the mutual information expression of (3.5), we need to use the concept

of forward test channels [25]. Assuming the outputs of the dequantizers at the fusion center,

wi(t), i = 1, . . . , L are also Gaussian, we can write the whole system in the forward test

41



x(t)

v1(t)

v2(t)

vL(t)

a1(t)

a2(t)

aL(t)

z1(t)

z2(t)

zL(t)

MMSE x̂(t)

y1(t)

y2(t)

yL(t)

w1(t)

w2(t)

wL(t)

.

.

.

Figure 3.2: Forward test channels.

channel form [6]:

wi(t) = ai(t) ∗ yi(t) + zi(t), i = 1, . . . , L, (3.6)

where ∗ represents convolution, ai(t), i = 1, . . . , L are variable real-valued functions to be

determined, and zi(t), i = 1, . . . , L represent quantization noise processes, which are assumed

to be i.i.d. in time and independent from all yi(t). The forward test channels are depicted

in Fig. 3.2. Unlike problems with memoryless sources, convolution is required here instead

of simple multiplication.
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Given (3.6), the auto- and cross-PSD functions are given by:







Φyi(ω) = Φx(ω) + Φvi(ω)

Φwi
(ω) = |Ai(ω)|2Φyi(ω) + Φzi(ω)

Φwiyi(ω) = Ai(ω)Φyi(ω)

Φyiwi
(ω) = A∗

i (ω)Φyi(ω)

Φxyi(ω) = Φx(ω)

Φxwi
(ω) = A∗

i (ω)Φx(ω)

Φwiyj (ω) = Ai(ω)Φx(ω) i 6= j

Φyiwj
(ω) = A∗

j (ω)Φx(ω) i 6= j

Φyiyj(ω) = Φx(ω) i 6= j

Φwiwj
(ω) = Ai(ω)A

∗
j(ω)Φx(ω) i 6= j

, (3.7)

where i and j take values in IL, Ai(ω) is the discrete time Fourier transform of ai(t), and

A∗
i (ω) is its conjugate. Plugging (3.7) into (3.5) and after a long series of mathematical

manipulations, we can simplify (3.5) to the following expression:

I(y1(t), . . . , yL(t);w1(t), . . . , wL(t)) =

1

4π

∫ π

−π
log

{∏L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]

∏L
i=1Φ

−1
mi
(ω)

·
(

1 +
L∑

i=1

Φx(ω)
[
Φvi(ω) + Φ−1

mi
(ω)
]−1

)}

dω ,

(3.8)

where Φmi
(ω) =

(
|Ai(ω)|−2Φzi(ω)

)−1
, and Φzi(ω) is the PSD of zi(t). The sum rate is now

parameterized in terms of the unknown functions Φmi
(ω), i = 1, . . . , L, from which all Ai(ω)

can be found.
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3.3.2 MSE and Optimal Estimator

For memoryless sources, minimizing the MSE between x(t) and x̂(t) can be achieved by

means of a simple estimator. Our problem involving sources with arbitrary memory is more

complicated, since we need to estimate an entire stochastic process using multiple infinite-

length sequences as the input. The estimator will have the form:

x̂(t) =

L∑

i=1

hi(t) ∗ wi(t), (3.9)

where hi(t) for i = 1, . . . , L are optimal infinite-length filters. For known h1(t), . . . , hL(t),

the MSE is given by

E
{
x̃2(t)

}
= E

{
(x(t)− x̂(t))2

}
=

1

2π

∫ π

−π

(

Φx(ω)−
L∑

i=1

Φxwi
(ω)H∗

i (ω)

)

dω , (3.10)

where Hi(ω) is the discrete-time Fourier transform of hi(t), and Φxwi
(ω) is the cross-PSD

for x(t) and wi(t).

At first glance, it appears we may need to find an explicit expression for Hi(ω), i = 1, . . . , L

in order to connect the MSE solution with the sum-rate criterion in (3.8). The optimal

estimator should satisfy the frequency domain Wiener-Hopf equations [53]:

H(ω)Φw(ω) = Φxw(ω), (3.11)

where H(ω) = [H1(ω), H2(ω), . . . , HL(ω)] and Φxw(ω) = [Φxw1(ω),Φxw2(ω), . . . ,ΦxwL
(ω)].

Fortunately, we do not need to solve (3.11). We simply need an analytic expression for
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∑L
i=1Φxwi

(ω)H∗
i (ω), which can be found as follows:

L∑

i=1

Φxwi
(ω)H∗

i (ω) = Φxw(ω)H
H(ω)

(a)
= Φxw(ω)Φ

−1
w (ω)ΦH

xw(ω)

(b)
= det

[
1 +Φxw(ω)Φ

−1
w (ω)ΦH

xw(ω)
]
− 1

(c)
=

det
[
Φw(ω) +ΦH

xw(ω)Φxw(ω)
]

detΦw(ω)
− 1

=

∑L
i=1[Φ

2
x(ω)]

[
Φvi(ω) + Φ−1

mi
(ω)
]−1

1 +
∑L

i=1Φx(ω)
[
Φvi(ω) + Φ−1

mi
(ω)
]−1 , (3.12)

where (a) follows from (3.11), (b) uses the fact that the determinant of a scalar is the scalar

itself, and (c) follows from the matrix determinant lemma [43].

Plugging (3.12) back into (3.10), we end up with the final MSE expression in terms of the

unknown functions Φmi
(ω), i = 1, . . . , L:

E
{
x̃2(t)

}
=

1

2π

∫ π

−π

1

Φ−1
x (ω) +

∑L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]−1dω. (3.13)

3.3.3 Full Formulation

With the above derivations, we can now give the full formulation of the minimum sum-rate

problem. Assuming that the rate is minimized when the distortion target is achieved with
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equality, the rate evaluation problem is given by:

min
Φmi

1

4π

∫ π

−π
log

{∏L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]

∏L
i=1Φ

−1
mi
(ω)

(

1 +
L∑

i=1

Φx(ω)
[
Φvi(ω) + Φ−1

mi
(ω)
]−1

)}

dω

(3.14)

s.t.
1

2π

∫ π

−π

1

Φ−1
x (ω) +

∑L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]−1dω = D (3.15)

Φmi
≥ 0, i = 1, . . . , L . (3.16)

This is a functional optimization problem and can be tackled via the calculus of variations.

3.4 Necessary Condition

In this section we derive a necessary condition that the solution to the sum-rate prob-

lem (3.14)-(3.16) must satisfy. As we have seen in Section 3.3, the optimization in its final

form is a constrained variational problem. In fact it can be regarded as an isoperimetric

problem with additional inequality constraints. The following theorem shows that in our

formulation the solution consists of a term that is zero together with a non-zero term that is

determined by solving a set of Euler equations. It is well known in the theory of the calculus

of variations that solving the Euler equations results in a necessary condition.

Theorem 3.1 (Isoperimetric problem with additional inequality constraints). Let ui and

ψi, i = 1, . . . , n be functions of ω. For the following functional optimization problem,

min
u1,...,un

J(u1, . . . , un) =

∫ b

a

f(ω, u1, . . . , un, u
′
1, . . . , u

′
n)dω (3.17)

s.t.

∫ b

a

g(ω, u1, . . . , un, u
′
1, . . . , u

′
n)dω = D (3.18)

ui ≥ ψi, i = 1, . . . , n, (3.19)
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the solution ui should consist of two parts: ψi and a function no less than ψi. The latter can

be obtained through solving the Euler equations with Lagrange multiplier λ:

fui −
d

dω
fu′i + λ

(

gui −
d

dω
gu′i

)

= 0, i = 1 . . . , n. (3.20)

Proof. See Appendix A.3.

We can apply Theorem 3.1 to the sum-rate problem (3.14)–(3.16), where the corresponding

functions and the upper and lower bounds of integration are

ui(ω) = Φmi
(ω), i = 1, . . . , L ,

f =
1

4π
log

{∏L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]

∏L
i=1Φ

−1
mi
(ω)

(

1 +
L∑

i=1

Φx(ω)
[
Φvi(ω) + Φ−1

mi
(ω)
]−1

)}

,

g =
1/(2π)

Φ−1
x (ω) +

∑L
i=1

[
Φvi(ω) + Φ−1

mi
(ω)
]−1 ,

ψi(ω) = 0, i = 1, . . . , L ,

a = −π ,

b = π .

We note that in our problem the functions f and g do not depend on the derivatives of

u1, . . . , un, which means the Euler equations are not differential equations as often encoun-

tered in variational problems. This fact eases the solving of the Euler equations, which

are

(Φvi(ω)Φmi
(ω) + 1)Φvi(ω) ·

(

1

Φx(ω)
+

L∑

i=1

1

Φvi(ω) +
1

Φmi
(ω)

)2

+

(

1

Φx(ω)
+

L∑

i=1

1

Φvi(ω) +
1

Φmi
(ω)

)

= λ, i = 1, . . . , L. (3.21)
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Problem (3.14)–(3.16) can also be formulated in another way, where the objective is to

minimize the distortion (3.15) for a target sum rate (3.14) equal to a given R. Based on the

proof for Theorem 3.1, we find that the two formulations are essentially the same with the

trivial difference that the Lagrange multiplier in the dual problem becomes 1/λ.

3.5 Sufficient Condition

In this section we find a sufficient condition for problem (3.14)–(3.16) to have a local min-

imum. To exploit the sufficient condition, we can first use Theorem 3.1 in Section 3.4 to

obtain a solution based on the necessary condition, and then use the sufficient condition

discussed in this section to check if the solution minimizes the sum rate.

As a first step, we prove the following lemma.

Lemma 3.1 (Degenerate isoperimetric problem). Let ui, i = 1, . . . , n be functions of ω. For

the following functional optimization problem to have a local minimum at (u1, . . . , un),

min
u1,...,un

J(u1, . . . , un) =

∫ b

a

f(ω, u1, . . . , un)dω (3.22)

s.t.

∫ b

a

g(ω, u1, . . . , un)dω = D, (3.23)

the sufficient condition is

Z(u1, . . . , un) ≻ 0, (3.24)
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where

Z(u1, . . . , un) =









∂2ζ
∂u21

· · · ∂2ζ
∂u1∂un

...
. . .

...

∂2ζ
∂un∂u1

· · · ∂2ζ
∂u2n









,

ζ(ω, u1, . . . , un) = f(ω, u1, . . . , un) + λg(ω, u1, . . . , un),

and λ is the associated Lagrange multiplier.

Proof. See Appendix A.4.

Lemma 3.1 is referred to as a degenerate isoperimetric problem because the derivatives of

u1, . . . , un are explicitly excluded in (3.22) and (3.23), which is appropriate for our minimum

sum-rate problem. Using Lemma 3.1, we can further obtain the following theorem, which is

directly applicable to problem (3.14)–(3.16).

Theorem 3.2 (Degenerate isoperimetric problem with additional inequality constraints).

Let ui and ψi, i = 1, . . . , n be functions of ω. For the following functional optimization

problem,

min
u1,...,un

J(u1, . . . , un) =

∫ b

a

f(ω, u1, . . . , un)dω (3.25)

s.t.

∫ b

a

g(ω, u1, . . . , un)dω = D (3.26)

ui ≥ ψi, i = 1, . . . , n, (3.27)

the tuple (u1, . . . , un) is a local minimizer for J(u1, . . . , un) if there exist λ and ui, i = 1, . . . , n
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such that the following matrix is positive-definite:

Z(z1, . . . , zn) =








fu1 + 2z21fu1u1 + λgu1 + 2λz21gu1u1 · · · 2z1znfu1un + 2λz1zngu1un
...

. . .
...

2znz1funu1 + 2λznz1gunu1 · · · fun + 2z2nfunun + λgun + 2λz2ngunun









, (3.28)

and zi in (3.28) should fulfill the following conditions:

1. for all i, zi(fui + λgui) = 0 holds;

2. for a given i, if the Euler equation fui + λgui = 0 holds, then zi = ±(ui − ψi)
1/2.

Otherwise zi = 0.

Proof. See Appendix A.5.

The problem in Theorem 3.2 is a degenerate isoperimetric problem with additional inequality

constraints, because it is merely the same problem described in Theorem 3.1 but enhanced

with further requirements on ui.

3.5.1 Analysis and Discussion

Global Optimality – Theorem 3.2 only guarantees the existence of a locally optimal solution.

Since functional (3.14) is not convex, a given local minimum is not guaranteed to be a global

minimum. Thus we cannot safely claim that solving the equations in (3.21) will lead to

the true Berger-Tung achievable sum rate, even if the sufficiency of the solution is verified

by Theorem 3.2. However, since the number of potential solutions is usually limited, theo-

retically it is possible to exhaustively calculate all rates associated with the corresponding

solutions, and then choose the smallest of these as the global minimum achievable sum rate.
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Evaluation of the Achievable Sum-Rate Function – To calculate the achievable sum rate as a

function of the distortion D, one would normally substitute the solution to (3.21) into (3.15),

and then solve it to get the value of λ. With knowledge of λ, the intermediate optimization

variables, Φm1(ω), . . . ,ΦmL
(ω), can be determined and then used in (3.14) to completely

determine the achievable rate R. An alternative approach, similar to that explained in [6], is

to first pick a value for λ, then use it in (3.21) to get Φm1(ω), . . . ,ΦmL
(ω), which are further

substituted into (3.14) and (3.15) to get the corresponding sum rate R and distortion D.

The entire achievable rate-distortion curve can be found in this fashion.

Compatibility with Known Results – It is straightforward to show that in the memoryless

source case, our general solution reduces to that obtained, for example, in [21]. This can

be done via a simple notation change to the functional optimization problem in (3.14)–(3.16).

Numerical computations further verify that both approaches generate the same rate-distortion

curve.

3.6 Special Case - Two Terminals

In this section we first discuss the problem formulation and corresponding solution for a

special case where the number of terminals is L = 2. Then some examples are given to

illustrate the theoretical results obtained in previous sections. By numerically evaluating

the sufficient condition in Section 3.5, we also show that our solution is sufficient for a

first-order Gauss-Markov source process.
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3.6.1 Formulation and Solution

In [17], a special case where there are only two terminals in the system was considered. The

optimal Wiener filters can be explicitly obtained in this case:






H1(ω)

H2(ω)






T

=
[
|A1|2|A2|2(ΦxΦv1 + ΦxΦv2 + Φv1Φv2)

+|A1|2Φy1Φz2 + |A2|2Φy2Φz1 + Φz1Φz2
]−1 ·






A∗
1Φx(|A2|2Φv2 + Φz2)

A∗
2Φx(|A1|2Φv1 + Φz1)






T

,

(3.29)

and the minimum sum-rate problem becomes

min
Φm1 ,Φm2

1

4π

∫ π

−π
log

(Φy1 + Φ−1
m1

)(Φy2 + Φ−1
m2

)− Φ2
x

Φ−1
m1

Φ−1
m2

dω (3.30)

s.t.
1

2π

∫ π

−π

1
1
Φx

+ 1
Φv1+

1
Φm1

+ 1
Φv2+

1
Φm2

dω = D (3.31)

Φm1 ≥ 0 (3.32)

Φm2 ≥ 0. (3.33)

Note that Ai and all Φ’s are functions of ω, which has simply been dropped to save space.

While it is difficult to obtain a closed-form solution to (3.14)–(3.16) for the general L-terminal

case, an analytical solution is possible when L = 2. In this case, n = 2, ui = Φmi
and ψi = 0,

and we can directly apply Theorem 3.1. Due to the fact that there are no derivatives of

Φi(ω) in the integrand of the objective function, the Euler equations turn out to be merely

algebraic rather than differential equations. After eliminating the infeasible solutions to
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these equations, we end up with the solution:

Φm1 = max

(

0,
−
(
Φ2
v1(Φx +Φv2)

2 + 1
2ΦxΦv1Φv2(−λΦxΦv2 +Φx +Φv2)− 1

2Φ
2
xΦ

2
v2 − 1

2ΦxΦv2Ξ
)

Φv1(ΦxΦv1 +ΦxΦv2 +Φv1Φv2)
2

)

Φm2 = max

(

0,
−
(
Φ2
v2(Φx +Φv1)

2 + 1
2ΦxΦv1Φv2(−λΦxΦv1 +Φx +Φv1)− 1

2Φ
2
xΦ

2
v1 − 1

2ΦxΦv1Ξ
)

Φv2(ΦxΦv1 +ΦxΦv2 +Φv1Φv2)
2

)

Ξ = ±(λ2Φ2
xΦ

2
v1Φ

2
v2 + 6λΦ2

xΦ
2
v1Φv2 + 6λΦ2

xΦv1Φ
2
v2 + 6λΦxΦ

2
v1Φ

2
v2

+Φ2
xΦ

2
v1 + 2Φ2

xΦv1Φv2 +Φ2
xΦ

2
v2 + 2ΦxΦ

2
v1Φv2 + 2ΦxΦv1Φ

2
v2 +Φ2

v1Φ
2
v2)

1
2 ,

where the Lagrange multiplier λ should be carefully picked so that (3.31) is fulfilled.

3.6.2 Examples

The form of the solution for some special source processes is discussed below.

First-order Gauss-Markov Process

A scalar discrete-time first-order Gauss-Markov process can be recursively defined as

x(t) = ρx(t− 1) + u(t), (3.34)

where u(t) ∼ N (0, σ2) is the driving noise. The autocorrelation function of this process is

known to be

φx(t) =
σ2ρ|t|

1− ρ2 , (3.35)
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Figure 3.3: Achievable sum rate versus target distortion (first-order Gauss-Markov pro-
cesses.)

where |ρ| should be less than 1 or otherwise the process is not stationary. The corresponding

PSD is

Φx(ω) =
σ2

1− 2ρ cosω + ρ2
. (3.36)

Fig. 3.3 shows the rate-distortion curves that result from our solution for the three values

ρ = 0, 0.4, and 0.8. The power of the source process is fixed at 1, and the noise power at

both sensors is 0.01 (when the noise power is equal at both sensors, we refer to this as the

“symmetric” case). As expected, the rate requirement decreases as the correlation increases.

We also show the PSDs of the source process, Φx(ω), and the error process, Φx̃(ω), in Fig. 3.4

for a target distortion level D = 0.7 when ρ = 0.8. In this case Φm1(ω) is equal to Φm2(ω).

PSDs for an asymmetric noise case where the variance of the noise at sensor 2 is increased to

0.0135 are also provided. Fig. 3.5 shows the PSDs of Φx(ω). In this case, the solution yields
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Figure 3.4: PSDs of the source and the error processes (first-order Gauss-Markov process,
symmetric noise.)
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Figure 3.5: PSDs of the source and the error processes (first-order Gauss-Markov process,
asymmetric noise.)

Φm2(ω) = 0, and thus sensor node 2 has no contribution to the final estimation performance,

and is simply switched off. From Figs. 3.4 and 3.5 we can see that for first-order Gauss-
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Figure 3.6: Achievable sum rate versus target distortion (band-limited Gaussian processes.)

Markov processes, optimal performance is achieved by using most of the rate to preserve

the information in the central area of the source spectrum; there is no need to reconstruct

portions of the source process whose information is contained in the off-center areas of the

spectrum, which make relatively little contribution to the overall MSE.

Band-limited Gaussian Process

In the second example, the source is a band-limited Gaussian process obtained by passing

white Gaussian noise through a fourth-order Butterworth low-pass filter. The power of the

unfiltered source process is equal to 1 and the noise power at each sensor is 0.01 for the

symmetric noise case. The rate-distortion curves derived from our analysis are shown in

Fig. 3.6 for low-pass cut-off frequencies ωc = 0.4π, 0.6π, and 0.8π. Fig. 3.7 shows the PSDs

of the source process, Φx(ω), and the error process, Φx̃(ω), for the symmetric case, where

the target distortion level D is 0.2 and the cut-off frequency is ωc = 0.6π.
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Figure 3.7: PSDs of the source and the error processes (band-limited Gaussian processes,
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Figure 3.8: PSDs of the source and the error processes (band-limited Gaussian processes,
asymmetric noise.)

For the asymmetric noise case, where the noise variance at sensor 2 is increased to 0.0135,

Fig. 3.8 shows the PSDs of Φx(ω) and Φx̃(ω). As in the previous case, Φm2(ω) is equal to
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Figure 3.9: Eigenvalues of Z in ω.

zero and sensor node 2 is switched off.

3.6.3 Sufficiency Verification

Here we use Theorem 3.2 to numerically verify that the solution obtained through Theo-

rem 3.1 is also sufficient for the first-order Gauss-Markov source. Only a numerical verifica-

tion is feasible due to the complexity of matrix Z in Theorem 3.2 when (3.36) is substituted

in. For the two-terminal case, (3.28) is a 2× 2 matrix, and we plot its eigenvalues as a func-

tion of ω in Fig. 3.9 for the parameter settings used for Fig. 3.4. We can see that the two

eigenvalues are always positive, and thus that the matrix (3.28) is always positive-definite.

Based on Theorem 3.2, we know that the solution is not only necessary but also sufficient.

In addition, due to the fact that there is only one solution obtained through the use of

Theorem 3.1 for the first-order Gauss-Markov case, we know the solution corresponds to the

true achievable Berger-Tung sum rate for the given parameters.
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Chapter 4

Application of Massive Antenna

Arrays in STAP

4.1 Introduction

Studies of “massive” MIMO systems in wireless communications, in which base stations

are equipped with a very large number of antennas in order to dramatically increase system

capacity, have recently attracted significant attention. The resulting capacity gains can often

be achieved with relatively simple signal processing, due to the asymptotic orthogonality of

the wireless channels. Hence massive MIMO is regarded as a promising technology for next

generation wireless communication systems. Of course, the benefits of very large arrays can

also be exploited in other areas as well, such as STAP for radar [110].

In this chapter, we analyze the performance of a particular reduced-dimension separable

STAP algorithm, taking the effects of array size and finite secondary data support into

account. We study the performance of this simple low-complexity algorithm for clairvoyant

interference covariance matrices with orthogonality assumptions on the steering vectors, and
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show that in the asymptotic sense this scheme performs as well as the “fully adaptive” STAP

method, in which the entire interference-plus-noise covariance matrix must be inverted. A

scaling law for the SINR loss as a function of the number of antennas is provided. Appealing

to random matrix theory, we finally provide an analysis of the SINR as a function of the

number of training samples when the covariance matrix is estimated using a finite collection of

secondary data. As in the case of MIMO wireless communications, the goal is to demonstrate

that the availability of a massive number of antennas allows optimal performance to be

obtained with relatively simple signal processing.

Fully adaptive STAP methods [64] are well known for their high computationally complexity,

so one must often resort to reduced-dimension or reduced-rank algorithms [64, 36, 78, 37]

in order to achieve a reasonable trade-off between performance and complexity. In the past

decades, many low complexity algorithms have been proposed, based on choosing different

temporal and spatial data combinations, beamspace processing and Doppler filtering [110].

Other approaches for complexity reduction include the eigencanceler [40, 38] which exploits

the low-rank structure of the interference-plus-noise covariance matrix, recursive compu-

tation of the inverse covariance [72], the multistage Wiener filter [34, 47], and parametric

clutter modeling using autoregressive filters [85, 75]. Algorithms that exploit knowledge of

the interference-plus-noise covariance matrix usually do so by first estimating it using sec-

ondary data samples, and the impact of the size of the available secondary sample support

has been studied as far back as [82], in which the probability distribution of the sample

matrix inversion (SMI) approach was analyzed. More detailed results were later obtained

in [84], and extensions, for example, to cases involving secondary data that contain the signal

of interest [10] or to other algorithms such as the eigencanceler [39] have been considered.

Random matrix theory (RMT) [5, 105, 24] provides rich theoretical results that have been

useful in the analysis of very large wireless communication systems. Recently, RMT has

also been applied to the study of STAP algorithms and other sample covariance matrix
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problems [66]. For example, the authors of [101] studied STAP in amplitude heterogeneous

clutter environments, where the power of interference in the secondary data is different from

that in the range bin of detection. They used RMT to derive an asymptotic closed-form

expression for the SINR loss. In [100], the asymptotic SINR loss for knowledge-aided STAP

algorithms for both accurate and inaccurate a priori knowledge cases was analyzed using

RMT.

In this chapter, we analyze the performance of a simple partially adaptive STAP algorithm

with low computational complexity. In this approach, the received data are first processed

by a spatial-only non-adaptive beamformer, followed by an adaptive filter in the temporal

domain, and thus can be regarded as a reduced-dimension separable approach. The algorithm

itself is not new, and its performance is known to be inferior to others when the number of

antenna elements is relatively small. However, we demonstrate that in the massive antenna

regime, this algorithm approaches optimal performance, and we provide scaling laws that

illustrate its behavior as the number of antennas or the number of secondary data samples

grows. More specifically, the main contributions are:

• We analyze the asymptotic performance of the reduced-dimension separable STAP

algorithm. The analysis is conducted in detail for one-dimensional antenna arrays,

and extensions to two-dimensional cases are presented.

• We find a scaling law for the SINR loss of the reduced-dimension algorithm as an

asymptotic function of the number of antennas.

• We use RMT to find a scaling law for the SINR as a function of the number of the sec-

ondary data samples when the covariance matrix is not known and must be estimated.

The rest of the chapter is organized as follows. In Section 4.2, we describe the system model

and necessary background found in previous work, and we introduce the separable STAP
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algorithm to be considered. In Section 4.3, we analyze the performance of the algorithm using

an approximate but effective method for uniform linear arrays (ULAs). The performance is

also compared to that of the fully adaptive STAP algorithm for massive antennas. A scaling

law for the SINR loss compared to the fully adaptive STAP algorithm is provided as well.

Later in this section, the SINR results are extended to planar antenna array configurations.

Appealing to random matrix theory, Section 4.4 provides an analysis of the algorithm when

the interference-plus-noise covariance matrix is estimated using secondary data. Simulation

results validating our analyses are found in Section 4.5.

4.2 System Model

The problem considered is depicted in Fig. 4.1, in which an airborne platform is moving

parallel to the x-axis at speed va and a target is located anywhere in space and moving in an

arbitrary direction. Angles θ and φ respectively represent the elevation and azimuth angles

of the target relative to the airborne platform. The platform is assumed to be equipped with

an antenna array of N elements, and the transmitter on the platform is assumed to emit M

pulses per coherent processing interval (CPI). For a given range gate, the received data at

pulse m is denoted by xm. Defining χ =
[
xT1 . . . xTM

]T
, the STAP detection problem is

defined by the two hypotheses







H0 : χ = χc + χn

H1 : χ = χt + χc + χn

,

where χt is the signal due to the target, χc is due to clutter, and χn represents other noise

and interference. The terms χc and χn are assumed to be random vectors with covariance

matrices Rc and Rn, respectively.

The detection statistic for the fully adaptive STAP method is z = wHχ, where w = R−1vt is
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Figure 4.1: Depiction of an airborne radar scenario.

the weighting vector, R = Rc+Rn, and vt is the target steering vector. The post-processing

SINR at the platform determines the overall detection performance. From [111], we know

the general expression for the SINR is

SINR =
σ2ξt

∣
∣wHvt

∣
∣2

wHRw
, (4.1)

and thus the SINR of the fully adaptive STAP method is

SINR = σ2ξtv
H
t R

−1vt , (4.2)

where σ2 is the noise power per element, and ξt is the single-pulse SNR for a single antenna

element at the receive side.
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4.2.1 Simplified Separable Algorithm

The difficulty associated with the full implementation of the STAP algorithm comes from the

fact that the dimensionality of R is MN ×MN , which makes the calculation of the matrix

inverse difficult even for a system with a moderate number of antennas. In this chapter, we

consider the performance of a simple separable STAP algorithm that effectively exploits the

benefits of very large antenna arrays. In this approach, the received data are first processed

by a spatial-only non-adaptive beamformer f , followed by an adaptive filter in the temporal

domain. The spatial-only filter leads to the transformed data vector

χ̃ = (I⊗ f)H χ , (4.3)

where I is the identity matrix and ⊗ denotes the Kronecker product. Letting F = I⊗ f , the

transformed covariance matrix is

R̃ = FHRF . (4.4)

Similarly, the transformed target steering vector is ṽt = FHvt. Without loss of generality we

assume f is a normalized vector, i.e., ‖f‖ = 1, and hence we have FHF = (I⊗ f)H(I⊗ f) = I.

For the reduced-dimension algorithm, the detection statistic is

z̃ = w̃Hχ̃ , (4.5)

where w̃ = R̃−1ṽt =
(
FHRF

)−1
FHvt. The SINR of this algorithm can be calculated

from (4.1) and is found to be

SINR = σ2ξtv
H
t F(F

HRF)−1FHvt . (4.6)
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In practice, matrix R can only be estimated using secondary data. Letting R̂ denote the

estimate, the weighting vector in this case is

w = F
(

FHR̂F
)−1

FHvt , (4.7)

and from (4.1) we know the corresponding SINR is given by

SINR =

σ2ξt

∣
∣
∣
∣
vHt F

(

FHR̂F
)−1

FHvt

∣
∣
∣
∣

2

vHt F
(

FHR̂F
)−1

FHRF
(

FHR̂F
)−1

FHvt

. (4.8)

The most frequently used method to estimate R is SMI, in which the estimated covariance

matrix is R̂ = 1
K
XXH, where X = [χ1, . . . ,χK ] contains training samples from K differ-

ent range intervals. We will assume SMI for covariance matrix estimation throughout the

chapter.

4.2.2 Asymptotic Orthogonality of Steering Vectors – ULA

Parts of the analysis in subsequent sections rely on assumptions regarding the asymptotic

orthogonality of the steering vectors of objects in different locations as the number of antenna

elements goes to infinity. The general steering vector is given by v = β(̟)⊗ α(ϑ), where

the temporal steering vector is defined by

β(̟) =












1

ej2π̟

...

ej(M−1)2π̟












, (4.9)
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and where, assuming for example a ULA, the spatial steering vector is

α(ϑ) =












1

ej2πϑ

...

ej(N−1)2πϑ












. (4.10)

In the definition of these steering vectors, ϑ = d
λ0

cos θ sin φ is the spatial frequency, ̟ = 2v
λ0fr

is the normalized Doppler frequency, λ0 is the signal wavelength, fr is the pulse repetition

frequency, v is the radial speed, and d is the separation between antenna elements.

Let β̂ = 1√
M
β, α̂ = 1√

N
α and v̂ = 1√

MN
v be the normalized versions of β, α and v,

respectively. The spatial filtering vector is then f = 1√
N
α. The inner product of an arbitrary

pair of steering vectors v̂i and v̂j is given by

v̂Hj v̂i =
(

β̂(̟j)⊗ α̂(ϑj)
)H (

β̂(̟i)⊗ α̂(ϑi)
)

=
(

β̂
H
(̟j)β̂(̟i)

)

⊗
(
α̂H(ϑj)α̂(ϑi)

)
,

(4.11)

where

α̂H(ϑj)α̂(ϑi) =
1

N

N∑

n=1

ej(n−1)2π(ϑi−ϑj) . (4.12)

Clearly, the quantity limN→∞
1
N

∑N
n=1 e

j(n−1)2π(ϑi−ϑj) is non-zero only when ϑi = ϑj , or equiv-

alently, when cos θi sinφi = cos θj sinφj . This latter equality represents the well-known cone

of ambiguity that exists when a ULA is used in scenarios where the signals can have distinct

elevation angles of arrival; any two signals on the cone will share an identical spatial steering

vector. For a single target observed with ground clutter, the intersection of this cone with

the ground and the sphere corresponding to the range bin of interest means that for a ULA,

there will be at most two clutter patches that share the steering vector of the target.
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With the above in mind, we have

v̂Hi F =
1√
MN

(
βHi ⊗αH

i

)
(I⊗ f)

=
1√
MN

βHi ⊗
(
αH
i f
)

=







β̂
H

c clutter patch i = c shares the same ϑ with the target

0 otherwise
(4.13)

v̂Hc v̂t =
(

β̂
H

c ⊗ α̂H
c

)(

β̂t ⊗ α̂t

)

= β̂
H

c β̂t (4.14)

Fβ̂t = (I⊗ f) β̂t = v̂t , (4.15)

where the subscript t denotes the index of the target, c denote the index of a clutter patch

(if any) that shares the same spatial frequency with the target. Note that the radial speed

v for clutter patches is equal to
(

2va
dfr

)

ϑ, and thus β̂ci = β̂cj and v̂ci = v̂cj if clutter patches

i and j have the same spatial frequency.

4.2.3 Asymptotic Orthogonality of Steering Vectors – URA

Consider the uniform rectangular array (URA) configuration shown in Fig. 4.2. Let dx and

dz denote the inter-element distances alongside the x and z axes. The displacement vector

toward the element at (p, q) is dp,q = pdxx̂+ qdzẑ. A unit vector k̂ in the (φ, θ) direction is

given by k̂ = cos θ sinφx̂+ cos θ cosφŷ + sin θẑ, so the spatial frequency in the URA case is

ϑ =
k̂(φ, θ) · dp,q

λ0
=
pdx cos θ sinφ+ qdz sin θ

λ0
.

The two-dimensional spatial frequency can also be written as ϑ = pϑx + qϑz , where ϑx =

dx cos θ sinφ
λ0

and ϑz =
dz sin θ
λ0

.

The temporal steering vector is defined as in (4.9), and the azimuth and elevation steering
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Figure 4.2: Illustration of a uniform rectangular array.

vectors are correspondingly

a(ϑx) =












1

ej2πϑx

...

ej(P−1)2πϑx












, e(ϑz) =












1

ej2πϑz

...

ej(Q−1)2πϑz












.

The overall steering vector is v(̟, ϑx, ϑz) = β(̟)⊗ α(ϑ), where α = a(ϑx) ⊗ e(ϑz) is the

full spatial steering vector. The target signal is χt = αtβ(̟t) ⊗ a(ϑxt) ⊗ e(ϑzt), and the

normalized spatial filtering vector now is f = 1√
PQ

α.

The orthogonality of steering vectors for a URA is analogous to that for a ULA, with certain

differences. For a URA, the inner product of the steering vectors is

v̂Hj v̂i =
(

β̂(̟j)⊗ â(ϑxj)⊗ ê(ϑzj)
)H (

β̂(̟i)⊗ â(ϑxi)⊗ ê(ϑzi)
)

=
(

β̂
H
(̟j)β̂(̟i)

)

⊗
(
âH(ϑxj)â(ϑxi)

)
⊗
(
êH(ϑzj)ê(ϑzi)

)
,

where â = 1√
P
a and ê = 1√

Q
e are the corresponding normalized steering vectors. Then we
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Figure 4.3: Target is moderately above the ground clutter patch.

have

âH(ϑxj)â(ϑxi) =
1

P

P∑

n=1

ej(n−1)2π(ϑxi−ϑxj)

êH(ϑzj)ê(ϑzi) =
1

Q

Q
∑

n=1

ej(n−1)2π(ϑzi−ϑzj) .

Thus, we obtain orthogonality for URAs if either P or Q grows to infinity and not the other.

Unlike a ULA, planar arrays provide differentiability in the elevation domain. As Q goes to

infinity, the main receive beam becomes increasingly narrow in elevation, and in the limit

the interference from the clutter patches becomes negligible if the target is just moderately

above the ground, as illustrated for example in Fig. 4.3.
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4.3 SINR Analysis

In this section, we find a closed-form expression of the asymptotic SINR for the case of

a ULA, which can be used to quickly calculate the required number of antenna elements

for a given performance target in STAP system designs. To more thoroughly characterize

the performance of the separable STAP scheme, a scaling law for the SINR loss compared

with the fully adaptive STAP is derived as a function of the number of antennas. Then the

asymptotic SINR result is extended to URAs to reflect the differentiability in the elevation

domain.

4.3.1 SINR Performance Analysis for ULAs

In general, the signal reflected from the target is contaminated by echoes from clutter.

Echoes from clutter patches that share the spatial steering vector of the target are not

distinguishable from the target using spatial processing alone, regardless of the number of

antennas, as illustrated in Fig. 4.4. In such cases, one must rely on the difference in Doppler

between the target and interfering clutter patch. Here we analyze the SINR performance

of the reduced-dimension separable STAP algorithm for these cases under the orthogonality

assumptions discussed above.

For simplicity, we assume there is no range ambiguity. Thus, for Nc clutter patches, the

clutter interference covariance matrix is

Rc = σ2

Nc∑

i=1

ξiviv
H
i = σ2MN

Nc∑

i=1

ξiv̂iv̂
H
i , (4.16)

where vi is the steering vector toward the ith clutter patch, v̂i is the corresponding nor-

malized steering vector, and ξi the strength of the ith clutter return. We assume a noise

covariance matrix of Rn = σ2I, and we want to find an analytic expression for (4.6) when
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Figure 4.4: Target sharing the same spatial frequency with clutter patches.

N → ∞. Note that span {v̂1, . . . , v̂Nc
} forms an Nc-dimensional subspace of CMN , where

Nc ≪ MN . We can find other orthonormal vectors ûi, i = 1, . . . ,MN − Nc in CMN which

together with v̂i, i = 1, . . . , Nc form an orthonormal basis for CMN . With the help of these

vectors, the eigendecomposition of the sum covariance matrix R = Rc +Rn can be written

as

R =

Nc∑

i=1

σ2 (MNξi + 1) v̂iv̂
H
i + σ2

MN−Nc∑

i=1

ûiû
H
i . (4.17)

Hence the square root of R is

R
1
2 =

Nc∑

i=1

(
σ2 (MNξi + 1)

) 1
2 v̂iv̂

H
i +

(
σ2
) 1

2

MN−Nc∑

i=1

ûiû
H
i

=

Nc∑

i=1

((
σ2 (MNξi + 1)

) 1
2 − σ

)

v̂iv̂
H
i + σI , (4.18)
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and clearly

R− 1
2 =

Nc∑

i=1

(
(
σ2 (MNξi + 1)

)− 1
2 − 1

σ

)

v̂iv̂
H
i +

1

σ
I . (4.19)

Using (4.13) and the fact that v̂i, i = 1, . . . , Nc and ûi, i = 1, . . . ,MN − Nc form an or-

thonormal basis, it is straightforward to see

R
1
2F =

(
n∑

i=1

(
σ2 (MNξci + 1)

) 1
2 − nσ

)

v̂cβ̂
H

c + σF . (4.20)

where ci, i = 1, . . . , n are the indices of the clutter patches sharing the same spatial frequency,

n is the total number of these patches, and v̂c and β̂c are the corresponding full and temporal

steering vectors. As indicated in Section 4.1, the clutter patches sharing the same spatial

frequency have the same full and temporal steering vectors, so v̂ci = v̂c and β̂ci = β̂c hold

for all i and we can use v̂c and β̂c to represent the vectors for all patches.

Similarly, applying (4.14) we have

R− 1
2 v̂t =

(
n∑

i=1

(
σ2 (MNξci + 1)

)− 1
2 − n

σ

)

v̂cβ̂
H

c β̂t +
1

σ
v̂t . (4.21)

For the term (FHRF)−1, we have

FHRF = σ2MN

Nc∑

i=1

ξiF
H v̂iv̂

H
i F+ σ2FHF

= σ2MN β̂cβ̂
H

c

n∑

i=1

ξci + σ2I , (4.22)

where we have applied (4.13). Using the Sherman-Morrison formula [90], we obtain

(
FHRF

)−1
=

1

σ2

(

I− MN
∑n

i=1 ξci
1 +MN

∑n
i=1 ξci

β̂cβ̂
H

c

)

. (4.23)
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Putting everything together, we finally have an analytic expression for the asymptotic SINR:

SINR =σ2ξtv
H
t F(F

HRF)−1FHvt

=σ2ξtv
H
t R

− 1
2R

1
2F(FHRF)−1FHR

1
2R− 1

2vt

=MNξt

(

1− MN
∑n

i=1 ξci
1 +MN

∑n
i=1 ξci

∣
∣
∣β̂

H

t β̂c

∣
∣
∣

2
)

. (4.24)

Again using (4.21), the SINR of the fully adaptive STAP algorithm can be calculated as

SINR = σ2ξtv
H
t R

−1vt

= σ2ξtv
H
t R

− 1
2R− 1

2vt

=MNξt

(

1− MN
∑n

i=1 ξci
1 +MN

∑n
i=1 ξci

∣
∣
∣β̂

H

t β̂c

∣
∣
∣

2
)

, (4.25)

and we see that the two expressions in (4.24) and (4.25) are thus asymptotically identical,

despite the significant computational savings afforded by the separable algorithm.

4.3.2 SINR Loss Scaling Law

SINR loss is defined as the difference between the SINR of the fully adaptive STAP method

in (4.2) and the separable algorithm in (4.6). In this section we derive a scaling law to show

how the SINR loss is reduced as the number of antennas N is increased. In particular, we

will show that the SINR loss of the separable algorithm approaches zero as O(N−2). We

begin with further study of (4.12). For an arbitrary N , equation (4.12) can be written as

α̂H(ϑj)α̂(ϑi) =
1

N

N∑

n=1

ej(n−1)2π(ϑi−ϑj) =
1

N
ejπ(N−1)(ϑi−ϑj) sin (πN (ϑi − ϑj))

sin (π (ϑi − ϑj))
. (4.26)
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Define Θi = ϑt − ϑi and f(Θi) = α̂H(ϑi)α̂(ϑt). Then

f(0) = lim
ϑi→ϑt

1

N
ejπ(N−1)(ϑt−ϑi) sin (πN (ϑt − ϑi))

sin (π (ϑt − ϑi))
= 1 , (4.27)

and hence f(Θci) = f(Θt) = f(0) = 1. Expressed in terms of of Θi, equation (4.13) is

v̂Hi F =
1√
MN

(
βHi ⊗αH

i

)
(I⊗ f) = f(Θi)β̂

H

i . (4.28)

From (4.28) we see that

FHRF = σ2MN

Nc∑

i=1

ξiF
H v̂iv̂

H
i F+ σ2I = σ2MN

Nc∑

i=1

ξi|f(Θi)|2β̂iβ̂
H

i + σ2I . (4.29)

In order to find the inverse of FHRF, we need to define several auxiliary matrices:







A =MN (
∑n

i=1 ξci|f(Θci)|2) β̂cβ̂
H

c + I =MN β̂cβ̂
H

c

∑n
i=1 ξci + I

B =
[

β̂1, . . . , β̂ci−1, β̂ci+1, . . . , β̂cj−1, β̂cj+1, . . . , β̂Nc

]

C =MNdiag(ξ1|f(Θ1)|2, . . . , ξci−1|f(Θci−1)|2, ξci+1|f(Θci+1)|2, . . . ,

ξcj−1|f(Θcj−1)|2, ξcj+1|f(Θcj+1)|2, . . . , ξNc
|f(ΘNc

)|2)

.

Applying the matrix inversion lemma [90], we obtain

(
FHRF

)−1
=

(

σ2MN

Nc∑

i=1

ξi|f(Θi)|2β̂iβ̂
H

i + σ2I

)−1

=
1

σ2

(
BCBH +A

)−1

=
1

σ2

(

A−1 −A−1B
(
C−1 +BHA−1B

)−1
BHA−1

)

. (4.30)
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The SINR of (4.6) can be written as

σ2ξtMN v̂Ht F(F
HRF)−1FH v̂t

= ξtMN β̂
H

t

(

A−1 −A−1B
(
C−1 +BHA−1B

)−1
BHA−1

)

β̂t . (4.31)

Similarly, the SINR of the fully adaptive STAP algorithm in (4.2) can be written as

σ2ξtv
H
t R

−1vt = ξtMN β̂
H

t A
−1β̂t . (4.32)

Calculating the difference of the two SINRs provides the following expression for the SINR

loss:

ξtMN β̂
H

t

(

A−1B
(
C−1 +BHA−1B

)−1
BHA−1

)

β̂t ,

and we can proceed with the derivation of the scaling law.

Based on the definition in [110], we know ξi is O (N−2) if the same antenna array is used

for both transmission and reception. Furthermore f(Θi) is clearly O (N−1), so it can be

observed that

MNξi|f(Θi)|2 = O
(
N−3

)
, (4.33)

which means that the diagonal elements of C are all O (N−3). Applying the Sherman-

Morrison formula again yields

A−1 = I− MN
∑n

i=1 ξci
1 +MN

∑n
i=1 ξci

β̂cβ̂
H

c . (4.34)
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We substitute these results into the SINR loss expression and take the limit:

lim
N→∞

1

N−2
ξtMN β̂

H

t

(

A−1B
(
C−1 +BHA−1B

)−1
BHA−1

)

β̂t

= lim
N→∞

ξtMβ̂
H

t

(

A−1B

(
1

N3
C−1 +

1

N3
BHA−1B

)−1

BHA−1

)

β̂t

(a)
= lim

N→∞
ξtMβ̂

H

t

(

A−1B

(
1

N3
C−1

)−1

BHA−1

)

β̂t

= lim
N→∞

ξtMβ̂
H

t

(
A−1B

(
N3C

)
BHA−1

)
β̂t

(b)
= κ , (4.35)

where (a) follows from (4.34), (b) follows from (4.33), and κ is a constant. This means that

the SINR loss follows a scaling law of O (N−2) with respect to the number of antennas N ,

which will be verified by simulations.

4.3.3 SINR Performance Analysis for URAs

The SINR analysis above is applicable to URAs with trivial modifications, and the SINR

in (4.24) is also valid for URAs, where N = PQ. Furthermore, as mentioned in Section 4.2,

URAs can provide differentiability in the elevation domain when Q goes to infinity, and in

this case the received data are clutter-free. Calculation of the SINR for (4.6) in the clutter-

free case is essentially the same as the calculation for ULAs. The necessary quantities are

computed as:







R
1
2F = σF

R− 1
2 v̂t = (σ2)

− 1
2 v̂t

(
FHRF

)−1
= (σ2FHF)−1 = 1

σ2
I

.
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Thus the SINR of the separable scheme can be written as

vHt R
− 1

2R
1
2F(FHRF)−1FHR

1
2R− 1

2vt = ξtMN , (4.36)

which is identical to the SINR of fully adaptive STAP:

vHt R
−1vt = vHt R

− 1
2R− 1

2vt = ξtMN . (4.37)

4.4 Secondary Sample Size Analysis

In the previous sections we assume matrix R is known a priori, but in practice it must be

estimated, for example through the use of secondary data. The usually adopted method is

SMI, which produces an unbiased estimate of the true covariance matrix. For this method,

the number of secondary data samples used to form the estimate has a significant impact

on the performance of the system. In this section we study the scaling law of the SINR for

the reduced-dimension separable STAP algorithm as a function of the number of secondary

samples assuming it is sufficiently large. With the help of this scaling law, designers can pick

a proper value to meet a certain predefined SINR target.

The calculation of the scaling law depends on the following theorem.

Theorem 4.1. Let X = [x1,x2, . . . xK ], where xk ∈ CL×1 is a zero-mean complex Gaus-

sian random vector with distribution N (0,Σ). Random vectors xi and xj are independent

when i 6= j. Define a random matrix A = 1
K
UHXXHU, where U ∈ CL×M , M is a fixed pos-

itive integer, and the empirical distribution function of the eigenvalues of UUH converges.

Let P = UHΣU and λi, i = 1, . . . ,M be the eigenvalues of P. As L,K → ∞, we have
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almost surely

∣
∣aH (A− zI)−1

a− aH (x(z)P− zI)−1
a
∣
∣ −→ 0 , (4.38)

where a ∈ CM×1 is an arbitrary fixed vector, x(z) = 1−M
K
−M

K
zm(z), and m(z) is the unique

solution to

m(z) =
1

M

{
M∑

n=1

1

λn
(
1− M

K
− M

K
zm(z)

)
− z

}

. (4.39)

Proof: This theorem is similar to one in [65]. The key difference is that in our case the

dimensionality of A is always limited, thus the theorem in [65] is not directly applicable and

a proof is required, which is provided in the appendix.

With the help of this theorem, the scaling law can then be calculated. Let K be the number

of secondary data samples, L =MN , U = F, and a = FHvt. Applying Theorem 4.1 to (4.8),

we have that when K is sufficiently large, the SINR of the separable scheme is approximately

equal to

σ2ξt
1− x′(0)v

H
t F
(
FHRF

)−1
FHvt , (4.40)

where x′(0) = − 1
K

{
∑M

m=1
1

λm(1−M
K )

}

, and λm are the eigenvalues of FHRF. Equation (4.40)

is the main result of this section, and its derivation is outlined below.

We need to separately evaluate the numerator and denominator of (4.8). For the numerator,
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define







g(z) = vHt F
(

FHR̂F− zI
)−1

FHvt

γ(z) = vHt F
(
x(z)FHRF− zI

)−1
FHvt

.

Then the numerator of (4.8) is equal to σ2ξtg
2(z)|z=0. Based on Theorem 4.1 we know

|g(z)− γ(z)| → 0, so asymptotically the numerator approaches σ2ξtγ
2(z)|z=0, which is non-

random and equal to

σ2ξt
x2(0)

(

vHt F
(
FHRF

)−1
FHvt

)2

. (4.41)

For the denominator, define







h(z) = vHt F
(
FHRF

)− 1
2

((
FHRF

)− 1
2 FHR̂F

(
FHRF

)− 1
2 − zI

)−1 (
FHRF

)− 1
2 FHvt

η(z) = vHt F
(
FHRF

)− 1
2

(

x(z)
(
FHRF

)− 1
2 FHRF

(
FHRF

)− 1
2 − zI

)−1 (
FHRF

)− 1
2 FHvt

.

Since

(

FHR̂F
)−1

FHRF
(

FHR̂F
)−1

=
(
FHRF

)− 1
2

((
FHRF

)− 1
2 FHR̂F

(
FHRF

)− 1
2

)−2 (
FHRF

)− 1
2 ,

the denominator can be rewritten as

vHt F
(

FHR̂F
)−1

FHRF
(

FHR̂F
)−1

FHvt

=
d

dz
vHt F

(
FHRF

)− 1
2

((
FHRF

)− 1
2 FHR̂F

(
FHRF

)− 1
2 − zI

)−1 (
FHRF

)− 1
2 FHvt

∣
∣
∣
∣
z=0

=
d

dz
h(z)

∣
∣
∣
∣
z=0

.

79



Applying Theorem 4.1 again, we know |h(z)−η(z)| → 0, so we can approximate the derivative

of h(z) using d
dz
η(z). After some simplifications, we obtain

d

dz
η(z) =

1− x′(z)
(x(z)− z)2v

H
t F
(
FHRF

)−1
FHvt , (4.42)

so the denominator is asymptotically equal to

1− x′(0)
x2(0)

vHt F
(
FHRF

)−1
FHvt .

Now we have the approximate expressions for both the numerator and the denominator, and

the ratio is

σ2ξt
1− x′(0)v

H
t F
(
FHRF

)−1
FHvt , (4.43)

where x′(0) = − 1
K

{
∑M

m=1
1

λm(1−M
K )

}

, and λm are the eigenvalues of FHRF.

4.5 Simulations

The simulations in this section verify the theoretical results obtained above. The SINRs

for both ULA and rectangular array cases are simulated, and a constant gamma model is

assumed for the clutter [110]. The other simulation parameters can be found in Table 4.1.

Simulation results for the ULA case can be found in Fig. 4.5 and Fig. 4.6. Fig. 4.5 shows the

change in SINR as a function of the number of antennas, and we observe that the performance

of the fully adaptive STAP algorithm is always very close the theoretical upper bound, while

the performance of the reduced-dimension separable STAP algorithm is rather poor when

the number of antenna elements is small, but it improves and eventually approaches the

fully adaptive STAP algorithm as N grows. In this case only N > 50 is required for the
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Table 4.1: STAP System Parameters

SNR for a single antenna element ξt 4 dB

Reflectivity γ -3 dB

Noise power per element σ2 1

Range 6000 m

Number of clutter patches 360

Backlobe level 0 dB

Pulse repetition frequency (PRF) fr 300 Hz

Interelement spacing λ/2

Carrier frequency 0.45 GHz

Platform altitude 3000 m

Platform velocity 50 m/s

Number of pulses M 7 for ULA arrays, 4 for rectangular arrays

performance of the two algorithms to converge. Fig. 4.6 shows the change in SINR as a

function of the target speed for N = 146 antennas, and we see only a slight reduction in

minimum detectable velocity for the separable algorithm.

Fig. 4.7 and Fig. 4.8 contain similar simulation results for P × 3 rectangular arrays where P

grows from 14 to 278. For Fig. 4.8, a 278× 3 antenna array is used. Fig. 4.9 and Fig. 4.10

also show the change in SINR for rectangular arrays, but for the case that the target is above

the ground. For Fig. 4.9, the antenna configuration is 3 × Q rectangular arrays where Q

grows from 14 to 110. We see that again, for a large enough array, the separable algorithm

performs nearly the same as the fully adaptive algorithm. For Fig. 4.10, the configuration of

antenna elements is 3× 110. As such, there is no significant SINR loss even when the target

is relatively stationary. The fully adaptive algorithm exhibits virtually no SINR loss, while

the loss of the separable algorithm is less than 2dB.

Fig. 4.11 verifies the scaling law for SINR loss analyzed in Section 4.3. A ULA is considered

and the single-trial SINR loss is calculated for a target at the relative radial speed of 50 m/s.
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Figure 4.5: Max. SINR as a function of the number of antenna elements.
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Figure 4.6: SINR as a function of normalized Doppler frequency.

For comparison, a curve showing κ/N2 is also provided, and we observe that the SINR loss

obeys the scaling law revealed in Section 4.3 when N is large.
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Figure 4.7: Max. SINR as a function of the total number of antenna elements.
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Figure 4.8: SINR as a function of normalized Doppler frequency.

Fig. 4.12 shows the SINR of the separable algorithm for a 2 × 73 URA with M = 8 pulses

using a single sample estimate of the interference and noise covariance matrix R (blue curve),
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Figure 4.9: Max. SINR as a function of the total number of antenna elements.
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Figure 4.10: SINR as a function of normalized Doppler frequency.

together with the scaling law of (4.40) predicted by Theorem 4.1 (red curve). The green plot

shows the average SINR achieved over 200 Monte Carlo simulations with different clutter
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Figure 4.12: SINR as a function of the number of secondary data samples.

realizations. Both the single-trial and Monte Carlo simulation results match the theoretical

prediction when K is large enough; in this case only K > 30 secondary vectors are enough
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for the theoretical results to hold with high accuracy.

86



Chapter 5

Positioning in NLOS Environments

with a Minimal Set of Measurements

5.1 Introduction

In recent years, mobile positioning technology has received increasing attention and found

many applications in industrial, medical, public safety, and entertainment areas. For exam-

ple, the enhanced emergency call service in the United States, E-911 [28], requires positioning

accuracy of 50 meters for 67% of calls and 150 meters for 90% of calls with handset based

localization, and 100 meters for 67% of calls and 300 meters for 90% of calls with network

based localization. Besides public-safety applications, another overwhelming driving force

for the wide deployment of positioning technology is the strikingly high and still growing

penetration of smart phones. Nowadays people use location based services like Yelp, Google

Maps and other applications to get information of local businesses, news and weather con-

ditions, which is almost an indispensable part of daily lives.

Various types of technologies can be used for positioning. These technologies are significantly
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different in physical nature and mathematical theories. The most successful and well-known

positioning technology is the global positioning system (GPS) [76], which is a medium-

earth orbit satellite based navigation system that provides location and timing information.

Positioning in radio networks like cellular communication systems [123] and wireless local

area networks (WLANs) [58] is also widely used all over the world. Other interesting but not

extensively deployed technologies include radio frequency identification (RFID) [4], infrared

(IR) [115], Bluetooth [41], ultrasound identification [44], and optical locating [63]. These

methods have their own advantages and disadvantages. For example, RFID and other beacon

based methods can provide very high positioning accuracy, whereas they are not scalable

for massive deployment. Positioning using cameras, one type of optical localization, requires

good illumination and quality images, which sometimes may be unavailable.

For radio wave based technologies, the positioning principles can be divided into three types.

The technologies of the first type determine the position of the target based merely on the

presence of the target in a particular area, which is within the range of an anchor device

transmitting beacon signals. This includes most RFID and Bluetooth based methods, and

Cell ID based positioning in UMTS [123] can also be regarded as a variant of this type. The

second one is fingerprinting [46], which is most well-known for Wi-Fi networks. In this case,

the received signal strength (RSS) is measured at different points within an area covered

by WLANs. Thus the radio map of this area is drawn and stored in a database. When

positioning is requested, the RSS of the target is reported and compared to various points

on the radio map, and the closest one is chosen as the position of the target. The last and

most widely used technology is geometric positioning, e.g., GPS and observed time difference

of arrival (OTDOA) [2] positioning, where geometrical relationship is exploited to calculate

the position of the target based on angle-of-arrival (AOA), time-of-arrival (TOA) [22, 108],

time-difference-of-arrival (TDOA) [15], and RSS [77] measurements. Recently this type of

methods is even considered for fine-grained RFID localization [107].
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However, successful positioning by geometric methods ordinarily requires that there exist un-

obstructed LOS paths from transmitting to receiving devices. In many cases, radio signals

are obstructed by physical obstacles like trees, buildings, and mountains in outdoor environ-

ments, and walls and furniture in indoor environments, where the dominant paths are highly

likely to be NLOS. This is because in such complicated wireless communication environ-

ments, transmitted waves suffer various radiation phenomena such as diffraction, refraction,

reflection and scattering before they arrive at destinations. In addition, radio propagation is

even more complicated in densely populated urban areas due to the mobility of targets. For

a moving car or person, simply turning at a corner into a side street may radically change

the wireless environment and the moving object may lose its LOS path to the controlling

base station.

Many localization schemes have been proposed for wireless communication systems in the

past years, and most of them assume that three or more LOS propagation paths exist

between the transmitters and the receivers. Even in cases where these LOS paths exist,

additional NLOS arrivals are almost unavoidable, and the NLOS signals act as the major

source of interference that lowers the reliability of geometrical measurements, resulting in

considerable positioning errors. Thus far, most research efforts on combating the effects of

NLOS signals have focused on error mitigation, i.e., how to detect multipaths that could be

mistakenly perceived as LOS paths and then remove their impact [73].

In this chapter, we deal with NLOS signals from a different perspective. Instead of treating

them as detrimental factors, we try to extract useful information from them. Furthermore,

we want to challenge ourselves with the use of a minimal set of measurements. Obviously,

the more types of geometrical measurements we have, the better positioning performance

we can expect. However, due to the limitations of hardware in civilian communication

systems, sometimes we may only be able to have certain types of measurements but not all.

This fact motivates us to see to what extent positioning can be done with minimal input
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information. A two-stage approach is proposed in the chapter to localize the target. One

scenario considered in the first stage is where NLOS paths are due to scattering. We exploit a

single-bounce assumption on propagation to deal with localization in pure scattering NLOS

environments where no direct LOS path exists, and then extend the method to take LOS

paths into account. A similar scenario was discussed in [91], though the method of [91]

requires additional measurements such as AOA at mobile stations, which is often difficult to

obtain in the absence of a considerable array aperture and a stationary reference orientation

for the device. The other NLOS scenario analyzed for the first stage is about reflection, and

we find that in this case positioning is only possible with the help of two or more anchor

points. In the second stage of the proposed approach, we appeal to the extended Kalman

filter (EKF) to track subsequent changes in the target position and velocity, and the output

of the first stage are used as the initial values of EKF.

The rest of the chapter is organized as follows. In Section 5.2, we describe the positioning

problem in detail and introduce the notation. Section 5.3 illustrates the system models for

scattering scenarios and proposes methods to estimate the position and velocity of the target.

Section 5.4 analyzes the reflection case. Section 5.5 explains how to formulate the EKF for

the tracking problem. Simulation results are presented in Section 5.6.

5.2 NLOS Positioning Problems

In this work, we study two types of NLOS positioning problems, i.e., positioning in scattering

and reflection environments, with minimal sets of measurements. Illustrative examples are

depicted in Fig. 5.1. The results in this study is applicable to both Wi-Fi and cellular

communication cases, so we use the general term “measuring device (MD)” to represent

any device that is doing measuring, and “target device (TD)” to represent the target to be

localized.
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Figure 5.1: Wireless signal propagation in outdoor and indoor environments.

The quantities used for positioning in this chapter are TOA and AOA measurements. Accu-

rate AOA measurements require large aperture antenna arrays, which are feasible at the base

station or access point side, but may not be feasible at the moving terminal side. Therefore

we restrict ourselves to utilize uplink signals only, i.e., just TOA and AOA information at

MDs are available for positioning. An MD in our case can be a base station in cellular

systems, or an access point in WLANs, and a TD can be a cell phone on a street or a lap-

top computer inside a room. For positioning in NLOS environments with both uplink and

downlink measurements, a good discussion can be found in [91].

We use (x
(i)
md, y

(i)
md) to denote the coordinate of MD i, which is assumed to be known a priori

for all MDs because they are stationary and the coordinates can be decided off-line. The

measurements we have are τi(t), the TOA measured at MD i with respect to the TD, and

θi(t), the AOA of the signal arriving at MD i. These quantities are the only inputs to our

algorithms. We use them to estimate the position of the target, (xt(t), yt(t)), and its velocity,

v(t) = (vx(t), vy(t)). This problem is difficult because we have no knowledge about all other

parameters such as the initial position of the target, the coordinates of the scatterers, the

orientation and the location of the reflection wall, and the AOAs of signals arriving at the

target. This fact adds significant difficulty to the localization problem. If we had these
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data, the problem could be quite easy to solve, but now some of them are also intermediate

parameters that we need to estimate before they can be used for positioning.

With such a limited set of measurements in mind, we adopt a two-stage process to localize

the target. In the first stage, we assume that the target is moving on a straight line at a

constant speed for a short period of time, and the propagation environment is not changing.

Under this assumption we propose methods to find the position and velocity of the target.

We think the assumption is mild because simulation reveals that several seconds of measuring

should suffice, which is reasonable for either pedestrians moving in rooms or cars moving on

streets. In the second stage, we discard the short-time constant velocity assumption and use

EKF to track the movements, using the estimates in the first stage as the initial values of

tracking.

5.3 Scattering Model

In this section, we consider scattering scenarios for the first positioning stage, where the

signal transmitted by the moving target is scattered by the scatterers near MDs. We will

develop the solutions for two different scatterer-only models, for both of which no LOS path

is observed at the MDs. Then we extend the methods to include LOS paths.

In the first model, several MDs are simultaneously monitoring the signals from the target,

where each MD is associated with one major scatterer. While the signal may arrive at each

MD via many multipaths, here we assume that the path with the smallest delay is due to

a single bounce from a scatterer at a fixed but unknown location. The TOA and AOA of

this path at the MD are measured and forwarded to a centralized controller where the target

location estimate is obtained.

In the second model, only one MD is doing measuring and calculation. In contrast to the
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Figure 5.2: Geometrical relationship of one MD-TD pair.

first model where just the data of the path with the smallest delay are used, in this case all

multipath components of the wireless channel are utilized. Therefore, the MD is effectively

associated with multiple scatterers.

The positioning methods for both models depend on the fact that we can find the exact

expression of the distance between the scatterer and the target for one MD-TD pair. So

we do an extensive analysis for the one MD-TD pair case first, then explain how the exact

expression can be used for positioning in the two models. Furthermore, the proposed methods

can handle not only the pure NLOS problems, but are also applicable to LOS and NLOS

mixed problems. We include the extension in this section for completeness.

5.3.1 One MD-TD Pair

In this subsection, we consider the case of one MD-TD pair only, because the correspond-

ing analysis acts as the building block for the solution to the positioning problems we are

studying. The case is illustrated in Fig. 5.2. Since we only have one MD and one associated

scatterer, for the brevity of notation we ignore all indices with respect to MDs and scatterers,

and thus (xs, ys) is the coordinate of the scatterer, r is the distance between the MD and the
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scatterer, and ρ(t) is the distance between the scatterer and the target at time t, which are

all unknown. Let θ be the AOA measurement of the signal arriving at the MD, from simple

geometry we have the following relationships:







xs = xmd + r cos θ

ys = ymd + r sin θ
, (5.1)

tan θ =
ys − ymd
xs − xmd

, (5.2)

and

θ =







arctan ys−ymd

xs−xmd
if xs ≥ xmd

π + arctan ys−ymd

xs−xmd
if xs < xmd

. (5.3)

The TOA measurement equation is given by

√

(xs − xt(t))2 + (ys − yt(t))2 +
√

(xs − xmd)2 + (ys − ymd)2 = cτ(t) , (5.4)

where τ(t) is the TOA of the signal from the target to the MD due to the associated

scatterer. As we mentioned before, in the first stage we have the short-time constant velocity

assumption, so the velocity of the target does not change with time and is denoted by

v = (vx, vy). The initial position of the target is (x0, y0) = (xt(0), yt(0)).

At first glance, it might seem that little information can be extracted from the single-bounce

model and hence the NLOS positioning problem might not be identifiable, but this is not

so. In [18], we proposed a nonlinear least squares (NLS) method to approximately solve

the positioning problem. In this chapter we move one step forward and show that an exact

solution for r can be obtained, which is done by taking the third-order difference of TOA

94



equations.

Based on Eq. (5.4), we have

ρ2(t) = (xt(t)− xs)2 + (yt(t)− ys)2 (5.5)

ρ2(t) = (τ(t)c− r)2 . (5.6)

We assume that the propagation environment does not change and the scatterer is stationary

in the first stage, so r is not a function of t. This assumption is relaxed in the second stage.

Equating (5.5) and (5.6), we obtain

(xt(t)− xs)2 + (yt(t)− ys)2 = (τ(t)c− r)2 .

If the measurement is done on a regular basis with a time interval of ∆t, at the nth measuring

instant the above equation becomes

(xt(n∆t)− xs)2 + (yt(n∆t)− ys)2 = (τ(n∆t)c − r)2 .

Due to the constant velocity assumption in the first stage, we know xt(n∆t) = x0 + nvx∆t

and yt(n∆t) = y0 + nvy∆t. To save space we use the notation τn = τ(n∆t). For two

consecutive time instants n and n+ 1, we have

(x0 + nvx∆t− xs)2 + (y0 + nvy∆t− ys)2 = (cτn − r)2 , (5.7)

and

(x0 + (n+ 1)vx∆t− xs)2 + (y0 + (n+ 1)vy∆t− ys)2 = (cτn+1 − r)2 . (5.8)
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Taking the difference of both sides of (5.7) and (5.8), we have

vx∆t (2x0 + (2n+ 1)vx∆t− 2xs) + vy∆t (2y0 + (2n+ 1)vy∆t− 2ys)

= (cτn+1 + cτn − 2r) (cτn+1 − cτn) , (5.9)

which is the first-order difference of the original TOA measurement equations. At time

instant n + 1, we similarly have

vx∆t (2x0 + (2n+ 3)vx∆t− 2xs) + vy∆t (2y0 + (2n+ 3)vy∆t− 2ys)

= (cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1) . (5.10)

Taking the difference of both sides of (5.9) and (5.10), we obtain the second-order difference

for instants n and n + 1:

2 (vx∆t)
2 + 2 (vy∆t)

2 =

(cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1)− (cτn+1 + cτn − 2r) (cτn+1 − cτn) , (5.11)

and

2 (vx∆t)
2 + 2 (vy∆t)

2 =

(cτn+3 + cτn+2 − 2r) (cτn+3 − cτn+2)− (cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1) . (5.12)

As the final step, we take the third-order difference and get

(cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1)− (cτn+1 + cτn − 2r) (cτn+1 − cτn)

= (cτn+3 + cτn+2 − 2r) (cτn+3 − cτn+2)− (cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1) ,
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from which we can find the exact solution

r =
c

2

(
τ 2n+3 − 2τ 2n+2 + τ 2n+1

)
−
(
τ 2n+2 − 2τ 2n+1 + τ 2n

)

(τn+3 − 2τn+2 + τn+1)− (τn+2 − 2τn+1 + τn)

=
c

2

(
τ 2n+3 − 3τ 2n+2 + 3τ 2n+1 − τ 2n
τn+3 − 3τn+2 + 3τn+1 − τn

)

. (5.13)

In other words, if there is no measurement error, four consecutive delay measurements will

suffice for determining the distance between the scatterer and the target, and the time needed

for taking four delay measurements is 3∆t, a really small period in practice. However, the

measurements are not perfect in real systems and we need more samples to average out

the errors. Therefore the time period of measuring should be longer than 3∆t. Simulation

results show that several seconds are necessary for acceptable positioning performance.

Because we know the TOA of the signal from the target to the MD via the scatterer, we

indirectly know ρ(t) by Eq. (5.6). Furthermore, with the AOA measurement at the MD and

Eq. (5.1) we can determine the position of the scatterer, which replaces the MD to be the new

anchor point. With these information, the triangulation method used in LOS positioning

[89] can also be adopted to solve our problem if three or more anchor points are present.

Remark 5.1 (Interpretation of the Third-Order Difference). So far we have seen that by

taking the difference of the original TOA measurement equations three times, we can find a

closed-form and exact solution for r, and thus ρ(t). Now we give an interpretation to show

why this method is effective.

In the continuous time domain, the delay measurement equation is

(xt(t)− xs)2 + (yt(t)− ys)2 = (τ(t)c− r)2 . (5.14)
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The first-order derivative of Eq. (5.14) with respect to t is

(xt(t)− xs) ẋt(t) + (yt(t)− ys) ẏt(t) = c (τ(t)c− r) τ̇ (t) ,

and the second-order derivative is

ẋ2t (t) + (xt(t)− xs) ẍt(t) + ẏ2t (t) + (yt(t)− ys) ÿt(t) = c2τ̇ 2(t) + c (τ(t)c− r) τ̈(t) .

Due to the short-time constant velocity assumption, we know the acceleration of the target is

zero, so ẍt(t) = 0 and ÿt(t) = 0 and we get

ẋ2t (t) + ẏ2t (t) = c2τ̇ 2(t) + c (τ(t)c− r) τ̈(t) .

Finally, taking the third-order derivative gives

2ẋt(t)ẍt(t) + 2ẏt(t)ÿt(t) =
d

dt

(
c2τ̇ 2(t) + c (τ(t)c− r) τ̈ (t)

)
,

which is further simplified as

d

dt

(
cτ̇ 2(t) + (τ(t)c− r) τ̈(t)

)
= 0 .

We can solve the above equation and find the expression of r in the continuous time domain:

r =
3cτ̇(t)τ̈ (t) + cτ(t)

...
τ (t)

...
τ (t)

=
c

2

(
d3

dt3
τ 2(t)

d3

dt3
τ(t)

)

. (5.15)

It tells us that the distance between the scatterer and the MD is obtainable if the acceleration

of the target is zero. The solution in Eq. (5.13) can be regarded as a discrete time counterpart

of Eq. (5.15).

Remark 5.2 (Speed and Doppler Estimation). Besides the distance between the scatterer
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and the target, solving Eq. (5.11) gives the expression of target speed:

‖v‖ =
√
2

2∆t

√

(cτn+2 + cτn+1 − 2r) (cτn+2 − cτn+1)− (cτn+1 + cτn − 2r) (cτn+1 − cτn) ,

though we cannot obtain the heading information of the target.

Furthermore, once the speed is obtained, we can plug it back to Eq. (5.9) and get

vx∆t (2x0 + 2nvx∆t− 2xs) + vy∆t (2y0 + 2nvy∆t− 2ys)

= (cτn+1 + cτn − 2r) (cτn+1 − cτn)− (‖v‖∆t)2 .

Therefore the Doppler frequency shift of the target at time instant n is

fd =
1

2π
〈k,v〉 = vx (x0 + nvx∆t− xs) + vy (y0 + nvy∆t− ys)

ρ(n∆t)λ

=
(cτn+1 + cτn − 2r) (cτn+1 − cτn)− (‖v‖∆t)2

2ρ(n∆t)λ∆t
,

where λ is the wavelength of the signal, k is the vector pointing from the scatterer to the

target with the norm of 2π/λ, and 〈· , ·〉 denotes the operation of inner product.

5.3.2 Multiple MDs

With the help of the exact solution of r, we are ready to find the position of the target for

the case depicted in Fig. 5.3, where a K-MD system observes uplink signals from a single

target, and we want to know where the target is at time instant n. Instead of the MDs, the

scatterers now act as new anchor points because of the pure NLOS nature of this scenario.

We want to fuse the data from all MDs and all measuring instants, and the method can be

established as an extension to the conventional triangulation [89], where one anchor point
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Figure 5.3: A localization scenario with K MDs, each associated with one scatterer relative
to the MD.

is treated as the reference point, and others are used to form a set of supplementary linear

equations. For our problem, first we look at the kth MD and have

ρ2k(t) =
(
xt(t)− x(k)s

)2
+
(
yt(t)− y(k)s

)2
, (5.16)

where ρk(t) is the distance between scatterer k and the target at time t.

If we choose the scatterer associated with MD 1 as the reference point, we have

ρ21(t) =
(
xt(t)− x(1)s

)2
+
(
yt(t)− y(1)s

)2
. (5.17)

Subtracting the left- and right-hand sides of (5.17) from (5.16) for k 6= 1, we get

ρ2k(t)− ρ21(t) =
(
x(1)s − x(k)s

) (
2xt(t)− x(1)s − x(k)s

)
+
(
y(1)s − y(k)s

) (
2yt(t)− y(1)s − y(k)s

)
.

(5.18)
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Rearranging the terms in Eq. (5.18), we obtain

1

2

(

ρ2k(t)− ρ21(t) +
((
x(1)s
)2 −

(
x(k)s

)2
)

+
((
y(1)s

)2 −
(
y(k)s

)2
))

=
(
x(1)s − x(k)s

)
xt(t) +

(
y(1)s − y(k)s

)
yt(t) . (5.19)

Let t take values of n∆t, n = 0, 1, 2, . . . , N − 1. The resulted equations can be rewritten as

yk = Hkx for k other than 1, where x = [ xt(n∆t), yt(n∆t), vx, vy ]
T ,

Hk =















x
(1)
s − x

(k)
s y

(1)
s − y

(k)
s −n∆t

(

x
(1)
s − x

(k)
s

)

−n∆t
(

y
(1)
s − y

(k)
s

)

...

x
(1)
s − x

(k)
s y

(1)
s − y

(k)
s 0 0

...

x
(1)
s − x

(k)
s y

(1)
s − y

(k)
s (N − n− 1)∆t

(

x
(1)
s − x

(k)
s

)

(N − n− 1)∆t
(

y
(1)
s − y

(k)
s

)
















,

(5.20)

and

yk =

1

2


















ρ2k(0)− ρ21(0) +

((

x
(1)
s

)2
−
(

x
(k)
s

)2
)

+

((

y
(1)
s

)2
−
(

y
(k)
s

)2
)

...

ρ2k(n∆t)− ρ21(n∆t) +

((

x
(1)
s

)2
−
(

x
(k)
s

)2
)

+

((

y
(1)
s

)2
−
(

y
(k)
s

)2
)

...

ρ2k((N − 1)∆t)− ρ21((N − 1)∆t) +

((

x
(1)
s

)2
−
(

x
(k)
s

)2
)

+

((

y
(1)
s

)2
−
(

y
(k)
s

)2
)


















.

(5.21)
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In order to utilize the information from all MDs, we stack K − 1 sets of linear equations

together:

H =















H2

...

Hk

...

HK















, y =















y2

...

yk

...

yK















,

and

y = Hx . (5.22)

If the measurements are free of error, equation (5.22) is an overdetermined system and solving

it results in the exact solution for the position and velocity of the target. Practically the

measurements are contaminated with noise, so we use the celebrated least squares form to

get an approximate x:

x̂ = (HTH)−1HTy .

Note that the proposed method requires three or more MDs. Otherwise the problem is not

identifiable.
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Figure 5.4: A localization scenario with one MD, associated with multiple scatterers.

5.3.3 Extensions

Fig. 5.4 depicts the second model: single MD associated with multiple scatterers. Similar

ideas in the previous subsections are also applicable to this model, where all paths of the

wireless channel from the target to the MD are utilized instead of one. The distance between

scatterer k and the MD can be calculated by using the set of TOA measurements associated

with the path passing through scatterer k, so the position of scatterer k is determinable. Then

we can keep using the same equation, Eq. (5.22), and the least squares form to estimate the

position and velocity of the target. In this model, different paths of the channel usually have

different strength, which may have a considerable impact on the reliability of measurements.

The method can be further extended to include cases where both LOS and NLOS paths

are observed. To take LOS paths into account, the only change needed is that ρk(t) and

(x
(k)
s , y

(k)
s ) in (5.20) and (5.21) shall be replaced by the TOA of the corresponding LOS path

and the position of the corresponding MD, because they are no longer unknown parameters.

Proper application of the proposed method is contingent on that we can classify the paths

appropriately, i.e., we need to be able to detect if a given path is LOS or is associated
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with scatterers. If the signals are from scatterers, we also need to be able to differentiate

the single- and multi-scatterer cases. The classification/detection itself is a subject of great

interest, but is beyond the scope of this chapter, which focuses on the positioning algorithm

per se.

5.3.4 Improve the Quality of TOA Measurements

The quality of TOA measurements certainly has a great effect on the accuracy of final

estimates. Motivated by the proposal in [89], we can use a nonlinear optimization method to

improve the quality. For a set of TOA measurements obtained at a given MD, we formulate

the following optimization problem:

min
r,τn

N−1∑

n=0

(τn − τ̃n)2

s.t. r =
c

2

(
τ 2n+3 − 3τ 2n+2 + 3τ 2n+1 − τ 2n
τn+3 − 3τn+2 + 3τn+1 − τn

)

, n = 0, . . . , N − 4 ,

where τ̃n are the measured TOAs, and τn are optimization variables which can be regarded as

refined TOAs. The optimization problem is non-convex and can only be solved by numerical

methods. Our simulation reveals that the optimization improves the accuracy of measure-

ments by almost one order of magnitude. As a side product of the optimization process, a

refined r is also obtained.

5.4 Reflection Model

In this section we study another NLOS case for the first stage of positioning, which is about

the important physical phenomenon of reflection. Imagine the signal received by the MD is

reflected by a wall. Similar to the scatterer case, we just have the uplink TOA and AOA
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Figure 5.5: The trajectory of the target.

information at the MD side. We do not have maps of the underlying areas, so no knowledge

about the wall is ready for use. The analysis shows that we cannot extract any meaningful

information from the measurements for the single MD-TD pair due to the ambiguity in the

model, which is significantly different from scattering scenarios.

The ambiguity in the single-pair reflection model can be explained by two illustrations. In

Fig. 5.5, we qualitatively show the target’s trajectory and the signal paths between the MD

and the target. To ease the analysis, we also depict the mirror image of the trajectory

with respect to the wall. If the TOA and AOA measurements are free of error, the mirror

image is completely determinable. In Fig. 5.6 we keep everything the same, but change the

orientation of the wall. It is clear that in this case all the TOA and AOA measurements can

be chosen to be the same due to symmetry, but the trajectory of the target is totally different

from the one in Fig. 5.5. In fact the number of candidate trajectories is infinite for the same

set of measurements, only if the mirror image is kept unchanged. This observation tells us

that there is no way to determine the orientation and location of the wall in the single-pair

model, though the information about the wall is very important for correct positioning.

Later we will see only if the measurements are used together with the help of two or more
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Figure 5.6: The ambiguity in the trajectory of the target.

anchor points, the ambiguity can be removed from the model and the positioning problem

is solvable.

For the analysis of the reflection case, we use the same notation as before, and the only new

quantity is (xm(t), ym(t)), which refers to the mirror image of the target’s trajectory. Clearly

we have







xm(t) = xmd + cτ(t) cos θ(t)

ym(t) = ymd + cτ(t) sin θ(t)
, (5.23)

where τ(t) is the TOA and θ(t) is the AOA at the MD side, both changing with time. The

mirror image characterized by (xm(t), ym(t)) can be regarded as known.

The method we propose to solve the positioning problem in the reflection case relies on two

facts. Firstly, the lines determined by points on the trajectory of the target and the corre-

sponding mirror points are parallel to each other, i.e., the line passing through (xt(ti), yt(ti))

and (xm(ti), ym(ti)) and the line passing through (xt(tj), yt(tj)) and (xm(tj), ym(tj)) are par-

allel for all ti and tj, ti 6= tj . Secondly, all these lines are perpendicular to the wall because
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(xm(t), ym(t)) is the mirror of (xt(t), yt(t)) with respect to the wall.

The equation of the line passing through (xt(t), yt(t)) and (xm(t), ym(t)) is

y − ym(t)
x− xm(t)

=
y − yt(t)
x− xt(t)

, (5.24)

which can be further converted to

y =
yt(t)− ym(t)
xt(t)− xm(t)

x+
xt(t)ym(t)− xm(t)yt(t)

xt(t)− xm(t)
,

and the slope is

yt(t)− ym(t)
xt(t)− xm(t)

.

On the other hand, the line equation to characterize the wall is given by

y − ym(t)+yt(t)
2

x− xm(t)+xt(t)
2

=
y − ym(0)+y0

2

x− xm(0)+x0
2

, (5.25)

which can be rewritten as

y =
ym(t)− ym(0) + yt(t)− y0
xm(t)− xm(0) + xt(t)− x0

x

+
(xm(t) + xt(t))(ym(0) + y0)− (xm(0) + x0)(ym(t) + yt(t))

2(xm(t)− xm(0) + xt(t)− x0)
.

So the slope of the line is

ym(t)− ym(0) + yt(t)− y0
xm(t)− xm(0) + xt(t)− x0

.

We know the two lines defined by (5.24) and (5.25) are perpendicular to each other, which
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requires

ym(t)− ym(0) + yt(t)− y0
xm(t)− xm(0) + xt(t)− x0

· yt(t)− ym(t)
xt(t)− xm(t)

= −1 .

Due to the parallel property, it is equivalent to

ym(t)− ym(0) + yt(t)− y0
xm(t)− xm(0) + xt(t)− x0

· y0 − ym(0)
x0 − xm(0)

= −1 .

The assumption of constant velocity in a short period of time leads to

ym(n∆t)− ym(0) + nvy∆t

xm(n∆t)− xm(0) + nvx∆t
· y0 − ym(0)
x0 − xm(0)

= −1 .

For n = 0, 1, 2, 3 . . . , we define xmn
= xm(n∆t) and ymn

= ym(n∆t) for convenience. After

simplifications we get

(nvx∆t + xmn
− xm0)(x0 − xm0) + (nvy∆t+ ymn

− ym0)(y0 − ym0) = 0 , (5.26)

which summarizes the information we can get from the reflection wall. Furthermore it is

easy to see

(xmn
− xm0)

2 + (ymn
− ym0)

2 = (nvx∆t)
2 + (nvy∆t)

2 . (5.27)

As we mentioned before, only together with the information provided by anchor points, we

are able to find the position and velocity of the target in the reflection model. An anchor

point is this section is defined as a point which effectively has LOS observation of the target,

and it can be either an MD with known location and TOA, or a scatterer whose location

and TOA are estimated as we do in Section 5.3. We do not require AOA knowledge at the

anchor points, otherwise the localization process is simple and straightforward. Among these
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anchor points, we select one located at (xa, ya) as the reference and its TOA measurement

at time t is denoted by τa(t) . The criterion for selection can be based on the reliability

of measurement provided by the anchor points. The coordinates of other anchor points are

(x
(k)
b , y

(k)
b ), k = 1, 2, . . . , K − 1. Clearly we have

(xt(t)− xa)2 + (yt(t)− ya)2 = (cτa(t))
2 .

Applying the same technique we have used for the scatterer case, at time instant n we have

(x0 + nvx∆t− xa)2 + (y0 + nvy∆t− ya)2 = (cτn)
2 ,

where τn = τa(n∆t). For time instant n+ 1, we have

(x0 + (n+ 1)vx∆t− xa)2 + (y0 + (n+ 1)vy∆t− ya)2 = (cτn+1)
2 .

Taking the difference of both sides of the two equations, we get

vx∆t (2x0 + (2n+ 1)vx∆t− 2xa) + vy∆t (2y0 + (2n+ 1)vy∆t− 2ya)

= (cτn+1)
2 − (cτn)

2 , (5.28)

which is the first-order difference of the delay equations at instant n. At time instant n+ 1,

we again have

vx∆t (2x0 + (2n+ 3)vx∆t− 2xa) + vy∆t (2y0 + (2n+ 3)vy∆t− 2ya)

= (cτn+2)
2 − (cτn+1)

2 .
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Taking the second-order difference, we get

(vx∆t)
2 + (vy∆t)

2 =
1

2

(
(cτn+2)

2 − (cτn+1)
2 − ((cτn+1)

2 − (cτn)
2)
)
.

Plugging it back to Eq. (5.28), we then get

vx∆t (x0 − xa) + vy∆t (y0 − ya)

= −2n + 1

4

(
(cτn+2)

2 − (cτn+1)
2)+

2n+ 3

4

(
(cτn+1)

2 − (cτn)
2)

△
= ζn . (5.29)

It is difficult to completely linearize the positioning problem for the reflection case. Instead,

we adopt a one-dimensional line search approach to find the solution. The angle of departure

at the selected anchor point at time 0, ϕ = ϕ(t)|t=0, is chosen to be the search variable.

Equations (5.26) and (5.29) can be rewritten in ϕ as

(nvx∆t + xmn
− xm0)(cτ0 cosϕ+ xa − xm0)+

(nvy∆t + ymn
− ym0)(cτ0 sinϕ+ ya − ym0) = 0 , (5.30)

and

vx∆t (cτ0 cosϕ) + vy∆t (cτ0 sinϕ) = ζn , (5.31)

because the simple geometrical relationship holds:







xt(t) = xa + cτa(t) cosϕ(t)

yt(t) = ya + cτa(t) sinϕ(t)
, (5.32)
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With (5.27), (5.30) and (5.31), we are ready to show the full problem formulation, which

incorporates the measurements at instant n, n = 1, 2, . . . , N from the reflection MD and all

anchor points.

To make expressions concise, we define







fn = (xm0 − xmn
) (cτ0 cosϕ+ xa − xm0) + (ym0 − ymn

) (cτ0 sinϕ+ ya − ym0)

gn = n∆t [ cτ0 cosϕ+ xa − xm0 , cτ0 sinϕ+ ya − ym0 ]
T

rn = cτ0∆t [ cosϕ, sinϕ ]T

,

and a matrix form relationship can be established as

y = Hx , (5.33)

where

y = [ f1, · · · , fn, · · · , fN , ζ1, · · · , ζn, · · · , ζN ]T ,

H = [ gT1 , · · · , gTn , · · · , gTN , rT1 , · · · , rTn , · · · , rTN ]T ,

and

x =






vx

vy




 .

Note this is also an overdetermined system like the one in the scattering model. If there

is no error in measurements, N = 1 should suffice for the solution of the system. For

measurements with noise, we need a larger N to mitigate the effect of errors.
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In order to define the objective function of the optimization problem, we further define







αn = (xmn − xm0)
2 + (ymn − ym0)

2 −
(
(nvx∆t)2 + (nvy∆t)2

)

βn = cτn −
(

(cτ0 cosϕ+ nvx∆t)2 + (cτ0 sinϕ+ nvy∆t)2
) 1

2

γk,n = c ς
(k)
n −

((

cτ0 cosϕ+ xa + nvx∆t− x
(k)
b

)2
+
(

cτ0 sinϕ+ ya + nvy∆t− y
(k)
b

)2
) 1

2

,

where ς
(k)
n is the TOA associated with the kth non-reference anchor point at time instant

n, αn follows from Eq. (5.27), βn and γk,n reflect the difference of measured and calculated

TOAs.

The optimization problem is

min
ϕ

N∑

n=1

(

α2
n + β2

n +
K−1∑

k=1

γ2k,n

)

subject to y = Hx .

The only optimization variable in the objective function is ϕ. Simulation shows that the

objective function has very limited number of local minima, and numerical algorithms can

quickly and efficiently find the optimal ϕ. Once it is obtained, the position and velocity of

the target can be calculated following (5.32) and (5.33).

Remark 5.3 (Requirement on the Number of Anchor Points). As we have seen, the reflection

case is even more challenging compared to the scattering case. Without the help from other

anchor points, the positioning problem itself is not identifiable. If the number of helping

anchor points is one, there is still ambiguity in the model and the trajectory of the target is

not uniquely determinable. For the case of two anchor points, at first glance it seems that the

mirror image of the MD can act as the third anchor, and thus the conventional triangulation

method is adoptable. However, a noticeable difference is that the position of the mirror in
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our model is unknown, because we have no knowledge about the orientation and the location

of the wall. So we need to appeal to the proposed one-dimensional search method to localize

the target. For the case of more than two anchor points, if the TOA measurements are

accurate enough, triangulation using only the anchor points is the straightforward solution.

The proposed method is still applicable though. Measuring the signal reflected by the wall is

no longer necessary, but can be treated as a supplementary source of geometrical information.

5.5 Tracking

The previous sections discuss the details about estimation of the position and velocity of TDs

with the short-time constant velocity assumption. Once the estimation in the first stage is

done, we appeal to the extended Kalman filter to track subsequent movements of the target,

under which the constant velocity assumption is relaxed. The results from the first stage are

used as the initial values of the EKF, which is able to handle the scattering, reflection and

LOS cases simultaneously.

Kalman filters generally consist of two parts: the dynamic model and the observation model.

For the dynamic model, we define:







η1(n) = [ xt(n), yt(n), vx(n), vy(n) ]
T

η2(n) =
[

x
(1)
s (n), y

(1)
s (n), · · · , x(Ks)

s (n), y
(Ks)
s (n)

]T

η3(n) = [ xw(n), yw(n) ]
T

,

where (xt(n), yt(n)) is the position of the target, (vx(n), vy(n)) is the velocity of the target,

(x
(k)
s (n), y

(k)
s (n)) is the coordinate of scatterer k, (xw(n), yw(n)) represents the mirror image

of the MD with respect to the wall, Ks is the number of scatterers, and n is the time index.
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Further defining η(n) =
[
ηT1 (n), η

T
2 (n), η

T
3 (n)

]T
, we have the dynamic model:

η(n) =






A 0

0 I




η(n− 1) +w(n), (5.34)

where

A =












1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1












,

and w(n) is the noise vector with covariance matrix Mw.

The components of the observation vector are the uplink TOA and AOA measurements at

the corresponding MDs. We define







µ1(n) =
[

τ
(1)
s (n), · · · , τ (Ks)

s (n), θ
(1)
s (n), · · · , θ(Ks)

s (n)
]T

µ2(n) = [ τw(n), θw(n) ]
T

µ3(n) =
[

τ
(1)
d (n), · · · , τ (Kd)

d (n), θ
(1)
d (n), · · · , θ(Kd)

d (n)
]T

,

where τ
(i)
s (n) and θ

(i)
s (n) are the TOA and AOA measurements associated with scatterer i,

τw and θw are with the reflection wall, τ
(j)
s (n) and θ

(j)
s (n) are with LOS path j, and Kd is

the number of LOS paths. Similarly we define µ(n) =
[
µT1 (n), µ

T
2 (n), µ

T
3 (n)

]T
, and z(n)

as the noise vector with covariance matrix Mz. Then the observation model is

µ(n) = h (η(n)) + z(n),

where h is a stack of TOA and AOA equations for scattering, reflection and LOS cases,

respectively. For the case of scattering, the TOA and AOA can be obtained from (5.3) and
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(5.4). For the case of reflection, we have

θ =







arctan y−ymd

x−xmd
if x ≥ xmd

π + arctan y−ymd

x−xmd
if x < xmd

,

and

τ =
1

c

√

(x− xmd)2 + (y − ymd)2 ,

where (x, y) is the coordinate of the reflection point on the wall, and can be calculated as







x =
1
2
(x2w−x2

md
+y2w−y2

md
)(xw−xt)+(ywxt−ytxw)(yw−ymd)

(yw−yt)(yw−ymd)+(xw−xmd)(xw−xt)

y =
1
2
(x2w−x2

md
+y2w−y2

md
)(yw−yt)−(ywxt−ytxw)(xw−xmd)

(yw−yt)(yw−ymd)+(xw−xmd)(xw−xt)

.

For the case of LOS transmission, the relationship is immediate:

θ =







arctan yt−ymd

xt−xmd
if xt ≥ xmd

π + arctan yt−ymd

xt−xmd
if xt < xmd

. (5.35)

τ =
1

c

√

(xt − xmd)2 + (yt − ymd)2 , (5.36)

Due to the nonlinear nature of h, we use the EKF [55] to do the tracking. The computation

of the coefficients in EKF is standard and straightforward, so we skip the detailed calculation

steps. Note that the EKF we consider in this section is able to handle scattering, reflection

and LOS scenarios simultaneously. If one of them is absent in reality, we just need to remove

the corresponding part from the Kalman filter. For example, if there is no LOS path observed

then we just need to remove (5.35) and (5.36) from the observation model.
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Figure 5.7: RMSE of target position (scattering case.)
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Figure 5.8: RMSE of target speed (scattering case.)

5.6 Simulations

In this section, we show the simulation results of the first and the second stage separately.
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Figure 5.9: RMSE of target position (reflection case.)
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Figure 5.10: RMSE of target speed (reflection case.)

For the scattering model in the first stage, we assume that three MDs are located at (10, 10),

(120, 200), and (200, 20) in units of meters, with associated scatterers at (30, 5), (100, 195),

and (215, 35), respectively. The initial position of the target is (116, 80), and the target
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Figure 5.11: True and estimated target trajectory.

moves eastbound at the speed of 3 km/hr for 10 meters. This simulates pedestrians in

indoor environments like terminal halls in airports. Except for the coordinates of the MDs,

all other parameters are unknown a priori and need to be estimated. Figs. 5.7-5.8 show

the RMS error of the target position and velocity obtained as a function of the standard

deviation of the delay estimation error.

For the reflection model in the first stage, an MD is at (10, 10) and a wall is located at

(100, 100) with an orientation angle of 30◦ with respect to the x-axis. The initial position of

the target is (116, 80), and its velocity is v = (0.5, 0.5) m/s. Two anchor points are located

at (200, 20), and (300, 80). We assume the anchor points are MDs, so their positions are

known in advance. This is again an indoor setting. Like the scattering case, all parameters

are unknown and need to be estimated except the coordinates of the MDs. The RMS error

of the target position and velocity are shown in Figs. 5.9-5.10.
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Based on the analysis in previous sections, we know that if the measurements are error

free the proposed methods can generate the exact solution to the positioning problems for

both scattering and reflection cases. In the real world, the measurements are certainly

contaminated with noise. Looking at the simulation results for both cases, we can see

that a reasonably good performance for positioning requires sub-nanosecond accuracy of

time measurement. Furthermore, for the same delay deviation the estimation accuracy in

the reflection case is better compared to the scattering case. This is because in scattering

models the positions of all scatterers need to be estimated, and the effect of estimation error

is exacerbated in triangulation.

Fig. 5.11 shows the performance of the EKF tracker once the initial position and velocity

of the target are obtained in the first stage. Besides three scatterers located at (10, 10),

(120, 20), and (−50, 50), there is also a wall lying at (−100, 150) with an orientation angle of

30◦. The initial position estimate of the target is in error by around 15 m, but we see that

the EKF is able to reduce the error below 1 m during periods of straight-line motion.
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Chapter 6

Conclusions

This work mainly studies resource allocation problems in communication, quantization, and

localization systems, and various types of applications have been considered and analyzed.

In Chapter 2, we studied the problem of downlink MIMO-OFDMA resource allocation from

a game theoretic bargaining perspective. For the NBS case, we showed that the solution

can be found using conventional convex optimization techniques. For the KSBS case, the

problem is not directly solvable with a single convex optimization, so instead we proposed

two algorithms that find the solution through a series of convex optimization steps. One

of the algorithms was based on a bisection search and the other on the concept of prefer-

ence functions. We also proposed a scheduling rule to find the KSBS associated with the

long-term average rate. To show the effectiveness of the bargaining solutions, We studied

a specific example where the users are multiplexed using a block diagonalization scheme,

and with time-sharing we show how the allocation problem can be formulated as a convex

optimization problem based on both the NBS and KSBS. Using simple heuristics to focus on

a subset of the users on each subcarrier, a simplified algorithmic framework is also proposed,

which has a polynomial complexity and is more practical for implementation in real systems.
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To gain insight into the effectiveness of the application of the bargaining solutions, we sim-

ulated different resource allocation schemes for cases with both equal and unequal pathloss.

As expected, the simulation results show that the bargaining solutions can systematically

achieve a useful tradeoff between overall system efficiency and user fairness.

In Chapter 3, we characterized the sum rate for the Gaussian CEO problem with a scalar

source having arbitrary memory. We formulated the sum-rate calculation as a variational cal-

culus problem with a distortion constraint, and extended the conventional Lagrange method

to show that if a solution exists, it should satisfy a set of Euler equations. A sufficient

condition was also found that can be used to check if the necessary solution actually results

in the minimal sum rate. Analysis and discussions with examples were provided to illustrate

the theoretical results.

In Chapter 4, we examined STAP systems for cases involving arrays with a massive number

of antennas. We studied orthogonality conditions for the spatial steering vectors for both

uniform linear and rectangular arrays, and we investigated the performance of a specific low-

complexity reduced-dimension separable STAP algorithm. The SINR difference between the

algorithm and the fully adaptive method is analyzed, and is found to converge to zero as

the number of antennas goes to infinity according to the scaling law O(N−2). We also used

random matrix theory to study the case where the covariance matrix is estimated using

secondary data, and we derived the scaling law for SINR as a function of the number of

training samples. Simulation results indicate the validity of the scaling laws, and effectively

illustrate how the performance of the simplified separable algorithm approaches the optimal

upper bound as the number of antennas grows.

In Chapter 5, we proposed a two-stage method for localizing a mobile terminal in scattering

and reflection NLOS environments based on the measurements at several MDs. With the

short-time constant velocity assumption in the first stage, an exact solution for the distance

between the scatterer and the MD is found for a single MD-TD pair, which can be used
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to estimate the position and velocity of the target. A nonlinear optimization method is

also suggested to improve the quality of TOA measurements. For the reflection case, a

one dimensional search method is proposed and we also show that auxiliary information

provided by at least two anchor points is necessary to remove ambiguity. The output of the

first stage is used as the initial estimation in the second stage, where the short-time constant

velocity assumption is relaxed and an EKF is used to track the subsequent movements of

the target. Compared to previous studies, only uplink measurements made by the MDs

are required to localize the target. Simulation results are provided to show the localization

performance of the methods. Areas of future work include using methods other than least

squares to overcome the effect of measurement error, and applying the two-stage idea to more

complicated environments like multi-hop and multi-reflection models, though more types of

measurements are possibly needed.

Besides the potential research directions of each area, some questions can be asked from

a more abstract point of view. For systems with layered structures like cellular communi-

cations, inter-layer resource allocation can be a problem of interest, because changing the

allocation of resources among different layers may have different impact on the overall sys-

tem performance, provided that the total resources available in the system are fixed. A even

more challenging question is how to do resource allocation simultaneously for systems with

totally different nature. For a world where technology fusion is the trend and new emerging

systems like cloud computing and internet of things are all unprecedented comprehensive

and complex in history, even partial answers to the question can be of great importance.
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[105] A. M. Tulino and S. Verdú. Random matrix theory and wireless communications,
volume 1. Now Publishers Inc, 2004.

[106] S. Tung. Multiterminal Rate-Distortion Theory. PhD thesis, Cornell University, School
of Elec. Eng., Ithaca, NY, 1978.

[107] J. Wang and D. Katabi. Dude, where’s my card?: RFID positioning that works
with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 51–62, New York, NY, USA, 2013.
ACM.

[108] X. Wang, Z. Wang, and B. O’Dea. A TOA-based location algorithm reducing the errors
due to non-line-of-sight (NLOS) propagation. Vehicular Technology, IEEE Transac-
tions on, 52(1):112 – 116, Jan. 2003.

[109] X. Wang and X.-D. Zhang. Linear transmission for rate optimization in MIMO broad-
cast channels. IEEE Trans. Wireless Commun., 9(10):3247–3257, 2010.

[110] J. Ward. Space-time adaptive processing for airborne radar. Technical Report 1015,
MIT Lincoln Laboratory, Lexington, MA, 1994.

[111] J. Ward. Space-time adaptive processing for airborne radar. In International Confer-
ence on Acoustics, Speech, and Signal Processing, volume 5, pages 2809–2812, 1995.

[112] H. Weingarten, Y. Steinberg, and S. Shamai. The capacity region of the Gaussian
MIMO broadcast channel. In Proc. Int. Symp. Information Theory ISIT 2004, 2004.

[113] J.-J. Xiao and Z.-Q. Luo. Optimal rate allocation for the vector Gaussian CEO prob-
lem. In Proc. 1st IEEE Int Computational Advances in Multi-Sensor Adaptive Pro-
cessing Workshop, pages 56–59, 2005.

[114] J.-J. Xiao and Z.-Q. Luo. Multiterminal source–channel communication over an or-
thogonal multiple-access channel. IEEE Trans. Inf. Theory, 53(9):3255–3264, 2007.

130



[115] A. Yamaguchi, M. Ogawa, T. Tamura, and T. Togawa. Monitoring behavior in the
home using positioning sensors. In Proceedings of the 20th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, volume 4, pages
1977–1979, 1998.

[116] H. Yamamoto and K. Itoh. Source coding theory for multiterminal communication
systems with a remote source. Trans. IECE Jpn., E63, no. 10:700–706, Oct. 1980.

[117] Y. Yang, V. Stankovic, Z. Xiong, and W. Zhao. Asymmetric code design for remote
multiterminal source coding. In Proc. Data Compression Conf DCC 2004, 2004.

[118] Y. Yang, V. Stankovic, Z. Xiong, and W. Zhao. On multiterminal source code design.
IEEE Trans. Inf. Theory, 54(5):2278–2302, 2008.

[119] Y. Yang, Y. Zhang, and Z. Xiong. The generalized quadratic Gaussian CEO problem:
New cases with tight rate region and applications. In Proc. (ISIT) Symp. IEEE Int
Information Theory, pages 21–25, 2010.

[120] E. Zehavi and A. Leshem. Alternative bargaining solutions for the interference channel.
In Proc. 3rd IEEE Int Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP) Workshop, pages 9–12, 2009.

[121] G. Zhang and H. Zhang. Adapative resource allocation for downlink OFDMA networks
using cooperative game theory. In Proc. 11th IEEE Singapore Int. Conf. Communica-
tion Systems ICCS 2008, pages 98–103, 2008.

[122] Z. Zhang, J. Shi, H.-H. Chen, M. Guizani, and P. Qiu. A cooperation strategy based on
Nash bargaining solution in cooperative relay networks. Vehicular Technology, IEEE
Transactions on, 57(4):2570 –2577, July 2008.

[123] Y. Zhao. Standardization of mobile phone positioning for 3G systems. IEEE Commun.
Mag., 40(7):108–116, 2002.

131



Appendix A

Proofs

A.1 Proof of Convergence for Theorem 2.1

Let {RG∗
k (β)}Kk=1 denote the optimal rate allocation for a given β. We need to show that

{RG∗
k (β)}Kk=1 actually converges to the KSBS as β → 1.

Proof. Let rk =
RG

k

Rmax
k

and substitute it into (2.10) to obtain

f({rk}Kk=1, β) =

K∑

k=1

log
[
rk +

β

K − 1

K∑

s=1,s 6=k
(1− rk)

]
= U. (A.1)

Let r∗k(β) denote user k’s rate when f({rk}Kk=1, β) achieves its optimum. Because the op-

timum is unique for β 6= 1, there exists a K-dimensional hyperplane containing the point

{r∗k(β)}Kk=1 that is tangent to the rate region boundary. The hyperplane’s equation is

K∑

k=1

∂f

∂rk

∣
∣
∣
rk=r

∗
k
(β)

(rk − r∗k(β)) = 0. (A.2)
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The derivatives can be directly calculated as

∂f

∂rk
=

1

rk +
β

K−1

∑K
s=1,s 6=k(1− rs)

+

K∑

i=1,i 6=k

− β
K−1

ri +
β

K−1

∑K
s=1,s 6=i(1− rs)

. (A.3)

Now we calculate the intersection point of the tangent hyperplane and the line segment from

the origin to the utopia point. Because rk =
RG

k

Rmax
k

is actually a normalized rate ratio, the

components of any point on the latter line should all be equal, i.e., ri = rj, ∀i, j. We use r

to represent this value, and thus the intersection point should satisfy

K∑

k=1

∂f

∂rk

∣
∣
∣
rk=r

∗
k
(β)

(r − r∗k(β)) = 0, (A.4)

and from (A.4) we can get a closed-form expression for r:

r =

∑K
k=1

∂f
∂rk

∣
∣
∣
rk=r

∗
k
(β)
r∗k(β)

∑K
k=1

∂f
∂rk

∣
∣
∣
rk=r

∗
k
(β)

. (A.5)

Since we assume the problem domain is convex and r is on the tangent hyperplane, it

resides outside the rate region. If we let r0 represent the intersection point of the rate

region boundary and the line segment from the origin to the utopia point, we can see that

0 ≤ r0 ≤ r. Substituting (A.5) into this inequality, after some mathematical manipulations

we have

(1− β)r0 ≤
K∑

k=1

[

r∗k(β)

r∗k(β) +
β

K−1

∑K
s=1,s 6=k(1− r∗s(β))

+
K∑

i=1,i 6=k

− β
K−1

r∗k(β)

r∗i (β) +
β

K−1

∑K
s=1,s 6=i(1− r∗s(β))

]

× 1
∑K

k=1
1

r∗
k
(β)+ β

K−1

∑K
s=1,s6=k(1−r∗s (β))

. (A.6)
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Let r∗ = r∗(β)|β=1. As β → 1, the RHS of (A.6) becomes

K∑

k=1

[

r∗k
r∗k +

1
K−1

∑K
s=1,s 6=k(1− r∗s)

+
K∑

i=1,i 6=k

− 1
K−1

r∗k

r∗i +
1

K−1

∑K
s=1,s 6=i(1− r∗s)

]

× 1
∑K

k=1
1

r∗
k
+ 1

K−1

∑K
s=1,s6=k(1−r∗s )

(A.7)

=
K

∑K
k=1

1
r∗
k
+ 1

K−1

∑K
s=1,s6=k(1−r∗s )

− 1 (A.8)

≤
∑K

k=1

[
r∗k +

1
K−1

∑K
s=1,s 6=k(1− r∗s)

]

K
− 1 = 0, (A.9)

where from (A.8) to (A.9) we have used the inequality

n
∑n

i=1
1
xi

≤
∑n

i=1 xi
n

.

In short we have

0 ≤ (1− β)r0 ≤
K

∑K
k=1

1

r∗
k
+ 1

K−1

∑K
s=1,s6=k(1−r∗s )

− 1 ≤ 0. (A.10)

This means
∑K

k=1
1

r∗
k
+ 1

K−1

∑K
s=1,s6=k(1−r∗s )

= K, where the equality is achievable only when

r∗i = r∗j , ∀i, j. In other words, r0 and r∗(β) coincides when β = 1. Therefore we have shown

that the optimum r∗(β) converges to the KSBS as β → 1.

A.2 Convexity of the Achievable Rate Region

In this appendix, we show that the K-user rate region for the MIMO-OFDMA problem

based on BD is convex. As shown in Section 2.5, every subcarrier is time-shared by all users.
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For the fixed-power time division scheme, it is well known that the closure of the convex hull

of all rate tuples is achievable, in which case the convexity of the rate region is obvious. But

in our case we assume a variable-power time division use of the subcarriers, so the convex

hull argument does not apply. Here we provide a proof that guarantees the convexity of the

rate region.

Theorem A.1. The achievable rate region of (2.22) is convex.

Proof. Let R(1) = (R
(1)
1 , R

(1)
2 , . . . , R

(1)
K ) and R(2) = (R

(2)
1 , R

(2)
2 , . . . , R

(2)
K ) be two points in the

rate region. According to the definition of a convex set, we need to prove θR(1)+(1− θ)R(2)

is also a point in the rate region for all θ ∈ [0, 1]. We can write the following:

θR(1) + (1− θ)R(2)

=

(

θ
N∑

n=1

I∑

i=1

ω
(1)
n,i

n
(1)
R∑

t=1

log2

(

1 +
σ2
1,n,i,tλ

(1)
1,n,i,t

ω
(1)
n,iN1,n

)

+

(1− θ)
N∑

n=1

I∑

i=1

ω
(2)
n,i

n
(1)
R∑

t=1

log2

(

1 +
σ2
1,n,i,tλ

(2)
1,n,i,t

ω
(2)
n,iN1,n

)

,

. . . ,

θ

N∑

n=1

I∑

i=1

ω
(1)
n,i

n
(K)
R∑

t=1

log2

(

1 +
σ2
K,n,i,tλ

(1)
K,n,i,t

ω
(1)
n,iNK,n

)

+

(1− θ)
N∑

n=1

I∑

i=1

ω
(2)
n,i

n
(K)
R∑

t=1

log2

(

1 +
σ2
K,n,i,tλ

(2)
K,n,i,t

ω
(2)
n,iNK,n

))

. (A.11)
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Let ω
(θ)
n,i = θω

(1)
n,i + (1− θ)ω(2)

n,i and

λ
(θ)
k,n,i,t =

[(

1 +
σ2
k,n,i,tλ

(1)
k,n,i,t

ω
(1)
n,iNk,n

)
θω

(1)
n,i

ω
(θ)
n,i ×

(

1 +
σ2
k,n,i,tλ

(2)
k,n,i,t

ω
(2)
n,iNk,n

)
(1−θ)ω

(2)
n,i

ω
(θ)
n,i ω

(θ)
n,iNk,n

σ2
k,n,i,t

− ω
(θ)
n,iNk,n

σ2
k,n,i,t

]

.

Here ω
(θ)
n,i and λ

(θ)
k,n,i,t serve as the new time and power allocation. Then (A.11) can be further

written as

θR(1) + (1− θ)R(2)

=

(
N∑

n=1

I∑

i=1

ω
(θ)
n,i

n
(1)
R∑

t=1

log2

{

1 + λ
(θ)
1,n,i,t

σ2
1,n,i,t

ω
(θ)
n,iN1,n

}

,

. . . ,

N∑

n=1

I∑

i=1

ω
(θ)
n,i

n
(K)
R∑

t=1

log2

{

1 + λ
(θ)
K,n,i,t

σ2
K,n,i,t

ω
(θ)
n,iNK,n

}
)

. (A.12)

Since
∑N

n=1

∑I
i=1 ωn,i ≤ 1, it is easy to show that

∑N
n=1

∑I
i=1 ω

(θ)
n,i ≤ 1, which means ω

(θ)
n,i

is also a valid time allocation. Now we need to prove that the new power allocation also

satisfies the power constraint. We start the proof by calculating the sum of the allocated
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powers:

N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

λ
(θ)
k,n,i,t

=
N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1







(

1 +
σ2
k,n,i,tλ

(1)
k,n,i,t

ω
(1)
n,iNk,n

)
θω

(1)
n,i

ω
(θ)
n,i ×

(

1 +
σ2
k,n,i,tλ

(2)
k,n,i,t

ω
(2)
n,iNk,n

)
(1−θ)ω

(2)
n,i

ω
(θ)
n,i ω

(θ)
n,iNk,n

σ2
k,n,i,t

− ω
(θ)
n,iNk,n

σ2
k,n,i,t







(A.13)

≤
N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

{[

θω
(1)
n,i

ω
(θ)
n,i

(

1 +
σ2
k,n,i,tλ

(1)
k,n,i,t

ω
(1)
n,iNk,n

)

+

(1− θ)ω(2)
n,i

ω
(θ)
n,i

(

1 +
σ2
k,n,i,tλ

(2)
k,n,i,t

ω
(2)
n,iNk,n

)]

ω
(θ)
n,iNk,n

σ2
k,n,i,t

−
ω
(θ)
n,iNk,n

σ2
k,n,i,t

}

(A.14)

=
N∑

n=1

I∑

i=1

∑

k∈ϕn,i

n
(k)
R∑

t=1

[
θλ

(1)
k,n,i,t + (1− θ)λ(2)k,n,i,t

]
(A.15)

≤θP + (1− θ)P = P, (A.16)

where (A.14) follows from the fact that xθy1−θ ≤ θx+ (1− θ)y if x, y > 0 and θ ∈ [0, 1].

In conclusion, θR(1) + (1 − θ)R(2) is also a point in the rate region and hence the region is

convex.

A.3 Proof of Theorem 3.1

Proof. Since ui ≥ ψi, i = 1, . . . , n, there exist real functions zi, i = 1, . . . , n such that we

can write ui = ψi + z2i for all i. Substituting ψi + z2i for ui into the functional optimization
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problem in Theorem 3.1, we end up with

min
z1,...,zn

∫ b

a

F (ω, z1, . . . , zn, z
′
1, . . . , z

′
n)dω (A.17)

s.t.

∫ b

a

G(ω, z1, . . . , zn, z
′
1, . . . , z

′
n)dω = D , (A.18)

where

F (ω, z1, . . . , zn, z
′
1, . . . , z

′
n) = f(ω, u1, . . . , un, u

′
1, . . . , u

′
n)|ui=ψi+z2i

(A.19)

and

G(ω, z1, . . . , zn, z
′
1, . . . , z

′
n) = g(ω, u1, . . . , un, u

′
1, . . . , u

′
n)|ui=ψi+z2i

. (A.20)

It is clear that solving this problem for zi is equivalent to finding the optimal ui.

The recast problem is an isoperimetric problem, which can be solved by using the method

of Lagrange multipliers. Letting λ denote the multiplier, we have the Lagrangian as

∫ b

a

F (ω, z1, . . . , zn, z
′
1, . . . , z

′
n)dω + λ

∫ b

a

G(ω, z1, . . . , zn, z
′
1, . . . , z

′
n)dω . (A.21)

Calculating the derivative of the Lagrangian with respect to zi for all i and setting them to

zero yields

Fzi −
d

dω
Fz′i + λ

(

Gzi −
d

dω
Gz′i

)

= 0. (A.22)

Since

Fzi = 2zifui + 2z′ifu′i (A.23)
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and

Fz′i = 2zifu′i, (A.24)

equation (A.22) becomes

zi

(

fui −
d

dω
fu′i + λ

(

gui −
d

dω
gu′i

))

= 0, (A.25)

which means either fui − d
dω
fu′i + λ

(
gui − d

dω
gu′i
)
= 0 or zi = 0. If zi = 0, ui should be equal

to ψi. Otherwise it should be the solution to

fui −
d

dω
fu′i + λ

(

gui −
d

dω
gu′i

)

= 0, i = 1, . . . , n, (A.26)

which are exactly the Euler equations. This concludes the proof.

A.4 Proof of Lemma 3.1

We shall prove Lemma 3.1 by calculating the second variation of (3.25). As indicated in [31],

if the second variation is strongly positive in a neighborhood of (u1, . . . , un), then (3.25) has

a local minimum at (u1, . . . , un).

Proof. All admissible ui, i = 1, . . . , n must satisfy the constraint

∫ b

a

g(ω, u1, . . . , un)dω = D.
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Utilizing this fact, we can rewrite (3.25) as

J(u1, . . . , un)

=

∫ b

a

f(ω, u1, . . . , un)dω

=

∫ b

a

[f(ω, u1, . . . , un) + λg(ω, u1, . . . , un)] dω − λD, (A.27)

where λ is the associated Lagrange multiplier. Let

ζ(ω, u1, . . . , un) = f(ω, u1, . . . , un) + λg(ω, u1, . . . , un), (A.28)

so that (A.27) can be written as

J(u1, . . . , un) =

∫ b

a

ζ(ω, u1, . . . , un)dω − λD. (A.29)

Suppose we give (u1, . . . , un) an admissible increment (h1, . . . , hn), where the selection of

(h1, . . . , hn) is arbitrary as long as at least one of the hi is not identically zero in ω. We

want to calculate the second variation of J(u1 + h1, . . . , un + hn), which can be done using

Taylor’s formula. After a series of mathematical simplifications, the second variation of J

can be written as

δ2J(u1, . . . , un) =
1

2

∫ b

a

hTZ(u1, . . . , un)h dω, (A.30)

where

h =









h1
...

hn









(A.31)
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and

Z(u1, . . . , un) =









∂2ζ
∂u21

· · · ∂2ζ
∂u1∂un

...
. . .

...

∂2ζ
∂un∂u1

· · · ∂2ζ
∂u2n









. (A.32)

The integrand of the second variation is a quadratic form in (h1, . . . , hn). Since the selec-

tion of (h1, . . . , hn) is arbitrary, the requirement that δ2J(u1, . . . , un) is strongly positive is

equivalent to requiring that Z(u1, . . . , un) is positive-definite. So the sufficient condition is

Z(u1, . . . , un) ≻ 0. (A.33)

Due to the fact that (3.25) does not contain the derivatives of ui, i = 1, . . . , n, in this

sufficiency proof we do not require hi, i = 1, . . . , n to be continuously differentiable. So the

local minimum guaranteed by Lemma 3.1 is not only a weak minimum but also a strong

minimum [31].

A.5 Proof of Theorem 3.2

Proof. First we appeal to the mathematical technique used in the proof of Theorem 3.1 to

recast the problem. Since ui ≥ ψi, i = 1, . . . , n, there exist real functions zi, i = 1, . . . , n

such that we can write ui = ψi + z2i for all i. Substituting ψi + z2i for ui into the functional
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optimization problem in Theorem 3.2, we end up with

min
z1,...,zn

∫ b

a

F (ω, z1, . . . , zn)dω (A.34)

s.t.

∫ b

a

G(ω, z1, . . . , zn)dω = D, (A.35)

where

F (ω, z1, . . . , zn) = f(ω, u1, . . . , un)|ui=ψi+z2i
, (A.36)

and

G(ω, z1, . . . , zn) = g(ω, u1, . . . , un)|ui=ψi+z2i
. (A.37)

Applying Lemma 3.1 to this recast problem, we know the sufficient condition is

Z(z1, . . . , zn) ≻ 0, (A.38)

where

Z(z1, . . . , zn) =









∂2ζ
∂z21

· · · ∂2ζ
∂z1∂zn

...
. . .

...

∂2ζ
∂zn∂z1

· · · ∂2ζ
∂z2n









(A.39)

ζ(ω, z1, . . . , zn) = F (ω, z1, . . . , zn) + λG(ω, z1, . . . , zn), (A.40)

and λ is the associated Lagrange multiplier.
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It is easy to show that for i = 1, . . . , n the first-order derivatives are

∂ζ

∂zi
= 2zifui + 2λzigui , (A.41)

and the second-order derivatives are

∂2ζ

∂z2i
= 2fui + 4z2i fuiui + 2λgui + 4λz2i guiui (A.42)

∂2ζ

∂zi∂zj
= 4zizjfuiuj + 4λzizjguiuj . (A.43)

Plugging (A.42) and (A.43) back into (A.39), we get

Z(z1, . . . , zn) =








2fu1 + 4z21fu1u1 + 2λgu1 + 4λz21gu1u1 · · · 4z1znfu1un + 4λz1zngu1un
...

. . .
...

4znz1funu1 + 4λznz1gunu1 · · · 2fun + 4z2nfunun + 2λgun + 4λz2ngunun









(A.44)

Based on Lemma 3.1, we know if (A.44) is positive-definite then (u1, . . . , un) is guaranteed

to be a local minimum. Since multiplication of a matrix by a non-negative constant does not

change the sign of its eigenvalues, it is equivalent to require (3.28) to be positive-definite.

In addition, from Theorem 3.1 we know

zi (fui + λgui) = 0, (A.45)

which means either zi = 0 or fui + λgui = 0. In the latter case, we can let zi be either

(ui − ψi)1/2 or −(ui − ψi)1/2 due to the fact ui = ψi + z2i . This completes the proof.
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A.6 Proof of Theorem 4.1

Proof. We follow the proofs in [24, 65, 94, 88, 93], though the details are somewhat different.

First, we rewrite the left hand side of (4.38) as

∣
∣aH

(
(x(z)P − zI)−1 − (A− zI)−1)

a
∣
∣

=
∣
∣aH (x(z)P − zI)−1 (A− x(z)P) (A− zI)−1

a
∣
∣ . (A.46)

Also define A(k) = A− 1
K
UHxkx

H
k U. Using Equation 2.1 in [93], we obtain

xHk U (A− zI)−1 = xHk U

(

A(k) − zI+
1

K
UHxkx

H
k U

)−1

=
xHk U

(
A(k) − zI

)−1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

. (A.47)

Based on (A.47), the product of A and (A− zI)−1 can be decomposed as

A (A− zI)−1 =
1

K

K∑

k=1

UHxkx
H
k U (A− zI)−1

=
1

K

K∑

k=1

UHxkx
H
k U

(
A(k) − zI

)−1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

.

Using the Sherman-Morrison formula, we know that

(A− zI)−1 =
(
A(k) − zI

)−1 −
1
K

(
A(k) − zI

)−1
UHxkx

H
k U

(
A(k) − zI

)−1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

,

so the following equation holds

(
A(k) − zI

)−1 − (A− zI)−1 =
1
K

(
A(k) − zI

)−1
UHxkx

H
k U

(
A(k) − zI

)−1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

. (A.48)
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With the help of these auxiliary equations, equation (A.46) can be rewritten as (A.49).

∣
∣
∣
∣
∣

1

K

K∑

k=1

aH (x(z)P − zI)−1
(

UHxkx
H
k U

(
A(k) − zI

)−1 −P
(
A(k) − zI

)−1
)

a

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

︸ ︷︷ ︸

(i)

+
1

K

K∑

k=1

aH (x(z)P− zI)−1
(

P
(
A(k) − zI

)−1 −P (A− zI)−1
)

a

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

︸ ︷︷ ︸

(ii)

+ aH (x(z)P − zI)−1

(

1

K

K∑

k=1

1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

− x(z)
)

P (A− zI)−1
a

︸ ︷︷ ︸

(iii)

∣
∣
∣
∣
∣
.

(A.49)

If the absolute values of (i), (ii) and (iii) converge to 0, then the validity of Theorem 4.1 can

be proved using the triangle inequality. We will prove the convergence for the three terms

individually below.

Convergence of (i)

The whitened version of the kth column of X is yk = Σ− 1
2xk. Thus matrix Y = [y1 . . . yK ]

can be written as Y = Σ− 1
2X. Therefore, the numerator in (i) can be rewritten as a function

of yk, i.e.,

aH (x(z)P − zI)−1
(

UHxkx
H
k U

(
A(k) − zI

)−1 −P
(
A(k) − zI

)−1
)

a

= aH (x(z)P − zI)−1
(

UHΣ
1
2yky

H
k Σ

1
2U
(
A(k) − zI

)−1 −P
(
A(k) − zI

)−1
)

a

= aH (x(z)P − zI)−1
UHΣ

1
2yky

H
k Σ

1
2U
(
A(k) − zI

)−1
a− aH (x(z)P − zI)−1

P
(
A(k) − zI

)−1
a

(a)
= yHk Σ

1
2U
(
A(k) − zI

)−1
aaH (x(z)P − zI)−1

UHΣ
1
2yk − aH (x(z)P − zI)−1

P
(
A(k) − zI

)−1
a,

(A.50)
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where (a) follows from the fact that tr (AB) = tr (BA).

We then apply Lemma 4 in [88], which says that as K →∞, almost surely

∣
∣
∣
∣
∣

1

K

K∑

k=1

(
yHk Ckyk − tr (Ck)

)

∣
∣
∣
∣
∣
−→ 0, (A.51)

if the entries of yk are i.i.d. and have zero mean and unit variance, and Ck does not depend

on yk. Define

Ck =
Σ

1
2U
(
A(k) − zI

)−1
aaH (x(z)P − zI)−1

UHΣ
1
2

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

, (A.52)

and note that

tr (Ck) =
aH (x(z)P − zI)−1

P
(
A(k) − zI

)−1
a

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

. (A.53)

Based on (A.50) it can be observed that the addend in (i) for k is equal to yHk Ckyk−tr (Ck),

so we can apply Lemma 4 and substituting (A.52) and (A.53) into (A.51) results in the

convergence of (i).

Convergence of (ii)

Appealing to Lemma A.2 in [87], we just need to show that for any given z the following

inequality holds:

max
1≤k≤K

E







∣
∣
∣
∣
∣
∣

aH (x(z)P − zI)−1
P
((

A(k) − zI
)−1 − (A− zI)−1

)

a

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

∣
∣
∣
∣
∣
∣

p




≤ C

K1+δ
,

where δ > 0, p ≥ 1 and C are constants. Based on (A.48), it is equivalent to show that the
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expectation of

∣
∣
∣
∣
∣
∣
∣
∣

aH (x(z)P − zI)−1
P

(
1
K (A(k)−zI)

−1
UHxkx

H
k
U(A(k)−zI)

−1

1+ 1
K
xH
k
U(A(k)−zI)

−1
UHxk

)

a

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

∣
∣
∣
∣
∣
∣
∣
∣

p

is bounded by C
K1+δ for all k. From Corollary 3.2 in [24], we know

∣
∣
∣
∣
∣

1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

∣
∣
∣
∣
∣

is always bounded by |z|/Im {z}. So we just need to prove the expectation of

∣
∣
∣a
H (x(z)P − zI)−1

P
(
A(k) − zI

)−1
UHxkx

H
k U

(
A(k) − zI

)−1
a

∣
∣
∣

p

(A.54)

is bounded.

For (A.54), we have

∣
∣
∣a
H (x(z)P − zI)−1

P
(
A(k) − zI

)−1
UHxkx

H
k U

(
A(k) − zI

)−1
a

∣
∣
∣

(a)

≤ ‖a‖2
∥
∥
∥(x(z)P − zI)−1

P
(
A(k) − zI

)−1
UHxkx

H
k U

(
A(k) − zI

)−1
∥
∥
∥
F

(b)

≤ ‖a‖2
∥
∥(x(z)P − zI)−1

P
∥
∥
F

∥
∥
∥

(
A(k) − zI

)−1
∥
∥
∥

2

F

∥
∥UHxkx

H
k U
∥
∥
F

(c)

≤ ‖a‖2
∥
∥(x(z)P − zI)−1

P
∥
∥
F

∥
∥
∥

(
A(k) − zI

)−1
∥
∥
∥

2

F

∣
∣xHk UUHxk

∣
∣

(d)

≤ 1

|Im {z}|2 ‖a‖
2
∥
∥(x(z)P − zI)−1

P
∥
∥
F

∣
∣xHk UUHxk

∣
∣ ,

where (a) follows from Cauchy-Schwarz inequality, (b) follows from the submultiplicative

property of Frobenius norm, (c) follows from the definition of Frobenius norm, and (d)

follows from the fact that
∥
∥
∥

(
A(k) − zI

)−1
∥
∥
∥
F
≤ 1

|Im{z}| . So the expectation of (A.54) is
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bounded by

1

|Im {z}|2 ‖a‖
2
∥
∥(x(z)P − zI)−1

P
∥
∥
F
E
{∣
∣xHk UUHxk

∣
∣
}
,

which is a limited value due to the fact that the rank of UUH is fixed to be M and the

empirical distribution function of its eigenvalues converges.

Expression for m(z)

In this step, we want to find m(z). The Stieltjes transform of random matrix A is

mFK
A

(z) =
1

M
tr

([
1

K
UHXXHU− zI

]−1
)

.

In order to find m(z), we start with the Stieltjes transform of B = 1
K
XXHUUH , which is

mFK
B

(z) =
1

L
tr

([
1

K
XXHUUH − zI

]−1
)

.

Let λn, n = 1, . . . , L be the eigenvalues of Σ
1
2UUHΣ

1
2 and c = L/K. The main theorem

of [93] leads to
∣
∣
∣mFK

B

(z)−mb(z)
∣
∣
∣ → 0 when L,K →∞ and c converges to a constant, and

mb(z) is the unique solution to

mb(z) =
1

L

L∑

n=1

1

λn (1− c− czmb(z))− z
. (A.55)

Note that we can rewrite (A.55) as

mb(z) =
1

L

{
M∑

n=1

1

λn (1− c− czmb(z))− z
+
L−M
−z

}

, (A.56)

due to the fact that matrix UUH has L−M zero eigenvalues.
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On the other hand, Lemma 3.1 in [24] shows the following relationship between mFK
A

(z) and

mFK
B

(z):

M

L
mFK

A

(z) = mFK
B

(z) +
L−M
L

1

z
. (A.57)

Combining (A.56) and (A.57), we obtain

∣
∣
∣
∣
∣
mFK

A

(z)− 1

M

{
M∑

n=1

1

λn (1− c− czmb(z))− z

}∣
∣
∣
∣
∣
−→ 0. (A.58)

Define

m(z) =
L

M
mb(z) +

L−M
M

1

z
, (A.59)

and thus we have

1

M

{
M∑

n=1

1

λn (1− c− czmb(z))− z

}

=
1

M

{
M∑

n=1

1

λn
(
1− c− cz

(
M
L
m(z)− L−M

L
1
z

))
− z

}

=
1

M

{
M∑

n=1

1

λn
(
1− M

K
− M

K
zm(z)

)
− z

}

. (A.60)

From (A.56), (A.58), (A.59), and (A.60), we can conclude that

∣
∣
∣mFK

A

(z)−m(z)
∣
∣
∣ −→ 0,
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and m(z) is the unique solution to

m(z) =
1

M

{
M∑

n=1

1

λn
(
1− M

K
− M

K
zm(z)

)
− z

}

.

Note that the non-zero λn, n = 1, . . . ,M are also the eigenvalues of UHΣU.

Convergence of (iii)

The proof of the convergence of (iii) is similar to those in [24, 65]. For completeness we

briefly write the procedure here. For (iii) we want to show

∣
∣
∣
∣
∣

1

K

K∑

k=1

1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

− x(z)
∣
∣
∣
∣
∣
−→ 0. (A.61)

We introduce Z = 1√
K
UHX, such that A = ZZH . Matrix Z can be rewritten as

Z =

[

z1 Z(1)

]

,

where z1 is the first column of Z, and Z(1) refers to the remaining part of Z. So we have

1

K

K∑

k=1

1

1 + 1
K
xHk U

(
A(k) − zI

)−1
UHxk

=
1

K

K∑

k=1

1

1 + zHk

(

Z(k)Z
H
(k) − zI

)−1

zk

.

The proof of the equality in (A.61) can be made by calculating the inverse of
(
ZHZ− zI

)

twice in different ways and then equating them. On one hand, the inverse can be written as

(
ZHZ− zI

)−1
=











zH1

ZH(1)






[

z1 Z(1)

]

− zI






−1

=






zH1 z1 − z zH1 Z(1)

ZH(1)z1 ZH(1)Z(1) − zI






−1

,
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so the top left element of
(
ZHZ− zI

)−1
is

(

zH1 z1 − z − zH1 Z(1)

(
ZH(1)Z(1) − zI

)−1
ZH(1)z1

)−1

=

(

−z + zH1

(

I− −1
z
Z(1)

(−1
z
ZH(1)Z(1) + I

)−1

ZH(1)

)

z1

)−1

(a)
=
(

−z − zzH1
(
Z(1)Z

H
(1) − zI

)−1
z1

)−1

=− 1

z

1

1 + zH1

(

Z(1)Z
H
(1) − zI

)−1

z1

, (A.62)

where (a) follows from the matrix inversion lemma. By rearranging the columns and rows of
(
ZHZ− zI

)−1
, the conclusion in (A.62) can be extended to the kth diagonal element; i.e.,

the kth diagonal element of
(
ZHZ− zI

)−1
is equal to

−1
z

1

1 + zHk

(

Z(k)Z
H
(k) − zI

)−1

zk

. (A.63)

On the other hand, the inverse of
(
ZHZ− zI

)
can be computed in an alternate way. By

directly applying the matrix inversion lemma we obtain

(
ZHZ− zI

)−1
= −1

z

(

I− ZH
(
ZZH − zI

)−1
Z
)

. (A.64)

Clearly, the kth diagonal element of (A.64) is

−1
z

(

1− zHk
(
ZZH − zI

)−1
zk

)

. (A.65)

By equating (A.63) and (A.65), we have

1

1 + zHk

(

Z(k)Z
H
(k) − zI

)−1

zk

= 1− zHk
(
ZZH − zI

)−1
zk . (A.66)

151



Thus, the trace of − 1
K
z
(
ZHZ− zI

)−1
is equal to

1

K

K∑

k=1

1

1 + zHk

(

Z(k)Z
H
(k) − zI

)−1

zk

=
1

K

K∑

k=1

(

1− zHk
(
ZZH − zI

)−1
zk

)

=1− 1

K
tr
(
(A− zI)−1

A
)

=1− 1

K
tr
(
(A− zI)−1 (A− zI + zI)

)

=1− M

K
− 1

K
tr
(
(A− zI)−1 (zI)

)

=1− M

K
− M

K
zmFK

A

(z),

which converges to x(z) due to the result
∣
∣
∣mFK

A

(z)−m(z)
∣
∣
∣→ 0 obtained previously.
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