
UCLA
UCLA Previously Published Works

Title
In-context operator learning with data prompts for differential equation problems.

Permalink
https://escholarship.org/uc/item/9b80d5p1

Journal
Proceedings of the National Academy of Sciences of the United States of America,
120(39)

Authors
Yang, Liu
Liu, Siting
Osher, Stanley
et al.

Publication Date
2023-09-26

DOI
10.1073/pnas.2310142120

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b80d5p1
https://escholarship.org/uc/item/9b80d5p1#author
https://escholarship.org
http://www.cdlib.org/

RESEARCH ARTICLE APPLIED MATHEMATICS

In-context operator learning with data prompts for differential
equation problems
Liu Yanga ID , Siting Liua,1 ID , Tingwei Menga,1 ID , and Stanley J. Oshera,2 ID

Contributed by Stanley J. Osher; received June 16, 2023; accepted August 12, 2023; reviewed by Weinan E and Andrew M. Stuart

This paper introduces the paradigm of “in-context operator learning” and the
corresponding model “In-Context Operator Networks” to simultaneously learn
operators from the prompted data and apply it to new questions during the inference
stage, without any weight update. Existing methods are limited to using a neural
network to approximate a specific equation solution or a specific operator, requiring
retraining when switching to a new problem with different equations. By training
a single neural network as an operator learner, rather than a solution/operator
approximator, we can not only get rid of retraining (even fine-tuning) the neural
network for new problems but also leverage the commonalities shared across operators
so that only a few examples in the prompt are needed when learning a new operator. Our
numerical results show the capability of a single neural network as a few-shot operator
learner for a diversified type of differential equation problems, including forward and
inverse problems of ordinary differential equations, partial differential equations, and
mean-field control problems, and also show that it can generalize its learning capability
to operators beyond the training distribution.

operator learning | meta-learning | in-context learning | differential equation | artificial intelligence

The development of neural networks has brought a significant impact on solving
differential equation problems. We refer the readers to ref. 1 for the recent advancement
in this topic.

One typical approach aims to directly approximate the solution given a specific
problem. Using deep learning to solve partial differential equations (PDEs) was first
introduced in ref. 2 for high-dimensional parabolic equations, and further in ref. 3. The
deep Galerkin method (4) imposes constraints on the neural networks to satisfy the
prescribed differential equations and boundary conditions. The deep Ritz method (5)
utilizes the variational form of PDEs and can be used for solving PDEs that can
be transformed into equivalent energy minimization problems. The Physics-Informed
Neural Networks (PINNs) (6) propose a deep neural network method for solving both
forward and inverse problems by integrating both data and differential equations in
the loss function. Weak Adversarial Network (7) leverages the weak form of PDEs by
parameterizing the weak solution and the test function as the primal and adversarial
networks, respectively. Ref. 8 solves high-dimensional mean-field game problems by
encoding both Lagrangian and Eulerian viewpoints in neural network parameterization.
APAC-net (9) proposes a generative adversarial network style method that utilizes the
primal-dual formulation for solving mean-field game problems.

Despite their success, the above methods are designed to solve problems with a specific
differential equation. The neural network needs to be trained again when the terms in the
equation or the initial/boundary conditions change. While transfer learning techniques
can be employed to mitigate training costs by fine-tuning pretrained neural networks
(10–19), they may not be adequate when there are substantial changes to the target
function.

Later, efforts have been made to approximate the solution operator for a differential
equation with different parameters or initial/boundary conditions. Early in refs. 20 and
21, shallow neural networks are used to approximate nonlinear operators. In ref. 22, the
authors propose solving parametric PDE problems with deep neural networks. Ref. 23
introduces a Bayesian approach using deep convolutional encoder–decoder networks for
uncertainty quantification and propagation in problems governed by stochastic PDEs.
PDE-Net (24) utilizes convolution kernels to learn differential operators, allowing it
to unveil the evolution PDE model from data, and make forward predictions with the
learned solution map. Deep Operator Network (DeepONet) (25, 26) designed a neural
network architecture to approximate the solution operator which maps the parameters or
the initial/boundary conditions to the solutions. Fourier Neural Operator (FNO) (27, 28)
utilizes the integral kernel in Fourier space to learn the solution operator. In ref. 29, the

Significance

This paper presents In-Context
Operator Networks (ICON), a
neural network approach that can
learn new operators from
prompted data during the
inference stage without requiring
any weight updates. Unlike
existing methods that are limited
to approximating specific
equation solutions or operators
and necessitate retraining for
new problems, ICON trains a
single neural network as an
operator learner, eliminating the
need for retraining or fine-tuning
when encountering different
problems. Numerical results
demonstrate the efficacy of ICON
in solving various types of
differential equation problems
and generalizing to operators
beyond the training distribution.
The proposed approach draws
inspiration from successful
in-context learning techniques
used in natural language
processing and has implications
for artificial general intelligence in
physical systems.

Author contributions: L.Y., S.L., T.M., and S.J.O. designed
research; L.Y., S.L., and T.M. performed research; L.Y.,
S.L., and T.M. analyzed data; and L.Y., S.L., T.M., and S.J.O.
wrote the paper.

Reviewers: W.E., Peking University; and A.M.S., California
Institute of Technology.

The authors declare no competing interest.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1S.L. and T.M. contributed equally to this work.
2To whom correspondence may be addressed. Email:
sjo@math.ucla.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2310142120/-/DCSupplemental.

Published September 19, 2023.

PNAS 2023 Vol. 120 No. 39 e2310142120 https://doi.org/10.1073/pnas.2310142120 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2310142120&domain=pdf&date_stamp=2023-09-16
https://orcid.org/0000-0002-7476-9168
https://orcid.org/0000-0003-2769-2521
https://orcid.org/0000-0001-7467-601X
https://orcid.org/0000-0002-7900-4658
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sjo@math.ucla.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310142120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310142120/-/DCSupplemental

authors propose a data-driven framework for approximating
input–output maps between infinite-dimensional spaces for
parametric PDEs, motivated by neural networks and model
reduction. Physics-Informed Neural Operators (30) combines
data and PDE constraints at different resolutions to learn
solution operators for parametric PDEs. Other related work
includes (31–35).

The above methods have successfully demonstrated the capa-
bility of neural networks in approximating solution operators.
However, in these methods, one neural network is limited
to approximating one operator. Even a minor change in the
differential equation can cause a shift in the solution operator. For
example, in the case of learning a solution operator mapping from
the diffusion coefficient to the solution of a Poisson equation,
the solution operator changes if the source term (which is not
designed as a part of the operator input) changes, or a new term
is introduced to the equation. Consequently, the neural network
must be retrained, at least fine-tuned (30, 33–39), to approximate
the new operator.

We argue that there are commonalities shared across various
solution operators. By using a single neural network with a single
set of weights to learn various solution operators, we can not only
get rid of retraining (even fine-tuning) the neural network, but
also leverage such commonalities so that fewer data are needed
when learning a new operator.

If we view learning one solution operator as one task, then we
are now targeting solving multiple differential-equation-related
tasks with a single neural network. Our expectation for this neural
network goes beyond simply learning a specific operator. Rather,
we expect it to acquire the ability to “learn an operator from data”
and apply the newly learned operator to new problems.

Such ability to learn and apply new operators might be a
very important part of artificial general intelligence (AGI). By
observing the inputs and outputs of a physical system, a human
could learn the underlying operator mapping inputs to outputs,
and control the system according to their goals. For example, a
motorcyclist can quickly adapt to a new motorcycle; a kayaker
can quickly adapt to a new kayak or varying water conditions. If
a human has expertise in both sports, they may be able to master
jet skiing at their first few attempts. We expect a robot with AGI
able to adapt to new environments and tasks, just as a human
would.

The paradigm of “learning to learn,” or meta-learning, has
achieved great success in the recent development of artificial
intelligence. In natural language processing (NLP), in-context
learning introduced in GPT-2 (40) and further scaled up in
GPT-3 (41) has demonstrated the capability of large language
models as few-shot learners. Here in-context learning refers to a
learning paradigm where a generative language model performs
a given task specified by the prompted “context”, including task
descriptions and a few examples related to that task. We refer
the readers to ref. 42 for recent progress of in-context learning.
Before in-context learning, NLP tasks are mainly dominated
by the BERT-style pretraining plus fine-tuning paradigm (43),
where a language model is pretrained to generate sentence
embeddings and then fine-tuned for specific downstream tasks,
typically with additional task-specific layers that map the sentence
embeddings to the desired output. In-context learning gets rid of
the limitations of the previous BERT-style pretraining plus fine-
tuning paradigm including 1) the need to fine-tune the neural
network with a relatively large dataset for every new task, 2)
the potential to overfit during fine-tuning which leads to poor
out-of-distribution generalization, and 3) the lack of ability to
seamlessly switch between or mix together multiple skills.

Condition QoI Condition QoI Condition PredictionQuery

Condition QoI Condition QoI Condition Prediction

Prompt

Unknown operator 1

hidden ODE:

Condition QoI Condition QoI Condition Prediction

Training

In-Context Operator Learning

Inference

Example Example Question

Question

Question

Unknown operator 2

hidden PDE:

Unknown operator

hidden PDE:

Learning new operator without weight updates

Example Example

Example Example

ICON
Model

Query

ICON
Model

Query

ICON
Model

In-Context Operator Learning

In-Context Operator Learning

Translate
English to
French:

Task Description Examples Question

loutre de mer girafe peluche

In-Context Learning for Natural Language Processing

Prompt

sea otter => plush girafe =>
cheese =>

Generative
Language

Model

B

A

Fig. 1. Illustration and comparison of (A) In-Context Operator Networks
(ICON) for operator learning and (B) in-context learning for NLP.

In this paper, we adapt and extend the idea of in-context
learning to learn operators for differential equation problems.

We refer to the inputs of the operators as “conditions,” and the
operator outputs as “quantities of interest (QoIs).” An “example”
consists of one pair of condition and QoI. In the previous
paradigm of operator learning, the neural network is trained
on examples that share the same operator. During the inference
stage, it takes a new condition as input and predicts the QoI
corresponding to the learned operator. In this paper, during the
inference stage, we instead have the trained neural network taking
the examples and a new condition (namely “question condition”)
as input, and simultaneously completing the following two jobs:
1) learn the operator from examples, 2) apply the learned operator
to the question condition and predict the corresponding QoI. We
emphasize that there are no weight updates during the inference
stage. We name the proposed paradigm as “in-context operator
learning,” and the corresponding model as “In-Context Operator
Networks,” or “ICON” in short.

Fig. 1A depicts the training and inference process of an ICON
model. Parallel to this, Fig. 1B portrays an example of in-
context learning for NLP, derived from ref. 41.* The analogy
between in-context learning for NLP and in-context operator
learning for scientific machine learning is clear. We embody
the spirit of in-context learning by specifying operators in the
prompted examples, rather than embedding specific operators
into the neural network weights. In fact, the weights merely
encapsulate the commonalities shared across operators, as well as
the capacity to learn operators dynamically. As a result, in-context

* In ref. 41, “cheese =>” was designated as a “prompt.” However, more recent literature
often uses “prompt” to denote the natural language input provided to language mod-
els (44, 45) In alignment with this updated usage, we refer to “cheese =>” as a “question”
to ensure clarity.

2 of 10 https://doi.org/10.1073/pnas.2310142120 pnas.org

operator learning exhibits several superior traits, including 1) the
ability to learn new operators without fine-tuning, 2) reduced
data requirements for learning a new operator, and 3) strong
generalization to operators out of the training distribution.

It is important to note that extra efforts are required to
adapt in-context learning to operator learning. A distinguishing
feature of in-context operator learning is that the inputs and
outputs are continuous functions, as opposed to the discrete
tokens used in NLP. To overcome this challenge, we employ a
flexible and universal approach by expressing these functions as
sets of key-value pairs, where the keys represent function inputs,
and the values correspond to the respective function outputs.
These key-value pairs are packed into “data prompts,” serving as
inputs for ICON models, analogous to the way natural language
prompts are used in language models. We also adopt a customized
transformer encoder–decoder architecture (46), ensuring that 1)
the number of examples is flexible, 2) the number and choice
of key-value pairs for each condition/QoI function are flexible,
3) the learning process is invariant to the permutation of input
key-value pairs, 4) the prediction of question QoI function is
not limited to a preset collection of inputs but is applicable to
any inputs, and 5) the prediction of question QoI function for
different inputs can be performed in parallel. We will discuss the
details in Problem Setup and Methodology.

There have been other works that use generative language
models to solve science and mathematics-related tasks. For
example, refs. 47 and 48 centers on mathematical reasoning and
science question-answering tasks that combine textual, image,
and tabular data in prompts. MyCrunchGPT (49) serves as
an integration tool for various stages of scientific machine
learning, utilizing the capability of ChatGPT to orchestrate the
workflow in response to user prompts. The execution of machine
learning tasks still necessitates the use of distinct methodologies
such as PINNs, DeepONets, etc. In these works, although the
tasks are related to science and mathematics, the focus of in-
context learning is not on directly performing numerical scientific
computations, but primarily applied to language models that
carry out NLP tasks. Meta-learning is also used in refs. 50–52,
where the task similarities are leveraged to boost the performance
in new PDE tasks. However, in these works, it is inevitable that
neural networks require fine-tuning when faced with new tasks.
In this paper, we attempt to adapt the paradigm of in-context
learning for numerical differential equation problems.

The remaining parts of the paper are organized as follows. In
the next section, we introduce the problem setup of in-context
operator learning. The detailed methodology of ICON is then
presented, followed by the experimental results that demonstrate
the capability of ICON in learning operators from examples
and applying to question conditions during the inference stage.
Moreover, we make discussions on several topics that we believe
will enhance the reader’s comprehension of the proposed method.
Finally, we conclude the paper and discuss the limitations and
future work.

Problem Setup

In this section, we introduce the problem setup of in-context
operator learning.

An operator is defined as a mapping that takes either a single
input function or a tuple of input functions and produces an
output function. In this paper, we refer to the inputs of the
operators as the “conditions,” and the operator outputs as the
“QoIs.”

Take a one-dimensional ODE problem u′(t) = �u(t) +
�c(t) + as an example. Given the parameters �, �, ∈ R,
the forward problem learns the solution operator that maps from
the control function c : [0, T] → R and the initial condition
u(0), to the solution function u : [0, T] → R. In this case,
c : [0, T]→ R and the initial condition u(0) form the condition,
and u : [0, T]→ R is the QoI. Note that while u(0) is a number,
we can still view it as a function on the domain {0} to fit into the
framework. Conversely, in the inverse problem, we aim to learn
the operator mapping from the solution function u : [0, T]→ R
to the control function c : [0, T] → R. In this scenario, the
function u is considered as the condition, and the function c is
the QoI.

In practical scenarios, it is often challenging to obtain an
analytical representation of conditions and QoIs. Instead, we
typically rely on observations or data collected from the system.
To address this, we utilize a flexible and generalizable approach
by representing these entities using key-value pairs, where keys
are discrete function inputs, and values are the corresponding
outputs of the function. Continuing with the example of the one-
dimensional ODE problem introduced above, to represent the
function c : [0, T]→ R, we consider the discrete time instances
as the keys, and the corresponding function values of c as the
associated values. We use the key 0 and value u(0) to represent
the initial condition of u. It is important to note that the number
of key-value pairs is arbitrary, the choice of keys is flexible, and
they can vary across different functions.

The training data can be represented as {{(condji,
QoIji)}

Ni
j=1}

M
i=1, where each i corresponds to a different operator.

For a given i, {(condji,QoIji)}
Ni
j=1 represents a set ofNi condition-

QoI pairs that share the same operator. In our setup, it is
important to emphasize that the operators here are completely
unknown, even in terms of the corresponding differential
equation types. This aspect is aligned with many real-world
scenarios where either the parameters of the governing equations
are missing or the equations themselves need to be constructed
from scratch.

During the inference stage, we are presented with pairs of
conditions and QoIs, referred to as “examples,” that also share
an unknown operator. Additionally, we are given a condition
called the “question condition.” The objective is to predict the
QoI corresponding to the question condition and the unknown
operator. Note that the unknown operator in the inference stage
may differ from the operators present in the training dataset,
potentially even being out of distribution.

Methodology

In this section, we will provide a comprehensive overview of the
method. Initially, we will explain the process of constructing
neural network inputs, which includes prompts and queries.
Subsequently, we will look into the neural network architecture.
Furthermore, we will discuss the data preparation and training
process. Finally, we will elaborate on the inference process.

Prompt and Query. The model is expected to learn the operator
from multiple examples, each consisting of a pair of condition and
QoI, and apply it to the question condition, making predictions
on the question QoI. As the question QoI is a function, it is also
necessary to specify where the model should make evaluations,
i.e., the keys for the question QoI, which is referred to as the
“queries” (each query is a vector). We group the examples and

PNAS 2023 Vol. 120 No. 39 e2310142120 https://doi.org/10.1073/pnas.2310142120 3 of 10

Table 1. The matrix representation of the j-th example in solving the one-dimensional forward ODE problem (left)
and k-th example in solving the one-dimensional inverse ODE problem (right)

In the left table, the condition consists of c : [0, T] → R and the initial condition u(0); and the QoI is u : [0, T] → R. We use nj − 1 key-value pairs to represent c, one key-value pair for
u(0), and mj key-value pairs for u. Note that in the first row, we use the indicator 0 and 1 to distinguish different terms in the condition, i.e., c and u(0). The third row is populated with
zeros since there are no spatial coordinates. ej is the column index vector. In the right table, the condition is the function u : [0, T] → R represented by nk key-value pairs, the QoI is
c : [0, T]→ R represented by mk key-value pairs. All the values in the first row are 0 because we only have one term u in condition and one term c in QoI. Note that here in each table, the
matrices only represent one example. The full prompt is the concatenation of examples and the question condition along the row.

question condition as “prompts,” which together with the queries
are the neural network inputs. The output of the neural network
represents the prediction for the values of the question QoI,
corresponding to the input queries.

Although alternative approaches exist, in this paper, we choose
a simple method for constructing the prompts, wherein we
concatenate the examples and the question condition to create
a matrix representation. Each column of the matrix represents a
key-value pair. Given that we will be using transformers (46), the
order of columns in the prompt will not affect the outcome.
Therefore, in order to distinguish the key-value pairs from
different conditions and QoIs, we concatenate the key and
value in each column with an index column vector. Suppose
the maximum capacity of examples is Jm, for simplicity, we use
index vector ej for the condition in j-th example, and−ej for the
QoI in j-th example, where ej is the one-hot column vector of
size Jm+1 with the j-th component to be 1. The index vector for
the question condition is eJm+1. We remark that for a large Jm, a
more compact representation, such as the trigonometric position
embedding used in NLP tasks, can be applied.

In order to cater to operators with varying numbers of input
condition functions, and functions from different spaces, we
restructure the keys in prompts and queries. Specifically, we assign
the first row of the prompts/queries to indicate different function
terms, the second row to denote temporal coordinates, the third
row for the first spatial coordinate, and so forth. If certain entries
are not required, we will populate them with zeros.

In Table 1, we show the matrix representation of one example
used in the one-dimensional forward and inverse ODE problems
aforementioned in Problem Setup. The prompt is simply the con-
catenation of examples and the question condition along the row.

In the end, we remark that the number of examples and
key-value pairs may differ across various prompts. Transformers
are specifically designed to handle inputs of different lengths.
However, for the purpose of batching, we still use zero-padding to
ensure consistent lengths. Such padding, along with appropriate
masks that effectively ignore these zero paddings, has no impact
on mathematical calculations.

Neural Network Architecture. We employ a customized trans-
former encoder–decoder (46) neural network architecture in our
method, shown in Fig. 2.

Before entering the encoder, the columns of the prompt
undergo an adjustment in their dimensionality facilitated by a
shared linear layer and layer normalization (53). The architectural

design of the transformer encoder adheres to the model proposed
by ref. 46. Specifically, it comprises a stack of identical layers,
each having two sublayers: a multihead self-attention mechanism,
and a shallow fully connected feed-forward network with GELU
activation (54). Each of these sublayers is wrapped by a residual
connection (55), followed by layer normalization. The encoder
merges information from all examples and the question condition
within the prompt, generating an output matrix that represents
an embedding of the operator and the question condition.

The decoder also comprises a stack of identical layers, each
having a multihead cross-attention mechanism and a shallow
fully connected feed-forward network with GELU activation.
Similar to the encoder, each sublayer is wrapped by a residual
connection, followed by layer normalization. Unlike the model
in ref. 46, the self-attention layers are removed from the decode.
We will discuss this later. The encoder’s output embedding, after
layer normalization, is utilized as the key and value inputs for
the cross-attention mechanism within the decoder. Along with
the embedding, the queries, i.e., keys of question QoI, are also
injected into the decoder after a shared linear layer and layer
normalization. They repeatedly pass through the cross-attention
sublayers (serving as queries) and the feed-forward networks,
eventually forming the decoder’s output. In the end, an extra

Example 1
Condition

Example 1
QoI

Example J
Condition

Example J
QoI

Question
Condition

Prompt

Transformer
Encoder

Operator and Question Embedding

Queries
Keys of Question QoI

Prediction
Value of Question QoI

Key

Value

Index

Condition

Quantity of
Interest (QoI)

Transformer
Decoder

Fig. 2. The neural network architecture for ICON.

4 of 10 https://doi.org/10.1073/pnas.2310142120 pnas.org

linear layer is applied to the decoder’s output to match its
dimensionality to that of the question QoI’s value.

The transformer encoder–decoder utilized in this architecture
shares similarities with the one used in computer vision for
object detection tasks (56). In that case, the decoder takes
the image embedding generated by the encoder and “object
queries” as inputs, and each output from the decoder is then
forwarded to a common feed-forward network that predicts the
detection.

The transformer architecture plays a critical role in facilitating
the adaptation of in-context operator learning. Its ability to
process input sequences of any length and maintain invariance
to the sequence permutation, aligns perfectly with the key-value
representation for each condition/QoI function. First, it allows
for variability in the number of examples. Second, it provides
flexibility in the number and choice of key-value pairs for each
condition/QoI function. Last, it ensures that rearranging the
order of the key-value pairs does not influence the outcomes.
Moreover, it is important to note that the self-attention layers
are removed in our decoder. Therefore, with a fixed prompt, if
we input n query vectors (or n keys of question QoI) into the
model and receive n corresponding values as output, each value is
exclusively determined by its corresponding query, unaffected by
the others. Such independence enables us to design an arbitrary
number of queries and make predictions in parallel, wherever we
wish to evaluate the question QoI function.

Algorithm 1: Data preparation.
for each type of problem do

Randomly generate M sets of parameters;
// Each set of parameters defines an operator
for each set of parameters do

Randomly generate N pairs of conditions and QoIs;
// These N pairs of conditions and QoIs share the same
operator

end
end

Data Preparation and Training. Before training the neural net-
work, we prepare data that contain the numerical solutions to
different kinds of differential equation problems. The details of
data generation are described in Algorithm 1.

In the training process, in each iteration, we randomly build a
batch of prompts, queries, and labels (ground truths) from data.
Note that different problems with different operators appear in
the same batch. The loss function is the mean squared error
(MSE) loss between the outputs of the neural network and
the labels. The details of the training process are described in
Algorithm 2.

Inference: Few-shot Learning without Weight Updates. After
the training, we use the trained neural network to make
predictions of the question QoI based on a few examples that
describe the operator, as well as the question condition.

During one forward pass, the neural network finishes the
following two tasks simultaneously: It learns the operator from
the examples, and applies the learned operator to the question
condition for predicting the question QoI. We emphasize that
the neural network does not update its weights during such a
forward pass. In other words, the trained neural network acts as a
few-shot operator learner, and the training stage can be perceived
as “learning to learn operators.”

Algorithm 2: The training and inference of ICON.
// Training stage:
for i = 1, 2, . . . , training steps do

for b = 1, 2, . . . , batch size do
Randomly select a type of problem and a set of parameters
from dataset;
Randomly set the number of examples J , and the number
of key-value pairs in each condition and QoI of the
examples and question;
From N pairs of conditions and QoIs, randomly select J
pairs as examples and one pair as the question;
Build a prompt matrix, query vectors, and the ground
truth using the selected examples and question;

end
Use the batched prompts, queries, and labels to calculate the
MSE loss and update the neural network parameters with
gradients;

end
// Inference stage:
Given a new system with an unknown operator, collect examples
and a question condition, and design the queries;
Construct the prompt using the examples and question condi-
tion;
Get the prediction of the question QoI using a forward pass of
the neural network.

Numerical Results

We designed 19 types of problems for training, each of which
has 1,000 sets of parameters, so 19 × 1,000 = 19,000 operators
in total. For each operator, we generate 100 condition-QoI pairs.
In other words, M = 1,000, N = 100 in Algorithm 1 and 2.

We randomly select one to five examples when building the
prompt during training. The number of key-value pairs in each
condition/QoI randomly ranges from 41 to 50. Hence, the
maximum prompt length is 550, consisting of five examples with
a cumulative length of 500 and an extra question condition of
50. The neural network used in this paper has about 30 million
parameters in total. Other details on configuration and training
are in SI Appendix.

Problems. We list all 19 types of problems, as well as the setups
for parameters and condition-QoI pairs in the data preparation
stage (Algorithm 1) in Table 2. As for the implementation of the
parameters, we present them in SI Appendix.

In-Distribution Operators. In this section, we show the testing
errors for each of the 19 types of problems, with the distributions
for parameters, conditions, and QoIs the same as in the training
stage, i.e., in-distribution operator learning. The number of key-
value pairs in each condition/QoI randomly ranges from 41 to
50, as in the training stage. By using different random seeds, we
ensure that the testing data are different from the training data
(although in the same distribution), and that each condition-QoI
pair only shows once, either as an example or a question, during
testing.

We show several in-context operator learning test cases in
Figs. 3 and 4.

In Fig. 5, we show relative errors with respect to the number of
examples in each prompt for all 19 problems listed in Table 2. For
each type of problem, we conduct 500 in-context learning cases,
corresponding to 100 different operators, i.e., five cases for each
operator. First, the absolute error is computed by averaging the

PNAS 2023 Vol. 120 No. 39 e2310142120 https://doi.org/10.1073/pnas.2310142120 5 of 10

https://www.pnas.org/lookup/doi/10.1073/pnas.2310142120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2310142120#supplementary-materials

Table 2. List of differential equation problems
Problem description Differential equations Parameters Conditions QoIs

1 Forward problem of ODE 1 d
dt u(t) = a1c(t) + a2 a1 , a2 u(0), c(t), t ∈ [0,1] u(t), t ∈ [0,1]

2 Inverse problem of ODE 1 for t ∈ [0,1] u(t), t ∈ [0,1] c(t), t ∈ [0,1]

3 Forward problem of ODE 2 d
dt u(t) = a1c(t)u(t) + a2 a1 , a2 u(0), c(t), t ∈ [0,1] u(t), t ∈ [0,1]

4 Inverse problem of ODE 2 for t ∈ [0,1] u(t), t ∈ [0,1] c(t), t ∈ [0,1]

5 Forward problem of ODE 3 d
dt u(t) = a1u(t) + a2c(t) + a3 a1 , a2 , a3 u(0), c(t), t ∈ [0,1] u(t), t ∈ [0,1]

6 Inverse problem of ODE 3 for t ∈ [0,1] u(t), t ∈ [0,1] c(t), t ∈ [0,1]

7 Forward damped oscillator u(t) = A sin(2�
T t + �)e−kt k u(t), t ∈ [0,0.5) u(t), t ∈ [0.5,1]

8 Inverse damped oscillator for t ∈ [0,1] u(t), t ∈ [0.5,1] u(t), t ∈ [0,0.5)

9 Forward Poisson equation d2
dx2 u(x) = c(x) u(0), u(1) c(x), x ∈ [0,1] u(x), x ∈ [0,1]

10 Inverse Poisson equation for x ∈ [0,1] u(x), x ∈ [0,1] c(x), x ∈ [0,1]

11 Forward linear reaction–diffusion −�a d2
dx2 u(x) + k(x)u(x) = c u(0), u(1), a, c k(x), x ∈ [0,1] u(x), x ∈ [0,1]

12 Inverse linear reaction–diffusion for x ∈ [0,1], � = 0.05 u(x), x ∈ [0,1] k(x), x ∈ [0,1]

13 Forward nonlinear reaction–diffusion −�a d2
dx2 u(x) + ku(x)3 = c(x) u(0), u(1), k, a c(x), x ∈ [0,1] u(x), x ∈ [0,1]

14 Inverse nonlinear reaction–diffusion for x ∈ [0,1], � = 0.1 u(x), x ∈ [0,1] c(x), x ∈ [0,1]

15 MFC g-parameter 1D→ 1D inf�,m
∫∫

c m
2

2� dxdt +
∫
g(x)�(1, x)dx g(x), x ∈ [0,1] �(t = 0, x), x ∈ [0,1] �(t = 1, x), x ∈ [0,1]

16 MFC g-parameter 1D→ 2D s.t. ∂t�(t, x) + ∇x ·m(t, x) = �Δx�(t, x) �(t = 0, x), x ∈ [0,1] �(t, x), t ∈ [0.5,1], x ∈ [0,1]

17 MFC g-parameter 2D→ 2D for t ∈ [0,1], x ∈ [0,1], �(t, x), t ∈ [0,0.5), x ∈ [0,1] �(t, x), t ∈ [0.5,1], x ∈ [0,1]

18 MFC �0-parameter 1D→ 1D c = 20,� = 0.02, �(t = 0, x) g(x), x ∈ [0,1] �(t = 1, x), x ∈ [0,1]

19 MFC �0-parameter 1D→ 2D Periodic spatial boundary condition x ∈ [0,1] �(t, x), t ∈ [0.5,1], x ∈ [0,1]

differences between the predicted question QoI values and their
corresponding ground truth values across all in-context learning
cases. Then, the relative error is obtained by dividing the absolute
error by the mean of the absolute values of the ground truth.

Across all 19 problems examined, it is evident from Fig. 5
that the average relative error remains below 6% even in the
cases with a single example. The majority of the average relative
falls around 2% when using five examples . This underscores
the capacity of a single neural network to effectively learn the
operator from examples and accurately predict the QoI for various
types of differential equation problems. Furthermore, the error
consistently decreases as the number of examples in each prompt
increases for all 19 problems.

Functions of Superresolution and Subresolution. Even though
the neural network is trained using 41 to 50 key-value pairs
to represent conditions and QoIs, it demonstrates the ability
to generalize to a significantly broader range of numbers
without requiring any fine-tuning, including more key-value

A B C

Fig. 3. Visualization of three in-context operator learning test cases for the
selected differential equation problems. The problem type is shown in the
title. The colored dotted line represents the hidden function of conditions
and QoIs in examples, while the gray dots represent the sampled key-value
pairs of the example conditions and QoIs used in the prompts. The blue dots
represent the key-value pairs in the question conditions, sampled from the
hidden function of the question condition in black solid lines. The neural
network prediction of the question QoI is illustrated with red dots. One can
see the consistency between the prediction and the ground truth (solid black
lines). (A) inverse problem of ODE 3, (B) forward damped oscillator problem,
and (C) inverse nonlinear reaction-diffusion problem.

pairs (superresolution) or less key-value pairs (subresolution).
FNO (27, 28) exhibits a similar capability, but in our paper, the
generalization is attributed to the adaptability of transformers
rather than the use of the integral kernel.

In Fig. 6, we examine the neural network on problem
17, i.e., MFC g-parameter 2D → 2D, with the number of
(randomly sampled) key-value pairs ranging from 10 to 500
in each condition/QoI. The average relative error is calculated
in the same way as for the in-distribution operators, except
that we make predictions and evaluate errors in the domain
(t, x) ∈ [0.5, 1]× [0, 1], by setting the queries as grid points over
the temporal-spatial domain. A case of three examples, and 50
key-value pairs is illustrated in Fig. 4.

Fig. 4. Visualization of the in-context operator learning test case for problem
17: mean-field control (MFC) g-parameter 2D → 2D. On the Top, we show
the three examples used when building the prompt, where the blue dots
represent the sampled key-value pairs of conditions; the red dot represents
the sampled key-value pairs of QoIs. At the Bottom, we present the question
condition (black dot indicates the condition), ground truth, prediction, and
the errors (difference between prediction and ground truth). Note here, we
obtain the prediction of the density profile for t ∈ [0.5,1], x ∈ [0,1] by setting
the queries as grid points over the temporal-spatial domain. The examples
and question conditions/QoIs share the same color bar.

6 of 10 https://doi.org/10.1073/pnas.2310142120 pnas.org

Fig. 5. Average relative in-distribution testing errors for all problems listed in Table 2. The error decreases with the number of examples in each prompt.

With a fixed number of examples in the prompt, the average
relative error decreases with an increasing number of key-value
pairs in each condition/QoIs, and finally converges below 1%,
even for the case of a single example, i.e., one-shot learning.

Out-of-Distribution Operators. In this section, we examine the
capability of the neural network in generalizing in-context
learning to operators beyond the training distribution. Here,
we emphasize that the term “out-of-distribution” does not refer
to the conditions, but rather to the operator itself being outside
the distribution of operators observed during training.

We conducted tests on four representative problem types,
i.e., problems 5, 6, 11, and 12 in Table 2. During the
training process of the forward and inverse problems of ODE
3, we randomly generated a1, a2, a3 from uniform distributions
U(−1, 1), U(0.5, 1.5) and U(−1, 1), respectively. Each triplet
(a1, a2, a3) defines an operator. Now, we expand the distribution
to a much larger region. In order to evaluate and provide
a visual depiction of the performance, we partitioned the
region [0.1, 3.0] × [−3, 3] into a grid. The performance was

Fig. 6. Average relative testing errors for problem 17, i.e., MFC g-parameter
2D → 2D, with the number of key-value pairs ranging from 10 to 500 in
each condition/QoI. As we increase the number of key-value pairs, the error
decreases and finally converges below 1%. Note that the neural network is
trained using 41 to 50 key-value pairs, represented by the narrow red region
in the figure.

then assessed by testing the (a2, a3) pair in each grid cell.
a1 continued to be randomly sampled from the distribution
U(−1, 1). Specifically, we conducted 500 in-context learning
cases in each cell, corresponding to 100 different operators and
five cases with different examples and questions for each operator.
Here, the number of examples is fixed as five, and the number of
key-value pairs is fixed as the maximum number used in training.
We calculate the relative error for each cell and depict the results
in Fig. 7 A and B.

A similar analysis was applied to the forward and inverse
problems of linear reaction–diffusion PDE problems. We divided
the region of (a, c) into a grid, while keeping the boundary
condition parameters u(0) and u(1) randomly sampled from
U(−1, 1). The average relative errors are shown in Fig. 7 C
and D.

It is evident that for all four problems, the neural network
demonstrated accurate prediction capabilities even with operator
parameters extending beyond the training region. This showcases
its strong generalization ability to learn and apply out-of-
distribution operators.

A B

C D

Fig. 7. Average relative error for out-of-distribution operators. The region of
operator parameters utilized during training is indicated by a black rectangle.
(A) forward problem of ODE 3, (B) inverse problem of ODE 3, (C) forward linear
reaction-diffusion problem, and (D) inverse linear reaction-diffusion problem.

PNAS 2023 Vol. 120 No. 39 e2310142120 https://doi.org/10.1073/pnas.2310142120 7 of 10

Generalization to Equations of New Forms. As discussed in
ref. 41, one of the advantages of in-context learning over
pretraining plus fine-tuning is the ability to mix together multiple
skills to solve new tasks. GPT-4 (57) even showed emergent
abilities or behaviors beyond human expectations.

Although the scale of our experiment is much smaller than
GPT-3 or GPT-4, we also observed preliminary evidence of the
neural network’s ability to learn and apply operators for equations
of new forms that were never seen in training data.

In particular, we designed a new ODE u′(t) = a1u(t)c(t) +
bu(t) + a2 over time interval [0, 1], by adding a linear term
bu(t) to ODE 2, which is borrowed from ODE 3. In the new
problem, b is also a parameter, and the operator is determined by
(a1, a2, b). We study the forward and inverse problems for the
new ODE and evaluate the performance of the neural network
with b ∈ [−0.3, 0.3]. The other setups, including the distribution
of a1, a2, and c(t), are the same as in problems 3 and 4 (forward
and inverse problem of ODE 2).

To study the influence of scaling up the training dataset, in
Fig. 8, we show the average relative errors of neural networks
trained with different training datasets. Here, we obtain the
average relative error for each b in the same way as we did for
each cell for the out-of-distribution operators. To reduce the
computational cost, in this section, we train the same neural
network as the one analyzed in other sections, but only with half
batch size, for 1/5 training steps. We remark that in these new
runs, the training datasets have different sizes, but the training
steps and batch size are consistent. In other words, the neural
network encounters the same number of prompts during training.
The expansion of dataset types simply enhances the diversity of
prompts.

We first train the neural network only with the datasets
involving ODE 2 (both forward and inverse problems). Then,
as a reference, we apply the “wrong” operator directly to the
question condition. The “wrong” operator is defined as the one
corresponding to ODE 2 u′(t) = a1u(t)c(t) + a2 instead of the
new ODE, with the same a1 and a2. Note that when b = 0, the
new ODE is reduced to ODE 2, thus the error is zero. As another
reference, we perform in-context operator learning with the same
neural network, but replace the examples in the prompts with
the ones corresponding to ODE 2, denoted as “wrong examples.”
We can see the neural network with “correct examples” performs
no better than both references, indicating that the network can
hardly generalize its capability of in-context operator learning
beyond ODE 2.

We then gradually add more ODE-related datasets to the
training data. It is encouraging to see that the error shows a
decreasing trend as the training dataset becomes larger. When
trained with all ODEs 1, 2, and 3, the neural network performs
significantly better than the one merely trained with ODE 2.
Such evidence shows the potential of the neural network to learn

Fig. 8. Average relative errors for the new ODE, with the same neural
network trained with different datasets. The error shows a decreasing trend
as the training dataset becomes larger.

and apply operators corresponding to previously unseen equation
forms, as we scale up the size and diversity of related training data.

In the end, we also show the results of the neural network
used in other sections, which is trained with the full dataset with
a larger batch size for a longer time. The performance on the
new ODE is not improved, which is reasonable, since the newly
added data on the damped oscillator, PDEs, and MFC problems
are not closely related to the new ODE.

Discussion

Why a Very Few Examples are Sufficient to Learn the Operator.
We try to answer this question in the following aspects.

First, we actually only need to learn the operator for a certain
distribution of question conditions, not for all possible question
conditions.

Second, the training operators and testing operators share
commonalities. For example, for ODE problems, u’s time deriva-
tive, u, and c satisfy the same equation at each time t. If the
neural network captures such shared property during training,
and also notices this property in the examples during inference,
it only needs to identify the ODE, for which a few examples are
sufficient.

Last, the operators in this paper are rather simple and limited
to a small family, hence easy to identify with a few examples. It is
likely that for a larger family of operators in training and testing,
in-context operator learning requires more examples (especially
for those complicated operators), as well as a larger neural network
with more computation resources.

Differentiate Roles of Fine-Tuning. The fine-tuning approach is
used in multiple ways in the field of NLP and scientific machine
learning. It might be important to differentiate between various
roles of fine-tuning.

The BERT-style (43) pretraining followed by the fine-tuning
paradigm in NLP is one example. This strategy begins with
pretraining a BERT-style neural network on a large-scale corpus
to generate sentence embeddings. Following pretraining, the
model is fine-tuned on specific downstream tasks, typically with
additional task-specific layers that map the sentence embeddings
to the desired output. The pretrained model handles a particularly
challenging yet common aspect of various NLP tasks—creating
a good embedding of the sentence, which significantly simplifies
downstream tasks. Nonetheless, the pretrained model does not
aim to solve the downstream tasks directly,† and each downstream
task requires a task-specific version of model.

The recent advancements of in-context learning for generative
large language models, such as GPT (41, 57) and LLaMA
(58, 59), is a substantial paradigm shift in the realm of NLP.
Instead of fine-tuning the pretrained model for individual
downstream tasks, in-context learning utilize prompted task
descriptions and examples to define tasks. While fine-tuning
techniques are available for these generative large language
models, their function differs from the traditional BERT-style
fine-tuning. In fact, these models can tackle multiple tasks directly
without any necessity for fine-tuning. The purpose of fine-
tuning these generative large language models is not to enable
task-specific adjustments, but mainly to enhance the model’s
proficiency in particular domains or types of tasks.

For scientific machine learning, the pretraining followed by
fine-tuning paradigm is also proposed in the framework of

†Indeed, the pretrained BERT model only aims to predict the masked tokens and tell
whether two input sentences are next to each other.

8 of 10 https://doi.org/10.1073/pnas.2310142120 pnas.org

solution approximation or operator approximation. In these
cases, the neural network is trained to approximate a partic-
ular solution function (10–19) or operator (30, 33–39), and
subsequently fine-tuned to approximate a similar one. This
approach, however, shares a similar limitation as the BERT-style
pretraining plus fine-tuning paradigm, in that the neural network
must be fine-tuned individually for each distinct function
or operator. The situation further deteriorates when closely
comparing scientific machine learning with NLP. In the realm
of NLP, creating an efficient sentence embedding simplifies the
majority of downstream tasks, if not all. Contrarily, the functions
and operators in scientific machine learning are considerably
diverse, making it extremely difficult to define a universal “base
function” or “base operator” that could be used as a starting point
for approximating a broad variety of functions or operators. From
this perspective, the task of developing “foundation models” (60),
i.e., models trained on extensive data and adaptable to a wide
range of downstream tasks, becomes daunting in this approach,
even if the neural networks size is scaled up.

The proposed in-context operator learning transfers the
paradigm of GPT-style models, instead of BERT-style pretrain-
ing plus fine-tuning, to scientific machine learning. As is shown
in our experiments, the ICON model can directly learn a broad
range of operators without any fine-tuning. However, just like
GPT-style models, the ICON model can also be fine-tuned
to specialize in a particular set of operators. Looking forward,
we envision the development of a large-scale model trained
on a substantial dataset under the in-context operator learning
paradigm, functioning as a foundation model. This model could
be used directly for a wide array of operator learning tasks, or
alternatively, it could be fine-tuned to enhance its proficiency in
dealing with a specific set of operators.

Application of ICON in Small Scale. With training data in a
narrow domain, a small language model below 10 million pa-
rameters can produce diverse, fluent, and consistent stories (61).
In line with this, our experimental findings show that a small
ICON model consisting of roughly 30 million parameters has the
capacity to handle relatively straightforward synthetic operators.
These findings indicate that for practical applications, a small-
scale ICON model would suffice, if the objective is to master a
limited range of operators instead of training a general-purpose
foundation model.

Summary

In this paper, we proposed the paradigm of “in-context operator
learning” and the corresponding model “ICON” to learn

operators for differential equation problems. It goes beyond the
conventional paradigm of approximating solutions for specific
problems or some particular solution operators. Instead, ICON
acts as an “operator learner” during inference, i.e., learns an
operator from the given examples and applies it to new conditions
without any weight updates.

Through our numerical experiments, we demonstrated that a
single neural network has the capability to learn an operator
from a small number of prompted examples and effectively
apply it to the question condition. Such a single neural network,
without any retraining or fine-tuning, can handle a diverse set
of differential equation problems, including forward and inverse
problems of ODEs, PDEs, and mean field control problems.
Moreover, while the numbers of key-value pairs for representing
the condition/QoI functions are limited to a narrow range during
training, ICON can generalize its in-context operator learning
ability to a significantly broader range during testing, with errors
decreasing and converging as we increase the number of key-value
pairs. Furthermore, ICON showed its capacity to learn operators
with parameters that extend beyond the training distribution.
In the end, our observations provide preliminary evidence of
ICON’s potential to learn and apply operators corresponding to
previously unseen equation forms.

The scale of our experiments is rather small. In the future,
we wish to scale up the size of the neural network, the types
of differential equation problems, the dimensions of keys and
values, the length of conditions and QoIs, and the capacity
of example numbers. This requires further development of in-
context operator learning, including improvements in neural
network architectures and training methods, as well as further
theoretical and numerical studies of how in-context operator
learning works. In the field of NLP, for example in GPT-4,
scaling up leads to emergent abilities or behaviors beyond human
expectations (57). We anticipate the possibility of witnessing such
emergence in a large-scale operator learning network.

Data, Materials, and Software Availability. Code for data generation, neural
network training, and results analysis has been deposited in https://github.com/
LiuYangMage/in-context-operator-networks (62). All other data are included in
the manuscript and/or SI Appendix.

ACKNOWLEDGMENTS. This work is partially funded by AFOSR MURI FA9550-
18-502, ONR N00014-18-1-2527, N00014-20-1-2093 and N00014-20-1-2787.
We would like to express our gratitude to ChatGPT for enhancing the wording
during the paper-writing phase.

Author affiliations: aDepartment of Mathematics, University of California, Los Angeles, CA
90095

1. G. E. Karniadakis et al., Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
2. W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic

partial differential equations and backward stochastic differential equations. Commun. Math. Stat.
5, 349–380 (2017).

3. J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep
learning. Proc. Natl. Acad. Sci. U.S.A. 115, 8505–8510 (2018).

4. J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential
equations. J. Comput. Phys. 375, 1339–1364 (2018).

5. W. E, B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat. 6, 1–12 (2018).

6. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019).

7. Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential
equations. J. Comput. Phys. 411, 109409 (2020).

8. L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, S. W. Fung, A machine learning framework for solving
high-dimensional mean field game and mean field control problems. Proc. Natl. Acad. Sci. U.S.A.
117, 9183–9193 (2020).

9. A. T. Lin, S. W. Fung, W. Li, L. Nurbekyan, S. J. Osher, Alternating the population and control neural
networks to solve high-dimensional stochastic mean-field games. Proc. Natl. Acad. Sci. U.S.A. 118,
e2024713118 (2021).

10. S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics informed
neural network for phase-field modeling of fracture. Theor. Appl. Fract. Mech. 106, 102447
(2020).

11. X. Chen et al., Transfer learning for deep neural network-based partial differential equations
solving. Adv. Aerodyn. 3, 1–14 (2021).

12. E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning
framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl.
Mech. Eng. 379, 113741 (2021).

13. M. Mattheakis, H. Joy, P. Protopapas, Unsupervised reservoir computing for solving ordinary
differential equations. arXiv [Preprint] (2021). http://arxiv.org/abs/2108.11417 (Accessed 7 August
2023).

14. S. Chakraborty, Transfer learning based multi-fidelity physics informed deep neural network.
J. Comput. Phys. 426, 109942 (2021).

15. S. Desai, M. Mattheakis, H. Joy, P. Protopapas, S. J. Roberts, “One-shot transfer learning of physics-
informed neural networks” in AI for Science Workshop (2022).

PNAS 2023 Vol. 120 No. 39 e2310142120 https://doi.org/10.1073/pnas.2310142120 9 of 10

https://github.com/LiuYangMage/in-context-operator-networks
https://github.com/LiuYangMage/in-context-operator-networks
https://www.pnas.org/lookup/doi/10.1073/pnas.2310142120#supplementary-materials
http://arxiv.org/abs/2108.11417

16. Y. Gao, K. C. Cheung, M. K. Ng, SVD-PINNs: Transfer learning of physics-informed neural networks
via singular value decomposition. arXiv [Preprint] (2022). https://doi.org/10.48550/arXiv.2211.
08760 (Accessed 7 August 2023).

17. H. Guo, X. Zhuang, P. Chen, N. Alajlan, T. Rabczuk, Analysis of three-dimensional potential
problems in non-homogeneous media with physics-informed deep collocation method using
material transfer learning and sensitivity analysis. Eng. Comput. 38, 5423–5444 (2022).

18. A. Chakraborty, C. Anitescu, X. Zhuang, T. Rabczuk, Domain adaptation based transfer learning
approach for solving PDEs on complex geometries. Eng. Comput. 38, 4569–4588 (2022).

19. C. Xu, B. T. Cao, Y. Yuan, G. Meschke, Transfer learning based physics-informed neural networks
for solving inverse problems in engineering structures under different loading scenarios. Comput.
Methods Appl. Mech. Eng. 405, 115852 (2023).

20. T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary
activation functions and its application to dynamical systems. IEEE Trans. Neural Networks 6,
911–917 (1995).

21. T. Chen, H. Chen, Approximation capability to functions of several variables, nonlinear functionals,
and operators by radial basis function neural networks. IEEE Trans. Neural Networks 6, 904–910
(1995).

22. Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks. Eur. J. Appl.
Math. 32, 421–435 (2021).

23. Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling
and uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018).

24. Z. Long, Y. Lu, X. Ma, B. Dong, “PDE-net: Learning PDEs from data” in International Conference on
Machine Learning (PMLR, 2018), pp. 3208–3216.

25. L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229
(2021).

26. S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential
equations with physics-informed DeepONets. Sci. Adv. 7, eabi8605 (2021).

27. Z. Li et al., “Fourier neural operator for parametric partial differential equations” in International
Conference on Learning Representations (2021).

28. N. Kovachki et al., Neural operator: Learning maps between function spaces with applications to
PDEs. J. Mach. Learn. Res. 24, 1–97 (2023).

29. K. Bhattacharya, B. Hosseini, N. B. Kovachki, A. M. Stuart, Model reduction and neural networks for
parametric PDEs. SMAI J. Comput. Math. 7, 121–157 (2021).

30. Z. Li et al., Physics-informed neural operator for learning partial differential equations. arXiv
[Preprint] (2021). http://arxiv.org/abs/2111.03794 (Accessed 7 August 2023).

31. D. Kochkov et al., Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci.
U.S.A. 118, e2101784118 (2021).

32. G. Kissas et al., Learning operators with coupled attention. J. Mach. Learn. Res. 23, 1–63
(2022).

33. S. Goswami, K. Kontolati, M. D. Shields, G. E. Karniadakis, Deep transfer operator learning for
partial differential equations under conditional shift. Nat. Mach. Intell. 4, 1155–1164 (2022).

34. M. Zhu, H. Zhang, A. Jiao, G. E. Karniadakis, L. Lu, Reliable extrapolation of deep neural operators
informed by physics or sparse observations. Comput. Methods Appl. Mech. Eng. 412, 116064
(2023).

35. A. Subel, Y. Guan, A. Chattopadhyay, P. Hassanzadeh, Explaining the physics of transfer learning in
data-driven turbulence modeling. PNAS Nexus 2, pgad015 (2023).

36. H. Wang, R. Planas, A. Chandramowlishwaran, R. Bostanabad, Mosaic flows: A transferable deep
learning framework for solving PDEs on unseen domains. Comput. Methods Appl. Mech. Eng. 389,
114424 (2022).

37. W. Xu, Y. Lu, L. Wang, “Transfer learning enhanced DeepONet for long-time prediction of evolution
equations” in Proceedings of the AAAI Conference on Artificial Intelligence (2023), vol. 37, pp.
10629–10636.

38. Y. Lyu, X. Zhao, Z. Gong, X. Kang, W. Yao, Multi-fidelity prediction of fluid flow and temperature
field based on transfer learning using Fourier Neural Operator. arXiv [Preprint] (2023). http://arxiv.
org/abs/2304.06972 (Accessed 7 August 2023).

39. S. Subramanian et al., Towards foundation models for scientific machine learning: Characterizing
scaling and transfer behavior. arXiv [Preprint] (2023). http://arxiv.org/abs/2306.00258 (Accessed 7
August 2023).

40. A. Radford et al., Language models are unsupervised multitask learners. OpenAI Blog 1, 9 (2019).
41. T. Brown et al., Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33,

1877–1901 (2020).
42. Q. Dong et al., A survey for in-context learning. arXiv [Preprint] (2022). http://arxiv.org/abs/2301.

00234 (Accessed 7 August 2023).
43. J. Devlin, M. W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers

for language understanding. arXiv [Preprint] (2018). http://arxiv.org/abs/1810.04805 (Accessed 7
August 2023).

44. J. Wei et al., Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural
Inf. Process. Syst. 35, 24824–24837 (2022).

45. P. Liu et al., Pre-train, prompt, and predict: A systematic survey of prompting methods in natural
language processing. ACM Comput. Surv. 55, 1–35 (2023).

46. A. Vaswani et al., Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 6000–6010 (2017).
47. P. Lu et al., Dynamic prompt learning via policy gradient for semi-structured mathematical

reasoning. arXiv [Preprint] (2022). http://arxiv.org/abs/2209.14610 (Accessed 7 August 2023).
48. P. Lu et al., Learn to explain: Multimodal reasoning via thought chains for science question

answering. Adv. Neural Inf. Process. Syst. 35, 2507–2521 (2022).
49. V. Kumar, L. Gleyzer, A. Kahana, K. Shukla, G. E. Karniadakis, CrunchGPT: A chatGPT assisted

framework for scientific machine learning. arXiv [Preprint] (2023). http://arxiv.org/abs/2306.15551
(Accessed 7 August 2023).

50. Y. Chen, B. Dong, J. Xu, Meta-MgNet: Meta multigrid networks for solving parameterized partial
differential equations. J. Comput. Phys. 455, 110996 (2022).

51. X. Meng, L. Yang, Z. Mao, J. del Águila Ferrandis, G. E. Karniadakis, Learning functional priors and
posteriors from data and physics. J. Comput. Phys. 457, 111073 (2022).

52. X. Huang et al., Meta-auto-decoder for solving parametric partial differential equations. Adv. Neural
Inf. Process. Syst. 35, 23426–23438 (2022).

53. J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization. arXiv [Preprint] (2016). http://arxiv.org/abs/
1607.06450 (Accessed 7 August 2023).

54. D. Hendrycks, K. Gimpel, Gaussian error linear units (GELUS). arXiv [Preprint] (2016). http://arxiv.
org/abs/1606.08415 (Accessed 7 August 2023).

55. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.

56. N. Carion et al., “End-to-end object detection with transformers” in Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16 (Springer,
2020), pp. 213–229.

57. OpenAI, GPT-4 technical report (2023).
58. H. Touvron et al., LLaMA: Open and efficient foundation language models. arXiv [Preprint] (2023).

http://arxiv.org/abs/2302.13971 (Accessed 7 August 2023).
59. H. Touvron et al., Llama 2: Open foundation and fine-tuned chat models. arXiv [Preprint] (2023).

http://arxiv.org/abs/2307.09288 (Accessed 7 August 2023).
60. R. Bommasani et al., On the opportunities and risks of foundation models. arXiv [Preprint] (2021).

http://arxiv.org/abs/2108.07258 (Accessed 7 August 2023).
61. R. Eldan, Y. Li, TinyStories: How small can language models be and still speak coherent English?

arXiv [Preprint] (2023). http://arxiv.org/abs/2305.07759 (Accessed 7 August 2023).
62. L. Yang, S. Liu, T. Meng, Code for in-context operator learning with data prompts for differential

equation problems. GitHub. https://github.com/LiuYangMage/in-context-operator-networks.
Deposited 7 August 2023.

10 of 10 https://doi.org/10.1073/pnas.2310142120 pnas.org

https://doi.org/10.48550/arXiv.2211.08760
https://doi.org/10.48550/arXiv.2211.08760
http://arxiv.org/abs/2111.03794
http://arxiv.org/abs/2304.06972
http://arxiv.org/abs/2304.06972
http://arxiv.org/abs/2306.00258
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2306.15551
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2305.07759
https://github.com/LiuYangMage/in-context-operator-networks

