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ABSTRACT 

Evaluating the Application of the BDDCS to Assess the Risk of Skin and Liver Toxicity 

Potential in Small Molecules Using In Vitro and Human Clinical Data 

Rosa Chan 

Drug hypersensitivity can be defined as a serious adverse drug reaction (ADR) often with 

an immunological etiology to an otherwise safe and effective therapeutic agent. The frequency 

and severity of drug hypersensitivity are variable, increasing with disease and dose. Hence, it is 

important to understand the biology of the patient/immune system, the pathophysiology of the 

disease in question, and the chemistry of the drug antigen.  

The objective of this research project is to advance the understanding of drug toxicities 

associated with the liver and the skin, the two organs most commonly involved in serious 

adverse drug reactions by investigating the potential of the Biopharmaceutics Drug Disposition 

Classification System (BDDCS) as a methodology for evaluating toxicological outcome of 

therapeutic agents. 

One of the key gaps moving forward is our understanding of and ability to predict the 

contribution of immune activation in idiosyncratic adverse drug reactions. This work will focus 

on immune mediated idiosyncratic adverse drug reactions associated with HLA-B*15:02 and on 

the presently proposed/hypothesized in vitro mechanism based toxicity mechanisms for drug- 

induced liver injury (DILI). The advances being made in microphysiological systems have a 

great potential to transform our ability to risk assess reactive metabolites, and an overview of the 

key components of these systems are presented.  
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Our published analyses suggest that comparison of drug hypersensitivity prediction 

methodologies with BDDCS classification is a useful tool to evaluate the potential reliability of 

newly proposed algorithms. This is true since almost all of these predictive metrics do no better 

than just avoiding BDDCS Class 2 drugs. 
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CHAPTER 1: Challenges in the Prediction of Drug Hypersensitivity Reactions 

!

Drug hypersensitivity can be defined as a serious adverse drug reaction (ADR) often with an 

immunological etiology to an otherwise safe and effective therapeutic agent. Of note, the 

definition is used to describe reactions targeting skin and internal organs that manifest in 

typically a very small percentage of individuals exposed to a therapeutic agent. The frequency 

and severity of drug hypersensitivity are variable, increasing with disease and dose. Hence, it is 

important to understand the biology of the patient/immune system, the pathophysiology of the 

disease in question, and the chemistry of the drug antigen (1).  

There are multiple mechanisms by which a drug may act as an antigen or immunogen to 

activate the immune system and induce targeted tissue damage. The hapten, the pharmacological 

interaction with immune receptors, and the altered self-peptide hypotheses go some way to 

explain the molecular pathomechanisms underlying drug hypersensitivity reactions (DHRs) (See 

Figure 1.1). These running hypotheses define and characterize the different aspects of the drug 

antigen such as haptenicity, antigenicity, immunogenicity, and hypersensitivity. Haptens are 

defined as low molecular weight chemicals with the propensity to bind covalently to protein. In 

the context of this perspective, the term antigen is used to describe a drug-related substance that 

interacts specifically with immunological receptors such as antibodies or T-cell receptors. 

Finally, immunogens are molecules capable of stimulating a cellular and/or humoral immune 

response (See Figure 1.1A) (2). 
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!

Figure 1.1 Models of T-cell receptor (TCR) activation by drug or chemical antigens. 

 (A) The hapten hypothesis states that a drug binds to protein to form a hapten and become 
recognizably immunogenic. The hapten is then internalized and processed by antigen presenting 
cells to form antigenic peptide fragments that are subsequently loaded onto major 
histocompatibility complex (MHC) molecules (covalent binding) and presented at the cell 
surface to passing T-cells. (B) The pharmacological interaction (PI) concept states that 
chemically inert parent drugs or chemicals can interact (noncovalently) directly with the MHC-
TCR without the need for protein binding or antigen processing. (C) The altered peptide concept 
states that a drug may bind to the MHC-peptide complex in such a way that altered self-peptides 
represent an antigenic signal. This may refer to binding of the drug (i) to human leukocyte 
antigen (HLA) outside the peptide binding groove, (ii) to HLA in the peptide binding groove, or 
(iii) directly to the self-presented peptide. Peptide A = normal self-peptide; peptide B = altered 
self-peptide. Reproduced from Ogese et al. (1).  

 
Characterization of the molecular pathophysiological mechanism(s) of drug hypersensitivity 

using a combination of in vitro assays and animal models is a critical step toward designing 

assays that will accurately predict which new drug will cause these reactions before they become 

widely used as therapeutics (1).  However, prediction in this area is still very limited. The HLA 
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has been associated with a number of drug hypersensitivity reactions, however due to its 

polymorphic nature the risk allele does not develop reactions when exposed to a candidate drug, 

genetic, environmental, or disease. Risk factors must impact on patient susceptibility. The 

objective of this research project is to advance the understanding of drug toxicities associated 

with the liver and the skin, the two organs most commonly involved in serious adverse drug 

reactions by investigating the potential of the Biopharmaceutics Drug Disposition Classification 

System (BDDCS) as a methodology for evaluating toxicological outcome of therapeutic agents. 

Biopharmaceutics Drug Disposition Classification System (BDDCS) 
!

In 2005, Wu and Benet, proposed the BDDCS (3). BDDCS provides a useful tool in drug 

discovery for predicting routes of elimination, oral drug disposition, food effects on drug 

absorption, transporter effects on drug absorption, and potentially clinically significant drug 

interactions that may arise in the intestine, liver and brain (4). BDDCS recognizes that drugs 

exhibiting a high passive intestinal permeability rate (BDDCS Class 1 and 2) are also extensively 

metabolized, while low passive permeability rate drugs (BDDCS Class 3 and 4) are primarily 

eliminated as unchanged drug in the bile or the urine. Thus, BDDCS classifies drugs according 

to the extent of metabolism, aqueous solubility and membrane permeability rate. While these 

relationships have been uncovered in terms of drug disposition, it would be useful exercise to 

understand how these physicochemical properties can be related to the toxicity risk of 

compounds during early drug development. 

Reactive metabolites are widely accepted as playing a pivotal role in the pathogenesis of 

idiosyncratic adverse drug reactions (See Figure 1.2). While there are today well-established 

strategies for the risk assessment of stable metabolites within the pharmaceutical industry, there 

is still no consensus on reactive metabolite risk assessment strategies. This is due to the 
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complexity of the mechanisms of these toxicities as well as the difficulty in identifying and 

quantifying short-lived reactive intermediates such as reactive metabolites. In this work, we 

apply the BDDCS to evaluate reactive metabolite risk, hazard assessment approaches are 

discussed, and the strengths and weaknesses are highlighted. 

One of the key gaps moving forward is our understanding of and ability to predict the 

contribution of immune activation in idiosyncratic adverse drug reactions. Sections in this thesis 

will focus on immune mediated idiosyncratic adverse drug reactions associated with HLA-

B*15:02 and on the presently proposed/hypothesized in vitro mechanism based toxicity 

mechanisms for the understanding of immune activation by reactive metabolites. The advances 

being made in microphysiological systems have a great potential to transform our ability to risk 

assess reactive metabolites, and an overview of the key components of these systems is 

presented. Finally, the potential impact of systems pharmacology approaches in reactive 

metabolite risk assessments is highlighted. 

Drug metabolites have also been implicated in a number of DHRs; it is arguable that the 

expression of polymorphic drug metabolizing enzymes may expose individuals within a 

population to varied quantities of antigenic moieties. Indeed, this may affect both phase I and II 

metabolism pathways, where an individual may be more susceptible to the formation of active 

products but also be less susceptible to their subsequent detoxification. Despite this, genetic 

variation in drug metabolism may rarely be a simple susceptibility to DHRs, but instead, 

metabolic rate may be a factor for the rate of onset of a DHR. Impaired renal clearance and 

comorbidity are other important factors to consider. Therefore, individuals are still exposed to 

potentially immunogenic metabolites independent of metabolic rate, and thus, it is unclear how 

metabolic variation translates to a predisposition to hypersensitivity. This may be explained by 
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danger signaling, as certain individuals would be exposed to higher and thus more toxic 

concentrations of certain compounds, and would therefore be subject to enhanced danger 

signaling and an enhanced likelihood of T-cell activation (1).   

 

 
Figure 1.2. Relationship between drug metabolism and toxicity. 

Toxicity may accrue through accumulation of parent drug or, via metabolic activation, through 
formation of a chemically reactive metabolite, which, if not detoxified, can effect covalent 
modification of biological macromolecules. The identity of the target macromolecule and the 
functional consequence of its modification will dictate the resulting toxicological response. 
Reproduced from Srivastava et al. (5). 

 

Because the characteristics of small molecules that are capable of initiating DHRs remains 

unknown and the possibility of reactive metabolites contributing to the risk of DHR, here we will 

investigate the potential of using the BDDCS as a tool to assess the predictability of drug 

hypersensitivity reactions.  
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Cutaneous Adverse Reactions (CARs) 
!

Drug reactions in the skin are more common than at any other site; adult-onset neurologic 

disorders affect almost 7 % of the US population, and their therapies cause a spectrum of skin 

reactions, with morbilliform and urticarial eruptions seen most often. Anticonvulsants and 

disease-modifying multiple sclerosis therapies can precipitate emergent cutaneous drug 

reactions, including serious infection, Stevens–Johnson syndrome, toxic epidermal necrolysis, 

and drug reaction with eosinophilia and systemic symptoms, which require immediate drug 

withdrawal and supportive measures in an intensive care unit with specialist consult (5).  

Toxic epidermal necrolysis and Stevens–Johnson syndrome are two of the most acute life-

threatening drug hypersensitivity reactions. Epidermal necrosis causes erosion of the mucous 

membranes, extensive detachment of the epidermis, and severe constitutional symptoms. The 

physiopathologic mechanisms of these conditions are not established. When there is very 

extensive skin detachment and a poor prognosis (death rates of 30 to 40 percent), the condition is 

usually called toxic epidermal necrolysis. Milder forms are known as Stevens–Johnson syndrome 

or overlapping Stevens–Johnson syndrome and toxic epidermal necrolysis. Toxic epidermal 

necrolysis is usually drug-related. Drugs are an important cause of Stevens–Johnson syndrome, 

but infections or a combination of infections and drugs have also been implicated. In case reports 

and studies, more than 100 drugs have been implicated as causes of Stevens–Johnson syndrome 

or toxic epidermal necrolysis. A limited number of drugs, including sulfonamides, anticonvulsant 

agents, and allopurinol, are the most consistently associated with the conditions (6). 

Cutaneous adverse reactions (CARs) from antiepileptic drugs (AEDs) are common, ranging 

from mild to life-threatening, including Stevens-Johnson syndrome (SJS) and toxic epidermal 

necrolysis (TEN). The identification of subjects carrying the HLA-B*15:02, an inherited allelic 
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variant of the HLA-B gene, and the avoidance of carbamazepine (CBZ) therapy in these subjects 

is strongly associated with a decrease in the incidence of carbamazepine-induced SJS/TEN. In 

spite of the strong genetic associations, the initiation of hypersensitivity for AEDs is still not 

very well characterized. Predicting the potential for other AEDs to cause adverse reactions will 

be undoubtedly beneficial to avoid CARs. Here, we will explore the use of the Biopharmaceutics 

Drug Disposition Classification System (BDDCS) to distinguish AEDs associated with and 

without CARs by examining the binding relationship of AEDs to HLA-B*15:02 and data from 

extensive reviews of medical records. We will evaluate the lack of benefit from a Hong Kong 

population policy on the effects of screening for HLA-B*15:02 and previous incorrect structure-

activity hypotheses (7). We will follow up on the potential of using the HLA-B in vitro assay on 

these apparent determinant properties in predicting toxicity potential. We will examine how 

these general characteristics described by BDDCS class can allow for the prediction of these two 

types of idiosyncratic adverse drug reactions. We will examine other antiepileptic drugs and their 

binding interaction with HLA-B*15:02 and other HLA-B alleles. 

However, prediction of DHRs in the clinic, based solely on HLA-genotype, remains very 

limited. This is because the majority of individuals who carry known HLA risk alleles do not 

develop immunological reactions when exposed to a culprit drug. We must therefore assume that 

immunological parameters, other than HLA genotype, may also contribute to the development of 

a drug-specific T-cell response. Since susceptibility to drug hypersensitivity is a function of the 

patient’s individual biology, the prediction of drug hypersensitivity will involve capturing the 

patient’s biology and variability during the early stages of drug development within preclinical 

test systems. 
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Drug-induced liver injury (DILI) is a leading cause of drug failure in clinical trials and a 

major reason for drug withdrawals from the market (8). Idiosyncratic DILI has been shown to be 

dependent on both daily dose and extent of hepatic metabolism of a drug (9, 10). Here we will 

perform a comprehensive analysis to examine the clinical impact of BDDCS in evaluating the 

severity of DILI warning in drug labels approved by the Food and Drug Administration (FDA), 

the withdrawal status due to ADRs, the role of BSEP inhibition and daily dosages prescribed. 

We will also evaluate the use of BDDCS in differentiating DILI potential (11).  Furthermore, we 

will explore the extent in which we can considered BSEP inhibitors and the hypothesis that 

BSEP inhibition is a driving force for DILI potential of therapeutic agents.    

 This work highlights the correlation between BDDCS determinant properties and reports of 

serious adverse events. We conclude that overall the BDDCS Classification may be useful as a 

comparison tool for evaluating the usefulness of in vitro assays and animal models in the 

prediction of which new drug will cause these adverse drug reactions.  
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CHAPTER 2: Use of the Biopharmaceutics Drug Disposition Classification System  
(BDDCS) to Help Predict the Occurrence of Idiosyncratic Cutaneous Adverse Drug 
Reactions Associated with Antiepileptic Drug Usage  

ABSTRACT* 

Cutaneous adverse reactions  (CARs) from antiepileptic drugs  (AEDs) are common, ranging 

from mild to life-threatening, including Stevens-Johnson syndrome  (SJS) and toxic epidermal 

necrolysis  (TEN). The identification of subjects carrying the HLA-B*15:02, an inherited allelic 

variant of the HLA-B gene, and the avoidance of carbamazepine  (CBZ) therapy in these subjects 

is strongly associated with a decrease in the incidence of carbamazepine-induced SJS/TEN. In 

spite of the strong genetic associations, the initiation of hypersensitivity for AEDs is still not 

very well characterized. Predicting the potential for other AEDs to cause adverse reactions will 

be undoubtedly beneficial to avoid CARs, which is the focus of this report. Here we explore the 

use of the Biopharmaceutics Drug Disposition Classification System  (BDDCS) to distinguish 

AEDs associated with and without CARs by examining the binding relationship of AEDs to 

HLA-B*15:02 and data from extensive reviews of medical records. We also evaluate the lack of 

benefit from a Hong Kong population policy on the effects of screening for HLA-B*15:02 and 

previous incorrect structure-activity hypotheses. Our analysis concludes that BDDCS Class 2 

AEDs are more prone to cause adverse cutaneous reactions than certain BDDCS Class 1 AEDs 

and that BDDCS Class 3 drugs have the lowest levels of cutaneous adverse reactions. We 

propose that BDDCS Class 3 AEDs should be preferentially used for patients with Asian 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
*!Modified from publication: Chan R, Wei C, Chen Y, Benet LZ. 2016. Use of the 
biopharmaceutics drug disposition classification system (BDDCS) to help predict the occurrence 
of idiosyncratic cutaneous adverse drug reactions associated with antiepileptic drug usage. AAPS 
J. 18(3):757–66 
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backgrounds  (i.e., Han Chinese, Thai and Malaysian populations) if possible and in patients 

predisposed to skin rashes.
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INTRODUCTION 

Cutaneous adverse reactions  (CARs) from antiepileptic drugs  (AEDs) are common, 

ranging from mild to life-threatening, including maculopapular eruption, drug reaction with 

eosinophilia and systemic symptoms  (DRESS), Stevens–Johnson syndrome  (SJS) and toxic 

epidermal necrolysis  (TEN) (1, 2). The mortality rates are approximately 10-15% in SJS, 30% in 

overlapping SJS/TEN and up to 50% in TEN (3). For years, the pathological determinants of 

SJS/TEN remained elusive. The identification of subjects carrying the HLA-B*15:02, an 

inherited allelic variant of the HLA B gene, and the avoidance of carbamazepine  (CBZ) therapy 

in these subjects is strongly associated with a decrease in the incidence of carbamazepine-

induced SJS/TEN (4–9). HLA-B*15:02 screening policies have been implemented in a number 

of countries with respect to CBZ dosing, including the U.S. when in 2007 the FDA published an 

alert (10) stating that “Patients with ancestry from areas in which HLA-B*1502 is present should 

be screened for the HLA-B*1502 allele before starting treatment with carbamazepine.” In a 

research setting, screening in Taiwan was associated with a reduced incidence of CBZ-induced 

SJS/TEN (11). Recently, however, the results of a routine clinical service policy at a system-

wide level in Hong Kong implemented in 2008 was reported to be associated with prevention of 

CBZ-induced SJS/TEN without reducing the overall burden of AED-induced SJS/TEN in more 

than 110,000 epilepsy patients (12). Attempts to predict the potential for various AEDs to cause 

cutaneous hypersensitivity through structure-activity relationships, suggesting that CARs occur 

with aromatic AEDS, but not with non-aromatic AEDs (13, 14), have ignored data for aromatic 

AEDs exhibiting low CARs incidence such as clobazam and clonazepam. Thus, in spite of the 

strong genetic associations and some structure-activity success, the initiation of hypersensitivity 
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for AEDs is still not very well characterized. Predicting the potential for other AEDs to cause 

adverse reactions will be beneficial to avoid CARs, which is the focus of this report.  

In 2005, Wu and Benet proposed the Biopharmaceutics Drug Disposition Classification 

System  (BDDCS) (15). BDDCS provides a useful tool in early drug discovery for predicting 

routes of elimination, oral drug disposition, food effects on drug absorption, transporter effects 

on drug absorption, and potentially clinically significant drug interactions that may arise in the 

intestine, liver, and brain (15, 16). BDDCS recognizes that drugs exhibiting a high passive 

intestinal permeability rate  (BDDCS Class 1 and BDDCS Class 2) are extensively metabolized 

in humans, while low passive permeability rate drugs  (BDDCS Class 3 and BDDCS Class 4) are 

primarily eliminated as unchanged drug in the bile or the urine  (Figure 2.1).  

!

Figure 2.1. Biopharmaceutics Drug Disposition Classification System (BDDCS). 

 

Because the specific drug characteristics linking to adverse events remain controversial, 

here we expand the use of BDDCS in assisting the prediction of AED drug hypersensitivity 

reactions, conducted a systematic review to appraise the strength of BDDCS in the association of 

the incidence of CARs induced by AEDs, and performed in vitro studies to identify specific 
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HLA/drug interaction patterns. In addition to exploring the use of BDDCS in the pathogenesis of 

CARs, the results of this work may help identify other AEDs or drugs in other therapeutic 

categories that can elicit SJS/TEN. 

METHODS 

HLA-B In Vitro Assay 

We used the Biacore T200 SPR biosensor for analyzing the interaction between HLA-B 

proteins and drugs according to the manufacturer’s protocol  (GE). We immobilized the purified 

soluble HLA-B proteins  (acting as ligands) on the chips by an amine coupling reaction, and the 

immobilized levels of sHLA-Bs were 9373-9812 response units  (R.U). PBS was used as running 

buffer and the flow rate was 10 mg/min. The compounds  (10 AEDs, 2 active metabolites and 1 

non-active backbone structure) dissolved in PBS with 5% DMSO were evaluated and flowed 

through the solid phase with the running buffer PBS with 5% DMSO. Responses of the 

interaction were reference subtracted and corrected with a standard curve for the DMSO effects. 

We used BIA evaluation Version 3.1 for data analysis  (17).  

Compilation of AED-Related Adverse Cutaneous Reactions Studies 

Data were extracted from four systematic published reviews of medical records of 

patients with epilepsy for documentation of CARs from AEDs. AED-related skin reactions 

studies were found in three main populations: American, Chinese and Norwegian patients. We 

also used DailyMed  (http://dailymed.nlm.nih.gov/dailymed/) to review rash and more serious 

dermatologic conditions reported in FDA package inserts, in addition to literature 

reports/reviews.  
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American Retrospective Study 

The study in America was carried out at the Columbia Comprehensive Epilepsy Center 

between January 1, 2000 and January 1, 2005. A total of 1,875 patients were included with 

altogether 5,050 exposures to 15 different AEDs (18).  The attribution of rash was based on the 

patient’s description of the rash or on the medical examination, if the physician concluded it was 

most likely due to the AED. Overall 14.3%  (269/1875) of patients experienced a skin reactions 

to at least one AED. 

Chinese Retrospective Studies 

Although two Chinese studies were available in the literature and were carried out around 

the same time, we have analyzed them independently. The studies were carried out at the 

Epilepsy Center of the Chinese PLA General Hospital in Beijing, China. The first study period 

was from February 1999 to April 2010. A total of 3,793 patients were included with altogether 

7,353 exposures to 11 different AEDs (19). Overall 3.61%  (137/3793) of patients experienced a 

skin reaction to at least one AED. The second study period was between February 1999 and 

September 2010.  A total of 4,037 patients were included with altogether 5,355 exposures to 9 

different AEDs (14).  Overall 4.06%  (164/4037) of patients experienced a skin reaction to at 

least one AED. A CAR was defined as any type of rash  (erythematous, maculopapular, papular, 

pustular or unspecified) that had no other obvious cause apart from an AED that resulted in 

contacting a physician.  

Norwegian Retrospective Study 

The study in Norway was carried out in three specialist outpatients clinics in Middle 

Norway served by neurologists from Trondheim University Hospital. A total of 663 patients 

were included with altogether 2,567 exposures to 15 different AEDs (20). A skin reaction was 
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defined as a diffuse rash  (including MPE, DRESS, urticaria, erythema nodosum and SJS) that 

was reported in the medical records and had no other obvious reason than a drug. As initial 

symptoms of hypersensitivity most frequently occur up to 8 weeks after starting a drug, 

treatments lasting less than 3 months and stopped for any other reason than a rash were not 

included as an exposure. Overall 14%  (93/663) of patients experienced a skin reactions to at 

least one AED. 

Determining the Changes in AED Prescribing Practice with HLA-B*15:02 and the 

incidence of SJS/TEN. 

Data were extracted from the Hong Kong Hospital Authority Clinical Data Repository to 

determine changes in AED prescribing practice in all patients, in AED-naïve patients, and in 

patients with newly treated epilepsy and the incidence of AED-induced SJS/TEN, following 

implementation of the HLA-B*15:02 screening policy (12). The study period covered 3 years 

before the implementation date  (prepolicy: September 16, 2005 to September 15, 2008) and 3 

years after  (postpolicy: September 16, 2008 to September 15, 2011). Patients of interest were 

those who had at least one AED newly commenced and/or underwent testing for HLA-B*15:02 

in the study period. An AED was defined as newly commenced if there was no record of its 

prescription in at least the previous 12 months. A total of 111,242 patients were included and 

4,149 were tested for HLA-B*15:02. SJS/TEN was attributed to an AED if the patient was 

hospitalized for SJS/TEN within 90 days of commencing an AED, and the patient’s allergy 

histories did not suggest other pharmaceutical products (12).  

Compilation of BDDCS properties, Correlation and Statistical Analyses 

Data are expressed as percentages of cutaneous incidence rate given the number of 

patients affected divided by the number of exposures associated with each AED together with the 
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BDDCS class. The BDDCS class assignment and properties were obtained from the BDDCS 

applied to over 900 drugs paper (21). Missing data were complemented by literature searches. 

Data with absolute values of each AED exposure along with BDDCS were also included.  

The BDDCS class prescription pattern across the three different groups: all patients, 

AED-naïve patients, and patients with newly treated epilepsy in the AED prescribing practice for 

HLA-B*15:02 was also analyzed. Data are expressed as the percent of each AED prescription in 

the prepolicy along with absolute values of each AED exposure and BDDCS class. Differences 

in the proportions of BDDCS classes associated with CARs and prescription patterns were 

determined using chi-squared tests. The differences of SJS/TEN incidence between the prepolicy 

and postpolicy were calculated using the Fisher’s Exact test.   

The 12 AED related compounds were evaluated using the in vitro assay relative response 

binding to HLA-B*15:02 versus the incidence of cutaneous adverse drug reactions reported with 

the Spearman rank correlation coefficient  (ρ) and Spearman correlation test. For statistical tests, 

a p-value less than 0·05 was considered significant. Analyses and plots were carried out using R  

(http://cran.r-project.org) and GraphPad Prism software version 6·0  (GraphPad Software, Inc., 

San Diego, CA). 

RESULTS 

Incidence of Cutaneous Adverse Reactions and BDDCS class 

Using the BDDCS classification, the drugs associated with the highest incidence of 

cutaneous adverse reactions fall in BDDCS Class 2 in four retrospective studies (18–20, 22), 

with the lowest incidence for BDDCS Class 3 AEDs as depicted in Figure 2.1. BDDCS Class 2 

drugs  (lamotrigine, oxcarbazepine, carbamazepine and phenytoin) showed the highest rate of 
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cutaneous adverse drug reactions across all retrospective studies. Gabapentin, felbamate, 

clobazam, clonazepam, valproate, topiramate, levetiracetam and vigabatrin had consistently the 

lowest rates of CARs. Hence, it appears that BDDCS Class 2 AEDs exhibit the highest trend of 

causing cutaneous adverse reactions followed by certain BDDCS Class 1 drugs, in particular 

zonisamide, phenobarbital and tiagabine. Valproic acid, a widely used AED, clonazepam and 

clobazam are BDDCS Class 1 presenting lower levels of adverse cutaneous reactions than the 

other aforementioned BDDCS Class 1 drugs. Levetiracetam, a BDDCS Class 3 drug, shows a 

high efficacy in vulnerable populations, e.g. elderly (23) and children (24), and low levels of 

CARs. Felbamate is the only BDDCS Class 4 AED and it shows a low rate of CARs. 
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Figure 2.2 Incidence of AED-related skin rash (%) and BDDCS Classification in Americans, 
Chinese and Norwegians. 
A BDDCS Class 2 drugs accounted for 55.6% incidence rates of AED-related skin rashes, followed 
by 36.6% for BDDCS Class 1, 4.3% for BDDCS Class 3 and 3.5% BDDCS Class 4 in the American 
retrospective study. * 
B BDDCS Class 2 drugs accounted for 80.0% incidence rates of AED-related skin rashes, followed 
by 4.3% for BDDCS Class 1, 14.4% for BDDCS Class 3 and 1.3% for the not classified compounds 
in the Chinese retrospective study. * 
C BDDCS Class 2 drugs accounted for 78.5% incidence rates of AED-related skin rashes, followed 
by 9.5% for BDDCS Class 1, 12.0% for BDDCS Class 3 in the Chinese retrospective study. * 
D BDDCS Class 2 drugs accounted for 89.2% incidence rates of AED-related skin rashes, followed 
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by 9.2% for BDDCS Class 1, 1.6% for BDDCS Class 3 and 0% BDDCS Class 4 in the Norwegian 
retrospective study. * 
*For all studies, p-values were < 0.05  (using the chi-squared test), providing evidence that rates of 
AED-related skin rashes differed significantly between BDDCS classes. 
 
Numbers of AED Exposure and BDDCS Classification 

When examining AED exposure, the drugs associated with the highest exposure number 

are BDDCS Class 2 in each of the four studies, followed by Class 1. Figure 2.3 depicts the 

numbers of exposure for each AED across the four retrospective studies. Carbamazepine, 

phenytoin and valproate are among the highest prescribed AEDs across all studies. Although, 

BDDCS Class 2 and 1 have the highest rates of cutaneous adverse reactions, they are three times 

more likely to be prescribed than BDDCS Class 3 and 4 AEDs, which show the lowest rate of 

cutaneous adverse reactions. 

It is interesting to note that the same general pattern of CARs outcome is found in the 

American and Norwegian studies in Fig. 2.2 as seen for the Chinese studies, suggesting that 

CARs potential occurs for populations not exhibiting the HLA-B*15:02 to a significant 

extent.  We plan to examine this finding in our future studies. 
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Figure 2.3 Relationship between the exposure to each AED and BDDCS Classification in 
Americans, Chinese and Norwegians 
A BDDCS Class 2 drugs accounted for 51.7% AED exposures, followed by 22.9% for BDDCS Class 
3, 22.8% for BDDCS Class 1 and 2.6 % BDDCS Class 4 in the American retrospective study. * 
B BDDCS Class 2 drugs accounted for 42.2% AED exposures, followed by 37.0% for BDDCS Class 
1, 11.4% for BDDCS Class 3 and 9.4% for the not classified compounds in the Chinese retrospective 
study. * 
C BDDCS Class 2 drugs accounted for 48.4% AED exposures, followed by 36.1% for BDDCS Class 
1 and 15.5% for BDDCS Class 3 in the Chinese retrospective study. * 
D BDDCS Class 2 drugs accounted for 49.0% AED exposures, followed by 30.5% for BDDCS Class 
1, 20.0% for BDDCS Class 3 and 0.4% BDDCS Class 4 in the Norwegian retrospective study. * 
*For all studies, p-values were < 0.05  (using the chi-squared test), providing evidence that AED 
exposure is significantly different between BDDCS classes. 
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HLA-B*15:02 Binding to AEDs  

Figure 2.4B depicts the differential BDDCS response in binding observed among 10 

AEDs, 2 active metabolites and 1 non-active backbone structure  (5HB) when analyzed using an 

HLA in vitro binding assay. The results are depicted as the mean ± standard error of the mean  

(SEM) for 6 independent experiments with each compound. The HLA in vitro binding data 

depict that the drugs associated with the strongest binding to HLA-B*15:02 are BDDCS Class 2  

(See Table 2.1 and Figure 2.4A). Carbamazepine, oxcarbazine, eslicarbazepine acetate, 

phenytoin and lamotrigine demonstrate a strong binding interaction with HLA-B*15:02, but not 

with other HLA-B alleles. AEDs presenting a weak binding interaction with HLA-B*15:02 were 

levetiracetam, topiramate, gabapentin, ethosuximide and valproic acid, as well as the non-active 

structural backbone of some AEDs, iminostilbene  (5-HB). That is, BDDCS Class 3 drugs and 

the Class 1 drugs ethosuximide and valproic acid interact poorly with HLA-B*15:02. Class 2 

carbamazepine-10,11-epoxide, a carbamazepine metabolite, also presented a strong binding 

affinity to HLA-B*15:02. The primary metabolite and active entity of oxcarbazepine, 

licarbazepine had three times lower binding affinity to HLA-B*15:02 than the stereospecific 

eslicarbazepine acetate and other strong binding AEDs.  
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Figure 2.4A. Surface Plasmon Resonance (SPR) data.  
Surface Plasmon Resonance (SPR) data demonstrating the specific interactions of 10 AEDs, 2 
metabolites, and 1 non-active structural backbone (1mM) to HLA-B*15:01, HLA-B*15:02, 
HLA-B*15:03, HLA-B*40:01, and HLA-B*51:01 
 
Figure 2.4B. BDDCS Classification of the SPR results with the AEDs. 
*P<0.05  show compounds with a significant difference from the response of vehicle. All p-values 
were calculated with the two-tailed Student’s t-test. Results are representative of 6 independent 
experiments  (mean ± SEM). 
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Comparison of Cutaneous Adverse Reactions and the HLA-B In Vitro Assay 

Table 2.1 illustrates the relationship between the incidence of cutaneous adverse reactions 

and the HLA-B binding assay. The 14 drugs in Table 2.1 are ordered based on the mean % 

incidence of AED rash for the 4 studies presented in Fig. 2.2, highest to lowest, when an AED 

was reported in two or more evaluations. We arbitrarily classified the rash incidence as high 

when the mean for a drug in the four evaluations was ≥ 5%, intermediate when mean rash 

incidence was between 2 and 5% and low when the mean incidence was < 2%. For the 8 drugs 

where in vitro binding to HLA-B*15:02 was available the strength of binding was also included. 

For each of the retrospective studies correlation between incidence of AED and the strength of 

HLA-B*15:02 binding for 8 AEDs is very high and significant as presented in Figure 2.5  

(American study  (n=1,875): ρ =0.762, p-value = 0.028; Chinese study  (n = 3,793): ρ =0.810, p-

value = 0.015, Chinese study  (n=4,037): ρ =0.857, p-value = 0.007; Norwegian study  (n=663): 

ρ =0.763, p-value = 0.017). These data reflect the BDDCS Class 2 vs. Class 3 differentiation. 

Hence, these strong correlations show a high concordance between the available clinical data and 

the potential of the HLA-B in vitro assay to predict these cutaneous adverse reactions.
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Table 2.1. Relationship Between the Incidence of AED Rash. 
Note: From Fig. 2.2 for drugs investigated in at least two of the four retrospective studies and 
relative response to the in vitro binding of HLA-B*15:02 from Figure 2.4a 

Generic Name BDDCS Class Comments 

Lamotrigine 2 High rash incidence and 
strong in vitro binding 

Oxcarbazepine 2 High rash incidence and 
strong in vitro binding 

Carbamazepine 2 High rash incidence and 
strong in vitro binding 

Phenytoin  2 High rash incidence and 
strong in vitro binding 

Phenobarbital 1 Intermediate rash incidence 

Primidone 2 Low/no rash incidence 

Gabapentin 3 Low/no rash incidence and 
weak in vitro binding 

Felbamate 4 Low/no rash incidence 

Clobazam 1 Low/no rash incidence 

Clonazepam 1 Low rash incidence 

Valproate 1 Low rash incidence and weak 
in vitro binding 

Topiramate 3 Low/no rash incidence and 
weak in vitro binding 

Levetiracetam 3 Low rash incidence and weak 
in vitro binding 

Vigabatrin 3 No reported rash incidence 
a. Two further BDDCS Class 1 drugs  (tiagabine, zonisamide) reported in only one study 
exhibited rash incidence, which would classify as high.  
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Figure 2.5. Spearman correlation between the relative response to the binding of HLA-B*15:02 
and incidence of AED rash. 

 

Changes of AED Prescription Pattern, HLA-B*15:02 Screening and BDDCS Classification 

Figure 2.6, using BDDCS, depicts the change of AED prescription pattern from prior to 

post HLA-B*15:02 policy implementation in Hong Kong. Prior to policy implementation 

phenytoin, valproic acid and carbamazepine had the highest usage numbers in the total 

population. Following policy implementation, gabapentin, valproic acid, phenytoin and 

clonazepam had the highest prescription numbers. Although there was a significant increase in 

the percent of BDDCS Class 3 drugs  (pregabalin, gabapentin and levetiracetam) in the entire 

population, BDDCS Class 2 drugs still represented 24.3% of prescribed AEDs. Similar trends 
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were also observed in the subset of patients receiving their first ever AED where postpolicy 

25.3% of prescribed AEDs were BDDCS Class 2 drugs  (Figure 2.7). In the newly treated 

epilepsy subset post-policy the decrease in carbamazepine prescriptions from prepolicy numbers 

was almost matched by the increase in Class 2 phenytoin dosing  (Figure 2.8). Thus, the high 

presence of BDDCS Class 2 AEDs potentially hinders the lowering of CAR incidence in this 

population. 
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!

Figure 2.6. AED prescription patterns prior and post HLA-B*15:02 screening implementation in 
the total Hong Kong population. 
A Prior to the policy implementation, BDDCS Class 1 drugs accounted for 40.0% of all prescriptions, 
followed by 39.7% for BDDCS Class 2 and 20.3% for BDDCS Class 3. B In the postpolicy, BDDCS 
Class 1 accounted for 39.2% of all prescriptions, followed by 36.5% for BDDCS Class 3 and 24.3% 
for BDDCS Class 
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Figure 2.7. AED prescription patterns prior and post HLA-B*15:02 screening implementation in 
the first ever AED subset in the Hong Kong population. 
A Prior to the policy implementation, BDDCS Class 2 drugs accounted for 44.0% of all prescriptions, 
followed by 37.0% for BDDCS Class 1 and 19% for BDDCS Class 3. B In the postpolicy, BDDCS 
Class 3 accounted for 37.9% of all prescriptions, followed by 36.7% for BDDCS Class 1 and 25.3% 
for BDDCS Class 2. 
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Figure 2.8. AED prescription patterns prior and post HLA-B*15:02 screening implementation in 
the newly treated epilepsy subset in the Hong Kong population. 
A Prior to the policy implementation, BDDCS Class 2 drugs accounted for 71.6% of all prescriptions, 
followed by 26.8% for BDDCS Class 1 and 1.6% for BDDCS Class 3. B In the postpolicy, BDDCS 
Class 2 accounted for 63.5% of all prescriptions, followed by 32.7% for BDDCS Class 1, 3.8% for 
BDDCS Class 3. 
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DISCUSSION 

We observed a high concordance between the HLA-B*15:02 in vitro assay and the 

incidence of cutaneous adverse reactions associated across all retrospective studies. Phenytoin, 

lamotrigine, carbamazepine and oxcarbazepine showed high levels of cutaneous adverse 

reactions. These drugs are also the major causative AEDs for CARs (2, 22). Our BDDCS 

analysis shows that these AEDs share common properties of being highly metabolized and 

having low solubility, i.e., BDDCS Class 2. In contrast, AEDs showing a high solubility and 

poor extent of metabolism  (gabapentin, levetiracetam and topiramate) showed a poor interaction 

for the HLA-B in vitro assay. In agreement with this, gabapentin, levetiracetam and topiramate 

are also AEDs showing minimal levels of CARS  (See Figure 2.2, Table 2.1). Iminostilbene, the 

carbamazepine structural backbone, had a lower binding affinity. We speculate that this low 

binding affinity is due to the lack of polar groups thereby not allowing the formation of H-bonds 

with the HLA-B pocket. However, iminostilbene also exhibits low, if any, antiepileptic potency. 

On the other hand, carbamazepine -10, 11-epoxide presented a strong interaction. According to 

the results from the HLA-B in vitro test and the incidence of cutaneous adverse reactions, we 

observe that compounds that are extensively metabolized and have low solubility are more 

susceptible to interacting with HLA-B*15:02 in vitro, and have higher incidences of cutaneous 

adverse reactions.  Thus, we recommend that to minimize CARs, epileptic patients be placed on 

BDDCS Class 3 AEDs if possible, and that for patients exhibiting the HLA-B*15:02 allele all 

BDDCS Class 2 AEDS may be expected to exhibit the same toxicity potential as carbamazepine. 

It is more difficult to extrapolate these findings to BDDCS Class 1 AEDs, where some of these 

drugs  (e.g., zonisamide and phenobarbital) cause significant CARs, while others  (e.g., valproic 
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acid, clobazam, clonazepam and ethosuximide) exhibit similar adverse reaction profiles to the 

BDDCS Class 3 drugs. 

It has been previously hypothesized that “idiosyncratic” hypersensitive reactions occur 

with AEDs containing an aromatic ring in their chemical structure that can form an arene-oxide 

intermediate (13). This chemically reactive product may become immunogenic through 

interactions with proteins or cellular macromolecules in accordance with the hapten hypothesis 

(25). Apart from the hapten formation hypothesis, another immune mechanism might be 

involved. In this alternate hypothesis, there is a direct, non-convalent binding of the drug to the 

T-cell receptor to specific T-cell clones. Drug-specific T cells have been identified for 

lamotrigine and carbamazepine (26, 27). Handoko and coworkers have also confirmed that the 

association for T-cell mediated reactions was strongest in cutaneous reactions (13). Although, 

aromatic vs. non-aromatic AED studies have demonstrated that cutaneous hypersensitive 

reactions can be partly explained by a commonality in chemical structures (13, 14), these studies 

did not consider and failed to explain why clobazam and clonazepam, which are AEDs with 

aromatic rings, do not show a significant number of hypersensitive reactions as observed in our 

analysis. The strong association of hypersensitivity reactions with BDDCS Class 2 drugs, certain 

BDDCS Class 1 drugs and our in vitro results suggest that parent or a combination of 

parent/metabolite interactions are responsible for the drug hypersensitivity event. One might 

expect that measures of lipophilicity might differentiate reactive vs. nonreactive AEDs with 

respect to CARs.  However, examination of measured Log P, measured Log D7.4 and calculated 

Clog P, as tabulated by Benet et al. (21), do not reveal a consistent pattern.  (See Table 2.2). 
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Although many studies have observed intermediate levels of CARs with 

phenobarbital, limited or no cases of rash were attributed to primidone in the 

retrospective studies analyzed here, which is surprising because primidone is metabolized 

to phenobarbital. It appears that patients tend to be given phenobarbital much more 

frequently than primidone, from its higher numbers of exposure across all retrospective 

studies, and those patients with previous rash to phenobarbital are unlikely to be given 

primidone subsequently; this would result in a low-risk group of patients being given 

primidone, as proposed by Arif and coworkers (31). Primidone is a BDDCS Class 2 drug 

and therefore shares reactive properties that we hypothesize would cause a drug 

hypersensitivity event, as observed in the American retrospective study  (Figure 2.2). 

Carbamazepine induced SJS/TEN is strongly associated with HLA-B*15:02 

across broad Asian populations (4–9). Screening for HLA-B*15:02 in individuals of such 

ethnic descent before commencing carbamazepine, with avoidance of the drug in 

individuals testing positive, is recommended by regulatory agencies. Upon examination 

of the correlation between the HLA-B*15:02 binding affinity and AED SJS/TEN 

incidence in the Hong Kong population prior to the policy implementation, we found a 

strong correlation with carbamazepine and phenytoin showing high rates of SJS, and 

levetiracetam and gabapentin showing low rates of SJS  (See Table 2.3). Here again, we 

observe the BDDCS Class 2 and Class 3 separation. However, the lack of the exact AED 

SJS/TEN incidence data among the other ethnic groups limits our analysis. Analysis of 

the AED prescription practice changes on the whole-population of Hong Kong shows a 

marked reduction in carbamazepine use after the implementation of HLA-B*15:02 

screening policy. Although carbamazepine-induced SJS/TEN was prevented, the 
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incidence of SJS/TEN induced by AEDs overall was not significantly changed (12). The 

increase of non-carbamazepine BDDCS Class 2 AEDs may have led to an increase in the 

incidence of SJS/TEN induced by other AEDs, particularly phenytoin. Under the Hong 

Kong Hospital Authority’s drug formulary, one of the older AEDs  (carbamazepine, 

phenobarbital, phenytoin, valproic acid) should be used as first-line treatment for 

epilepsy. This explains the corresponding increases in phenytoin and valproic acid 

prescriptions among this patient group. The shift from carbamazepine to phenytoin and 

valproate induced by the screening policy, such as the risk of teratogenicity (32), which is 

higher for valproate compared with carbamazepine may have exerted a negative effect on 

population health. Our analysis shows that there was no major shift in the BDDCS Class 

2 and 1 prescription pattern, and this potentially explains the lack of reduction in SJS 

incidence. 

The Food and Drug Administration  (FDA) currently recommends that phenytoin, 

fosphenytoin and lamotrigine should be avoided as an alternative for carbamazepine 

patients positive for HLA-B*15:02 (10, 33). HLA-B*15:02 is largely absent in 

individuals not of Asian origin  (e.g., Caucasians, African-Americans, Hispanics, and 

Native Americans); nonetheless we observe a strong correlation between the drugs 

associated with cutaneous adverse reactions across different populations. Other HLA-B 

alleles such as HLA-A*31:01 (34) and HLA-B*15:11 (35) have been associated with 

carbamazepine associated SJS but no in vitro assay have been performed as yet with 

these other alleles. BDDCS class 2 AEDs appear to be more reactive than other BDDCS 

classes.
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Through a review of FDA package labels, in contrast to the 2% or less incidence of 

SJS/TEN for the BDDCS Class 3 drugs listed in Table 2.4, the values for the BDDCS Class 2 

drugs phenytoin  (5-10%), lamotrigine  (10%), carbamazepine  (4-11%) and oxcarbazepine  

(2.5%) are often much higher  (See Table 2.1). As seen in the data presented here, patient 

exposure to BDDCS Class 2 and 1 AEDs is much higher  (See Figure 2.3). For clinicians to be 

able to reduce the number of patient suffering from drug hypersensitivity reactions, they should 

understand that continual high prescription exposure of BDDCS Class 2 and certain Class 1 

drugs may contribute to the reported adverse cutaneous reactions in patients who are at risk. 

!
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Table 2.4. Rash and More Serious Dermatologic Conditions From the FDA Package Insert 
and Literature Reports. 

Generic Drug 
Name Rash Incidence BDDCS 

Class 

Clobazam 

Package Insert: • Rash listed under Warnings and 
Precautions and Adverse Reactions (36)  

1 SJS/TEN: • Listed under Warnings and Precautions and 
Adverse Reactions (36)  

Other sources: •Approximately 2% (31) 

Clonazepam  

Package Insert: •Rash listed under Adverse Reactions 
(36) 

1 SJS/TEN: •not mentioned 

Other Sources: •not available 

Ethosuximide  

Package Insert: •Rash listed under Warnings; 
Precautions and Adverse Reactions sections (36) 

1 SJS/TEN: •Listed under Warnings (36) 

Other Sources: •not available 

Phenobarbital  

Package Insert:  •Rash listed under Adverse Reactions 
(36) 

1 SJS/TEN: •not mentioned 

Other Sources: • 1-2% (37) • 8.1/10,00043  

Tiagabine  
Package Insert: • Rash Rate: Adults: 5% (36) • Rash 
listed under Precautions and Adverse Reactions (36) 1 
Other Sources: • 2.5% (31) 

Valproate  

Package Insert: • Rash: >1% but less than 5% in both 
epilepsy and migraine trials (36) • Rash listed under 
Warning and Precautions and Adverse Reactions 
sections (36) 

1 
SJS/TEN: •“Rare” (36)  

Other Sources: • Approximately 1%  (31) • 0.5/10,000 
(38) 
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Zonisamide 

Package Insert: • Rash: Adults = 1.4-2.2% (36) • Rash 
listed under Warnings; Precautions and Adverse 
Reactions sections (36) 

1 SJS/TEN: •46 per 1,000,000 (36) • Listed under 
Warnings (36) 

Other Sources: •4% (31) 

Carbamazepine 

Package Insert: • Rash: 1/10,000-6/10,000 (36) • Rash 
listed under Warnings and Precautions and Adverse 
Reactions (36) 

2 SJS/TEN: •Listed under Boxed Warning; Warnings and  
Adverse Reactions (36) 

Other Sources: • SJS/TEN: 1.4/10,000 (38) • Rash: 4-
11% (31) 

Lamotrigine  

Package Insert: • Rash: Epilepsy Trials = 4.5-10% in 
adults, 4.4-14% in pediatric cases; Bipolar Trials: adults 
=7-11% (36)  • Rash listed under Boxed Warning; 
Warnings and Precautions; Adverse Reactions (36) 

2 SJS/TEN: • 0.3% adults with epilepsy; 0.8% in 
pediatric patients with epilepsy  (< 16 years); 0.08% 
adults with bipolar disorder  (using current titration 
schedules) (36)  •Listed under Boxed Warning; 
Warnings and Precautions;Adverse Reactions (36) 

Other Sources: • 2.5/10,000 (38) • 10% (31) 

Oxcarbazepine  

Package Insert: • Rash: Adults =1.4- 4%; Pediatrics = 
1.3- 5.3% (36) • Rash listed under Warnings and 
Precautions and Adverse Reactions (36) 

2 SJS/TEN: “Rare” (36) • Listed under Warnings and 
Precautions (36) 

Other Sources: • 2.5% (31) 
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Phenytoin  

Package Insert: • Rash: Rate not given (36) • Rash 
listed under Warnings and Precautions and Adverse 
Reactions (36)  

2 
SJS/TEN: •Rate not given • Listed under Warnings (36)  

Other Sources: • 5-10% (37) 

Primidone 

Package Insert: •Rash listed as a possible side effect 
(36) 

2 SJS/TEN: •not mentioned 

Other Sources: •Contraindications: patients who are 
hypersensitive to phenobarbital (39) 

Gabapentin  

Package Insert: • Rash: Adults = 1.2-1.3% (36)• Listed 
under Adverse Reactions (36)  

3 SJS/TEN: •not mentioned  

Other Sources: • 1% (31) 

Levetiracetam  

Package Insert: • Rash: Adults: 0% (36) 

3 SJS/TEN: •not mentioned 

Other Sources: •not available 

Topiramate 

Package Insert: • Rash: Adults = 1%; 2-4% in migraine; 
Pediatrics = 2% (36)• Listed under Adverse Reactions 
(36) 

3 
SJS/TEN: •not mentioned 

Other Sources: • 1% (31) 

Vigabatrin  

Package Insert: • Rash: Adults: 0% (36) • Rash listed 
under Adverse Reactions (36)  3 

SJS/TEN:  • Listed under Adverse Reactions (36)   

Other Sources: •not available  

Felbamate  
Package Insert: •Rash:  (1.2%) (36) • Rash listed under 
Adverse Reactions (36)  4 

SJS/TEN: •not mentioned  
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Use of BDDCS in the FDA Guidance for Drug Hypersensitivity Reactions 

The previous discussion of BDDCS and AEDs in the literature was related to generic 

equivalence and interchangeability of AEDs. In that work, Bialer and Midha (40) contrasted the 

aspects of the FDA Guidance of waiver of bioequivalence studies based on the Biopharmaceutics 

Classification System  (BCS) (41) and the clinician’s interchangeability of brand versus generic 

AED prescriptions. It is important to understand the distinction between BCS, which is based on 

the extent of drug permeability/absorption, versus BDDCS, which is based on the rate of drug 

permeability/absorption. In the BCS system, levetiracetam, gabapentin, and vigabatrin are 

classified as BCS Class 1 drugs (42). These compounds are completely absorbed with the 

exception of gabapentin which is about 70% absorbed in humans (43), although quite slowly. 

These three drugs, in contrast, are classified as BDDCS Class 3  (See Table 2.2).  Thus, the 

predictability of hypersensitivity reactions for AEDs is based on BDDCS, not BCS, classification, 

since BCS does not predict whether drugs will be extensively metabolized or not. 

Conclusion: 

Drug-induced CARs constitute the most frequent idiosyncratic reactions confronting 

clinicians treating patients with epilepsy. Unfortunately, there is no reliable way to determine 

early in the clinical course of a rash if it is going to remain as a benign maculopapular rash or 

evolve into a severe skin reaction. Therefore, the drug should be discontinued as soon as possible 

in most cases. Our analysis concludes that BDDCS Class 2 and 1 AEDs are more prone to 

cutaneous toxicity and BDDCS Class 3 AEDs have the lowest cutaneous rash incidence across 

the studied ethnic groups. We propose that, if possible, BDDCS Class 3 AEDs should be 

preferentially dosed to patients of East Asian ancestry who most predominantly exhibit the HLA-

B*15:02 allele  (i.e. Han Chinese, Thai, and Malaysian populations), where an association 
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between HLA-B*15:02 and carbamazepine-induced SJS and TEN has been demonstrated (4–9). 

We believe that categorizing drugs by BDDCS classification adds to the understanding of 

idiosyncratic reactions. We plan to further test other AEDs in the HLA-B in vitro assay. Other 

toxicity models using BDDCS such as the Torsade de Pointes (44) and Drug Induced Liver 

Injury  (DILI) (45) are starting to emerge. BDDCS may help characterize and predict drugs 

having the potential for greater toxicity. 

REFERENCES 

1.  Zaccara G, Franciotta D, Perucca E. 2007. Idiosyncratic adverse reactions to antiepileptic 

drugs. Epilepsia. 48 (7):1223–44 

2.  Yang C-Y, Dao R-L, Lee T-J, Lu C-W, Yang C-H, et al. 2011. Severe cutaneous adverse 

reactions to antiepileptic drugs in Asians. Neurology. 77 (23):2025–33 

3.  Wolkenstein P, Revuz J. 2000. Toxic epidermal necrolysis. Dermatol. Clin. 18 (3):181–

200 

4.  Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. 

2013. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-

Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. 

JAMA Dermatol. 149 (9):1025–32 

5.  Chung W, Hung S, Hong H, Hsih M, Yang L, et al. 2004. Medical genetics: a marker for 

Stevens-Johnson syndrome. Nature. 428 (6982):486 

6.  Hung S-I, Chung W-H, Jee S-H, Chen W-C, Chang Y-T, et al. 2006. Genetic 

susceptibility to carbamazepine-induced cutaneous adverse drug reactions. 

Pharmacogenet. Genomics. 16 (4):297–306 



 
!

!
!

43 

7.  Man CB, Kwan P, Baum L, Yu E, Lau KM, et al. 2007. Association between HLA-

B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. 

Epilepsia. 48 (5):1015–18 

8.  Chang C-C, Too C-L, Murad S, Hussein SH. 2011. Association of HLA-B*1502 allele 

with carbamazepine- induced toxic epidermal necrolysis and Stevens–Johnson syndrome 

in the multi-ethnic Malaysian population. Int. J. Dermatol. 50 (4):221–24 

9.  Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, et al. 2008. 

Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with 

HLA-B*1502 allele in Thai population. Epilepsia. 49 (12):2087–91 

10.  US FDA. Information for healthcare professionals: dangerous or even fatal skin reactions 

- carbamazepine  (marketed as Carbatrol, Equetro, Tegretol, and generics). 

http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandPr

oviders/ucm124718.htm 

11.  Chen P, Lin J-J, Lu C-S, Ong C-T, Hsieh PF, et al. 2011. Carbamazepine-induced toxic 

effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364 (12):1126–33 

12.  Chen Z, Liew D, Kwan P. 2014. Effects of a HLA-B*15:02 screening policy on 

antiepileptic drug use and severe skin reactions. Neurology. 83 (22):2077–84 

13.  Handoko KB, van Puijenbroek EP, Bijl AH, Hermens WAJJ, Zwart-van Rijkom JEF, et 

al. 2008. Influence of chemical structure on hypersensitivity reactions induced by 

antiepileptic drugs: the role of the aromatic ring. Drug Saf. 31 (8):695–702 

14.  Wang X-Q, Shi X-B, Au R, Chen F-S, Wang F, Lang S-Y. 2011. Influence of chemical 

structure on skin reactions induced by antiepileptic drugs-The role of the aromatic ring. 

Epilepsy Res. 94 (3):213–17 



 
!

!
!

44 

15.  Wu C-Y, Benet LZ. 2005. Predicting drug disposition via application of BCS: 

transport/absorption/elimination interplay and development of a Biopharmaceutics Drug 

Disposition Classification System. Pharm. Res. 22 (1):11–23 

16.  Hosey CM, Chan R, Benet LZ. 2016. BDDCS predictions, self-correcting aspects of 

BDDCS assignments, BDDCS assignment corrections, and classification for more than 

175 additional drugs. AAPS J. 18 (1):251–60 

17.  Wei C-Y, Chung W-H, Huang H-W, Chen Y-T, Hung S-I. 2012. Direct interaction 

between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson 

syndrome. J. Allergy Clin. Immunol. 129 (6):1562–69 

18.  Hirsch LJ, Arif H, Nahm EA, Buchsbaum R, Resor SR, Bazil CW. 2008. Cross-sensitivity 

of skin rashes with antiepileptic drug use. Neurology. 71 (19):1527–34 

19.  Wang X-Q, Lang S-Y, Shi XB, Tian HJ, Wang RF, Yang F. 2012. Antiepileptic drug-

induced skin reactions: A retrospective study and analysis in 3793 Chinese patients with 

epilepsy. Clin. Neurol. Neurosurg. 114 (7):862–65 

20.  Alvestad S, Lydersen S, Brodtkorb E. 2007. Rash from antiepileptic drugs: Influence by 

gender, age, and learning disability. Epilepsia. 48 (7):1360–65 

21.  Benet LZ, Broccatelli F, Oprea TI. 2011. BDDCS applied to over 900 drugs. AAPS J. 13 

(4):519–47 

22.  Wang X-Q, Lang S, Shi X, Tian H, Wang R, Yang F. 2010. Cross-reactivity of skin rashes 

with current antiepileptic drugs in Chinese population. Seizure. 19 (9):562–66 

23.  Werhahn KJ, Klimpe S, Balkaya S, Trinka E, Krämer G. 2011. The safety and efficacy of 

add-on levetiracetam in elderly patients with focal epilepsy: a one-year observational 

study. Seizure. 20 (4):305–11 



 
!

!
!

45 

24.  Cormier J, Chu CJ. 2013. Safety and efficacy of levetiracetam for the treatment of partial 

onset seizures in children from one month of age. Neuropsychiatr. Dis. Treat. 9:295–306 

25.  Knowles SR, Shapiro LE, Shear NH. 2002. Anticonvulsant hypersensitivity syndrome in 

children: incidence, prevention and management. CNS Drugs. 16 (2):197–205 

26.  Naisbitt DJ, Farrell J, Wong G, Depta JPH, Dodd CC, et al. 2003. Characterization of 

drug-specific T cells in lamotrigine hypersensitivity. J. Allergy Clin. Immunol. 111 

(6):1393–1403 

27.  Naisbitt DJ, Britschgi M, Wong G, Farrell J, Depta JPH, et al. 2003. Hypersensitivity 

reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine 

profile of drug-specific T cell clones. Mol. Pharmacol. 63 (3):732–41 

28.  Haidu P, Uihlein M, Damm D. 1980. Quantitative determination of clobazam in serum 

and urine by gas chromatography, thin layer chromatography and fluorometry. J. Clin. 

Chem. Clin. Biochem. 18 (4):209–14 

29.  Ahmad AM. 2009. In vitro-in vivo correlation of modified release dosage form of 

lamotrigine. Biopharm. Drug Dispos. 30 (9):524–31 

30.  Anderson G. 2008. Understanding the ramifications of switching among AEDs: what are 

the data? Adv. Stud. Pharm. 5 (5):146–51 

31.  Arif H, Buchsbaum R, Weintraub D, Koyfman S, Salas-Humara C, et al. 2007. 

Comparison and predictors of rash associated with 15 antiepileptic drugs. Neurology. 68 

(20):1701–9 

32.  Ornoy A. 2009. Valproic acid in pregnancy: how much are we endangering the embryo 

and fetus? Reprod. Toxicol. 28 (1):1–10 



 
!

!
!

46 

33.  US FDA. Information for Healthcare Professionals: Phenytoin  (marketed as Dilantin, 

Phenytek and generics) and Fosphenytoin Sodium  (marketed as Cerebyx and generics). 

http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandPr

oviders/ucm124788.htm 

34.  McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, et al. 2011. HLA-

A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. 

Med. 364 (12):1134–43 

35.  Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, et al. 2010. HLA-B*1511 is a 

risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal 

necrolysis in Japanese patients. Epilepsia. 51 (12):2461–65 

36.  U.S. National Library of Medicine. DailyMed. http://dailymed.nlm.nih.gov/dailymed/ 

37.  Sperling M, Asadi-Pooya A. 2009. Antiepileptic Drugs: A Clinician’s Manual. New York: 

Oxford University Press. 201–9 pp. 

38.  Mockenhaupt M, Messenheimer J, Tennis P, Schlingmann J. 2005. Risk of Stevens-

Johnson syndrome and toxic epidermal necrolysis in new users of antiepileptics. 

Neurology. 64 (7):1134–38 

39.  Lacy CF, Armstrong LL, Goldman MP, Lance LL. 2008. Drug Information Handbook. 

Hudson, Ohio: Lexi-Comp, Inc. 17th ed. ed. 

40.  Bialer M, Midha KK. 2010. Generic products of antiepileptic drugs: A perspective on 

bioequivalence and interchangeability. Epilepsia. 51 (6):941–50 

41.  US FDA. 2015. Waiver of in vivo bioavailability and bioequivalence studies for 

immediate-release solid oral dosage forms based on a Biopharmaceutics Classification 

System guidance for industry. 



 
!

!
!

47 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guida

nces/UCM070246.pdf 

42.  Anderson GD. 2008. Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted 

therapy of antiepileptic drugs. Ther. Drug Monit. 30 (2):173–80 

43.  Shorvon SD. 2010. Handbook of Epilepsy Treatment. Oxford: Wiley-Blackwell. 376 pp. 

3rd ed. 

44.  Broccatelli F, Mannhold R, Moriconi A, Giuli S, Carosati E. 2012. QSAR modeling and 

data mining link Torsades de Pointes risk to the interplay of extent of metabolism, active 

transport, and hERG liability. Mol. Pharm. 9 (8):2290–301 

45.  Vuppalanchi R, Gotur R, Reddy KR, Fontana RJ, Ghabril M, et al. 2014. Relationship 

between characteristics of medications and drug-induced liver disease phenotype and 

outcome. Clin. Gastroenterol. Hepatol. 12 (9):1550–55  



 48 

CHAPTER 3: Evaluation of DILI Predictive Hypotheses in Early Drug Development 

ABSTRACT1 

Drug-induced liver injury (DILI) is a leading cause of drug failure in clinical trials and a major 

reason for drug withdrawals. DILI has been shown to be dependent on both daily dose and extent 

of hepatic metabolism. Yet, early in drug development daily dose is unknown. Here, we perform 

a comprehensive analysis of the published hypotheses that attempt to predict DILI, including a 

new analysis of the Biopharmaceutics Drug Disposition Classification System (BDDCS) in 

evaluating the severity of DILI warning in drug labels approved by the FDA and the withdrawal 

status due to ADRs. Our analysis confirms that higher doses ≥ 50mg/day lead to increased DILI 

potential but this property alone is not sufficient to predict DILI potential. We evaluate prior 

attempts to categorize DILI such as Rule of 2, BSEP inhibition, and measures of key 

mechanisms of toxicity compared to BDDCS classification. Our results show that BDDCS Class 

2 drugs exhibit the highest DILI severity, and that all of the published methodologies evaluated 

here, except when daily dose is known, do not yield markedly better prediction than BDDCS. 

The assertion that extensive metabolized compounds are at higher risk of developing DILI is 

confirmed, but can be enhanced by differentiating BDDCS Class 2 from Class 1 drugs. We do 

not propose that BDDCS classification, which does not require knowledge of the clinical dose, is 

sufficiently predictive/accurate of DILI potential for new molecular entities, but suggest that 

comparison of proposed DILI prediction methodologies with BDDCS classification is a useful 

tool to evaluate the potential reliability of newly proposed algorithms. Conclusion: The most 

successful approaches to predict DILI potential all include a measure of dose, yet there is a 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
1!Modified from publication:Chan R, Benet LZ. 2017. Evaluation of DILI predictive hypotheses 

in early drug development. Chem. Res. Toxicol. 30:1017–29 
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quantifiable uncertainty associated with the predicted dose early in drug development. Here we 

compare the possibility of predicting DILI potential using BDDCS classification versus 

previously published methods, and suggest that comparison of predictive metrics versus the 

outcome by just avoiding BDDCS Class 2 drugs may serve as a useful baseline in evaluating 

these metrics.  
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INTRODUCTION  

Drug-induced liver injury (DILI) is a leading cause of drug failure in clinical trials and a 

major reason for drug withdrawals from the market. Idiosyncratic DILI (IDILI) is very complex.  

Most IDILI appears to be immune mediated, and reactive metabolites appear to be involved in 

most, but not all IDILI.  In addition, there are probably several mechanisms by which a drug or 

reactive metabolite can induce an immune response.  Numerous compound- and/or patient-

specific risk factors can contribute to the susceptibility to DILI. IDILI has been shown to be 

dependent on both daily dose and extent of hepatic metabolism of a drug (1–4).  

Dose appears to be a key component in the risk assessment of toxicity. While there is not 

a clear dose-response relationship for idiosyncratic adverse drug reactions, epidemiological DILI 

studies have shown that dose of a compound is an important parameter in determining the 

likelihood that an individual drug will cause an idiosyncratic adverse drug reaction in the human 

population(2). At the same time, numerous studies have shown that dose alone is not an adequate 

discriminator between high and low risk compounds(5). There are a number of preclinical 

strategies where dose has been combined with other parameters directly or indirectly related to 

key measures of toxicity endpoints to help assess the potential DILI risk such as the formation of 

reactive metabolites, inhibition of the bile salt export pump, BSEP, resulting in the intracellular 

accumulation of bile salts and high covalent body burden(6, 7), mitochondrial dysfunction 

(resulting in the depletion of cellular energy supply and the generation of damaging reactive 

oxygen species), cell damage from oxidative stress (caused by reactive oxygen or reactive 

nitrogen species), and local inflammatory effects(8). All of these mechanisms are often 

interconnected and have, under various circumstances, been associated with the formation of 

chemically reactive metabolites.  Recently, Chen et al. reported that high lipophilicity in 
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combination with high daily dose increases DILI risk potential in humans(9). However, one 

would like to have a predictive DILI methodology early in drug development, long before the 

clinical dose is known.   

 Here we consider the possibility of using the Biopharmaceutics Drug Disposition 

Classification System (BDDCS), which can be determined prior to dosing a drug to humans or 

animals, as a potential baseline tool to be compared with presently proposed predictive 

procedures in evaluating DILI toxicity. The BDDCS was developed in 2005 after Wu and Benet 

recognized that highly permeable compounds, as outlined by the Biopharmaceutics 

Classification System (BCS), were extensively metabolized, while poorly permeable drugs were 

primarily eliminated unchanged in the urine or bile(10). Furthermore, BDDCS demonstrated that 

simple passive membrane permeability measures were highly selective in differentiating 

extensively vs. poorly metabolized drugs in humans. Drugs in the BDDCS are classified 

according to the membrane permeability rate and aqueous solubility. These characteristics have 

helped BDDCS define whether metabolic enzymes and/or transporters are clinically important. 

BDDCS features are demarcated by high and low values, classifying drugs into four categories. 

These classes are each associated with specific predictions regarding route of elimination and 

which interactions may be a clinical concern.  

Since its inception, the BDDCS has been useful in drug discovery for predicting routes of 

elimination, oral drug disposition, food effects on drug absorption, transporter effects on drug 

absorption, and potentially clinically significant drug interactions that may arise in the intestine, 

liver and brain(11). Most recently we have shown in Chapter 2 that the BDDCS can be useful in 

predicting the potential for antiepileptic drugs to cause cutaneous adverse reactions(12). A goal 

of this work was to explore the extent to which BDDCS defining characteristics, independent of 
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knowing actual drug pharmacokinetics/pharmacodynamics and dose can be used as a comparison 

baseline matrix of potential DILI adverse events with prior published predictive proposals(9, 13–

16). 

Here, we perform a comprehensive analysis to examine the clinical impact of BDDCS in 

evaluating the severity of DILI warning in drug labels approved by the Food and Drug 

Administration (FDA)(17), the withdrawal status due to ADRs, the role of BSEP inhibition, and 

proposed models including: the Rule of 2 (Ro2), Ro2 and reactive metabolite formation, 

maximum daily dosages prescribed, and assays applied to cover various mechanisms and 

endpoints associated with human DILI. (These assays included the generation of reactive 

metabolites, namely time-dependent inhibition (TDI) of Cytochrome P450 3A4 and glutathione 

(GSH) adduct formation, inhibition of the human bile salt export pump (BSEP), mitochondrial 

toxicity and cytotoxicity)(14). Recently, Zhang et al.(16) evaluated specific metabolic pathways 

predictive of DILI and Chen et al.(13) added the measurement of known reactive metabolites, 

both reporting a marked improvement in the previous methodologies employed to predict DILI; 

we have also included these studies in our analysis.  

Because one of the strongest determinant hypotheses with respect to DILI is reactive 

metabolite formation, we expect that drugs that are extensively metabolized/highly permeable 

(BDDCS Class 1 and 2) will have heightened susceptibility to DILI. Conversely, drugs that are 

poorly metabolized/poorly permeable (BDDCS Class 3 and 4) will be at a lower risk for causing 

DILI because they are primarily eliminated unchanged into the urine and bile. The strong 

relationship between dose, metabolic susceptibility, solubility and idiosyncratic DILI highlights 

the potential benefits of BDDCS as a comparison matrix for DILI prediction.  
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Relationship between FDA Drug Label Section, DILI Assessment and BDDCS 

Classification 

In our current comparative analysis, we leveraged the unique information contained in 

FDA drug labels and DILI severity assessment with respect to the BDDCS classification system. 

The DILI potential of the drugs in the data set was classified on the basis of the information on 

hepatic ADRs extracted from FDA drug labels; we note that only drugs that have been on the 

market for a minimum of ten years were chosen for review(18). Briefly, depending on the ADR 

severity, off market status and FDA drug labels, ADRs may be classified in different categories 

(“Discontinued”, “Withdrawn”, “Boxed Warning”, “Warning and Precautions”, “Adverse 

Reactions” and “No mention”, ordered by decreasing severity)(19–21). The DILI severity 

assessment is categorized as follows: “Severe DILI”, “Moderate DILI”, “Mild DILI”, and “No 

DILI”, ordered by decreasing severity as described by Chen et al.(18). However, with the recent 

publication of prediction based on metabolic pathways(16), “Moderate DILI” and “Mild DILI” 

were combined into a category designated “Non-severe DILI,” which we have utilized here.
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BDDCS Classification 
!

The BDDCS Class of each drug was initially evaluated based on the available solubility 

data, maximum dose strength (mg), and extent of metabolism(22). Recently we expanded the list 

of BDDCS drug classification to more than 1100 drugs, including many drugs that have been 

removed from the market as a result of toxic manifestations(23). Expansion of the BDDCS 

classification list was particularly challenging since for many drugs that came onto the market a 

number of years ago, and then removed because of toxicity, little reliable information both in 

terms of metabolism and solubility can be found in the literature. Therefore, when a drug is on 

the border of two classes, the BDDCS class is selected based on expected or known drug 

interactions. 

There is a marked distinction between extensively and poorly metabolized compounds 

and this can be well predicted based on an in vitro measure of drug permeability(24). Recently, 

Dave and Morris showed that the solubility classification could be evaluated using a 0.3 mg/mL 

cut-off (25), thus not requiring knowledge of the clinical dose, thereby allowing BDDCS 

classification to be made  without knowledge of clinical dose (See Figure 3.1). 
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Figure 3.1. Biopharmaceutics Drug Disposition Classification System (BDDCS).  

 

We examined the BDDCS class relationship of hepatotoxicity between the different ADR 

categories by calculating the proportion of drugs in each FDA hepatic liability category, and 

DILI severity category. Categorical variables were tested for statistically significant differences 

using the chi-square tests (test for trends in proportions and test of equal or given proportions), p 

< 0.05 was considered statistically significant. Analyses and plots were carried out using R 

(http://cran.r-project.org)(26, 27) and GraphPad Prism software version 7.0 (GraphPad Software, 

Inc., San Diego, CA). Furthermore, The p-values for evaluating BDDCS class trends of FDA 

hepatic liability category and DILI severity are computed by the implemented functions in R for 

testing for trends in proportions. The test of equal or given proportions was used for testing the 

null hypothesis that the proportions in several groups are the same as the “No mention” or “No 

DILI” where applicable. Out of 287 eligible compounds from the NCTR dataset, 19 compounds 

could not be classified due to limited available data (See legend of Figure 3.2). 
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Figure 3.2. Distribution of FDA Hepatic Liability with FDA DILI Severity assignment. 
Confirming this classification, keywords that define severe DILI  (e.g., acute liver failure and 
liver necrosis) were more often reported in the “Boxed Warning” or “Warnings and Precautions” 
sections than in the “Adverse Reactions” section. By contrast, milder DILI  (e.g., increased liver 
aminotransferases and liver steatosis) were more frequently reported in the “Adverse Reactions” 
section. This indicates that classifying DILI severity according to the FDA drug label sections 
was applicable for the purpose of our study. 
The “Black Box Warning” for moderate DILI was 5.3%  (2/38) and 13.2%  (5/38) for mild 
DILI.  All of the discontinued  (n=7) and withdrawn drugs  (n=54) were labeled with severe 
DILI. We note that under the FDA DILI severity assignment scale there are more compounds 
assigned to the “Moderate DILI” category in the “Adverse Reactions” section 31.8%  (14/44) 
than the “Warning and Precautions ” section  (11.4%, 9/79).  

 

 We observe that as the hepatic warning severity increases, the proportion of BDDCS 

Class 2 drugs increases and the proportions of both BDDCS Class 1 and 3 drug decrease as 

depicted in Figure 3.3A, all with highly significant trends. The “No mention” category is 

significantly different from all other categories, except for “Adverse Reactions.” BDDCS Class 2 

drugs were incriminated with the highest proportions in the following drug label 

sections:  “Warning and Precautions”  (45.6%, 36/79), “Boxed Warning”  (47.2%, 17/36), 
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“Withdrawn”  (62.5%, 25/40) and “Discontinued”  (83.3%, 5/6). Obviously, the number of drugs 

designated as exhibiting severe DILI drugs increases as the ADR severity increases. That is, 

15.9%  (7/44) in the “Adverse Reactions” category, 36.7%  (29/79) in the “Warning and 

Precautions” and 81.6%  (31/38) of the drugs in the “Black Box Warning” are assessed to exhibit 

severe DILI  (See Figure 3.2). In Figure 3.3B and 3.3C the two BDDCS determinants  (extent of 

metabolism and solubility) are examined. The percentage of poorly metabolized and of highly 

soluble drugs decrease, while low solubility drugs increase with hepatic liability. The percent of 

extensively metabolized drugs also increases with hepatic liability, but since almost 2/3 of “No 

mention” drugs are metabolized, it is apparent that extent of metabolism itself is not a 

discriminating parameter. Although greater extent of metabolism has been reported to 

significantly increase the potential of a compound to cause DILI (1), this property alone is not 

able to distinguish compounds that are “No mention” of hepatic liability from those compounds 

exhibiting hepatic liability (See Figure 3.3B). 
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Figure 3.3A. Distribution of FDA Hepatic Liability with BDDCS class. 
Drugs were assigned according to the most severe drug label section reporting a hepatic ADR or 
withdrawn and discontinued, and to the “No mention” class if no hepatic ADRs were reported. 
Bars show the percentage of all compounds in the same category that are associated with each 
FDA hepatic liability. BDDCS Class 2 drugs are shown to significantly increase the frequency of 
hepatic ADRs reported in the “Boxed Warning”, “Warning and Precautions”, “Withdrawn” and 
“Discontinued” categories. There was a significant difference between BDDCS Classes when the 
proportionality trend test was calculated: BDDCS Class 1 trend p-value = 0.0003842; BDDCS 
Class 2 trend p-value = 2.014e-10; BDDCS Class 3 trend p-value = 0.003928; BDDCS Class 4 
trend NS, p-value = 0.2963. Differences in the BDDCS Class distributions were evaluated 
among the following groups: “No mention” vs. “Adverse Reactions”, NS, p-value = 0.2908; “No 
mention” vs. “Warning and Precautions”, p-value=0.0001058; “No mention” vs. “Boxed 
Warning”, p-value=0.0006222; “No mention” vs. “Withdrawn”, p-value= 6.439e-07“; No 
mention” vs. “Discontinued”, p-value= 9.36e-05. 
 
Figure 3.3B. Distribution of FDA Hepatic Liability with respect to extensively metabolized vs. 
poorly metabolized drugs. 
 The extensive hepatic metabolism group consisted of 102 BDDCS Class 1 and 99 BDDCS Class 
2 drugs; the poor hepatic metabolism group consisted of 55 BDDCS Class 3 and 8 BDDCS Class 
4 drugs. There was a significant difference between extensively metabolized vs. poorly 
metabolized drugs when the proportionality test was calculated p-value = 0.001536). 
 
Figure 3.3C. Distribution of FDA Hepatic Liability with respect to high solubility vs. low 
solubility drugs. 
The high solubility group consisted of 102 BDDCS Class 1 and 55 BDDCS Class 3 drugs; the 
low solubility group consisted of 99 BDDCS Class 2 and 8 BDDCS Class 4 drugs. There was a 
significant difference between high solubility vs. low solubility drugs when the proportionality 
test was calculated p-value = 3.481e-09. 
 

When assessing DILI severity using the FDA DILI severity assignment  (but combining 

“Mild” and “Moderate” DILI as “Non-severe DILI”) with BDDCS Class  (See Figure 3.4A), we 

also observe statistically significant trends for the increase in BDDCS Class 2 and decreases for 

BDDCS Classes 1 and 3. BDDCS Class 2 represents 53.6%  (60/112) of the drugs in the “Severe 

DILI” category vs. 10%  (6/60) in the “No DILI” category. BDDCS Class 1 represents 28.6%  

(32/112) of drugs in the “Severe DILI” vs. 56.7%  (34/60) in the “No DILI” category. BDDCS 

Class 3 represents 14.3%  (16/112) of drugs in the “Severe DILI” vs. 30%  (18/60) in the “No 

DILI” category. The “Severe DILI” category comprises the following endpoints:  acute liver 
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failure, fatal hepatotoxicity, and “Discontinued and Withdrawn” drugs as defined by Chen et al. 

(18). The “Non-severe DILI” category comprises compounds exhibiting hyperbilirubinemia, 

jaundice, and/or liver necrosis  (“Moderate DILI”) and compounds exhibiting liver 

aminotransferases increase  (“Mild DILI”). In the “No DILI” category, we observe that most 

drugs are BDDCS Classes 1  (56.7%, 34/60) and 3  (30%, 18/60).  Here again, we observe a 

significant trend of high DILI liability for extensively metabolized compounds  (Figure 3.4B). 

Drugs exhibiting high solubility  (Figure 3.4C) show a trend of lower DILI severity.
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Figure 3.4A. Distribution of FDA DILI severity assignment with BDDCS Class. 
FDA Drugs Labels were assigned to a DILI severity class according to the most severe reporting 
of a hepatic ADR or to the No DILI class if no hepatic ADRs were reported  (6). Bars show the 
percentage of all compounds in the same DILI severity class  (“No DILI”, “Non-severe DILI”, 
and “Severe DILI”). BDDCS Class 2 shows the highest frequency in the “Severe DILI” class 
assessment. BDDCS Class 1 and 3 drugs show the highest frequency in the “No DILI” class 
assessment.  There was a significant difference between BDDCS classes when the 
proportionality trend test was calculated: BDDCS Class 1 trend p-value = 0.0003608; BDDCS 
Class 2 trend p-value = 2.105e-08; BDDCS Class 3 trend NS, p-value = 0.01297; BDDCS Class 
4 trend NS, p-value = 0.8457. There was also significant differences in the BDDCS Class 
distributions among the following groups: “No DILI” vs. “Non-severe DILI”, p-value = 
0.005063; “No DILI” vs. “Severe DILI”, p-value = 4.627e-07. 
 
Figure 3.4B. Distribution of FDA DILI severity assignment with respect to extensively 
metabolized vs. poorly metabolized drugs.  
There was a significant difference between extensively metabolized vs. poorly metabolized drugs 
when the proportionality test was calculated p-value = 0.02208. 
 
Figure 3.4C. Distribution of FDA DILI severity assignment with respect to high vs. low 
solubility drugs.  
There was a significant different between high vs. low solubility drugs when the proportionality 
test was calculated p-value = 2.23e-08. 

 

Our examination of the relationship between the BDDCS’s determinant properties: 

solubility and extent of metabolism led to some novel observations. Drugs belonging to BDDCS 

Class 1 and 3 exhibited a lower proportion of DILI severity. Drugs that are extensively 

metabolized and have low aqueous solubility, i.e., BDDCS Class 2 drugs have the highest rates 

of DILI risk. BDDCS Class 2 drugs exhibited the highest proportions among the ”Warning and 

Precautions”, “Black Box Warning”, “Withdrawn” and “Discontinued” categories. These are 

notably considered the most serious DILI risk categories  (See Figure 3.3A). These findings 

demonstrate the importance of the intrinsic drug properties as a potential factor for the 

development of a DILI event. 
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Relationship between Daily Dosage, FDA Drug Label and DILI Assessment Score 
!

Lammert and coworkers (1, 2) have attributed hepatic adverse events to compounds with 

significant hepatic metabolism and daily dose ≥ 50mg. We have also evaluated the relationship 

between daily dosages ≥ 50mg against the already assessed FDA hepatic liability categories and 

DILI severity assessment (9). Our analysis concurs with the association of drugs being given at 

dosages ≥ 50mg/day having more adverse hepatic events. We have further evaluated this 

observation by examining the FDA hepatic liability distribution and DILI severity assessment.  

Drugs with a daily dose ≥ 50mg had a much higher frequency of toxicity as evidenced by the 

higher percentages in the “Warning and Precautions”, “Boxed Warning” and “Withdrawn” label 

sections. For the DILI assessment in Figure 3.5B we also observe a higher frequency in DILI 

severity for compounds that are dosed at ≥ 50mg/day.  

Although, there is strong evidence that dosages ≥ 50mg/day are associated with increased 

risk for hepatotoxicity, many drugs are safe at such dosages. For instance, the 50mg/day dosage 

cut off would predict that 44% of “No mention” and/or “No DILI” drugs  (See Figure 3.5A and 

3.5B) exhibit “Not Safe” potential in terms of hepatotoxicity. Thus, supporting that daily dosage 

alone is not a reliable means of guiding the drug development process, regulatory application, 

and clinical practice.  
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Figure 3.5A. Daily Dose ≥ 50mg prediction  (Safe/ Not Safe) vs. FDA Hepatic ADR Categories. 
There is a marked increase in the proportion of compounds that are dosed at greater than 50mg/day and 
have FDA drug label warnings associated with DILI adverse effects as illustrated in the “Warning and 
Precautions”, “Boxed Warning” and “Withdrawn” categories. 
 
Figure 3.5B. Daily Dose ≥ 50mg prediction  (Safe/ Not Safe) vs. FDA DILI severity assessment. 
Similarly, there is a marked increase in the proportion of compounds that are dosed at greater than 
50mg/day and have some type of DILI toxicity as illustrated in the “Non-severe DILI” and “Severe DILI” 
categories.
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Comparison of DILI – No DILI Predictive Metrics 

In our comparative analysis we believe that positive predictive value (PPV, i.e., those 

drugs predicted to cause DILI that actually do so, or the true positive rate) is the most important 

value, since a high percentage will indicate the ability of the method to identify drugs that cause 

DILI. We believe that the false negative rate (FNR, i.e. those drugs causing DILI that are not 

identified by the metric, the type 2 error of the metric) is the second most important criteria, 

since a low number indicates that we do not incorrectly predict DILI when it occurs. The third 

parameter that we list, accuracy of the metric (ACC, i.e., the true positive and true negative 

predictions of the metric divided by the total number of compounds evaluated), represents the 

total % predicted correctly. Many other predictive metrics can be calculated, as has been done. 

However, we believe that PPV and FNR are the most relevant in evaluating an analysis of 

toxicity potential.  

Chen and coworkers(9) have proposed that drugs with high lipophilicity (LogP) given at 

high doses likely become hepatotoxic as expressed in the Ro2. Using the same data set and the 

same annotations that Chen and coworkers(9) used for the proposed Ro2  (log P ≥ 3 and daily 

dosages ≥ 100mg (n=164)), we have reviewed the relationship between DILI hepatic adverse 

events and daily dose ≥ 50mg, daily dose ≥ 100mg, BDDCS Class, cLogP ≥ 3 and combinations 

of these characteristics. The data set was classified into two categories: “Most DILI Concern” 

and “No DILI Concern.” We believe that the use of these standardized annotations allows for a 

more direct comparison of the models. Of the 164 drugs, BDDCS classification could be 

assigned for 151 drugs. Our evaluation includes a comparison of the different predictive metrics 

against the first proposed Ro2 Chen et al. data set(9) and the most recent report adding 

generation of reactive metabolites to the Ro2(13).  
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 Chen and coworkers(9) claim that the Ro2 is the best method for identifying drugs that 

cause DILI (PPV=95.3%), but we maintain that it is not a good method in terms of its FNR 

(61.7%), and therefore its ACC is low (55.0%). We can see in Table 3.1 that comparing the Ro2 

with cLogP ≥ 3 or cLogP ≥ 3 + Dose ≥ 50mg (rather than 100mg), that similar ACC values are 

achieved, but PPV for cLogP ≥ 3 alone is markedly decreased. BDDCS Class 2 identification 

yields a slightly higher ACC than Ro2 due to the bigger decrease in FNR vs. PPV. We observe 

that accuracy of DILI is best predicted by “Dose ≥ 50mg”, followed by “Dose ≥ 100mg”. The 

next best predictive model was “Metabolism (BDDCS Class 1 and 2) + Dose ≥ 50mg” together. 

Additionally, when we compared the Ro2 with “cLogP ≥ 3” or “cLogP ≥ 3 + Dose ≥ 50mg” 

(rather than 100mg), we observe similar ACC values, but PPV for cLogP ≥ 3 alone is markedly 

decreased. Thus showing that dose alone is a stronger contributing factor to DILI risk than 

cLogP. Although BDDCS Class 2 and Ro2 show relatively high PPV, their ACC is decreased 

due to FNR outcomes. We also found that poor solubility “(BDDCS Class 2 + 4)” has a 

correlation with DILI toxicity, but this characteristic alone was not able to distinguish accurately 

DILI vs. No DILI events. Our comparison in Table 3.1 suggests that BDDCS classification alone 

is not sufficiently predictive of DILI potential, but that the Ro2, which includes a dose parameter 

may be no better a predictor and possibly even poorer than just looking at BDDCS Class 2, 

which does not require knowledge of dose. 
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A more recent report on the Ro2(13) includes the addition of reactive metabolites 

formation(13). Of the 192 drugs used in their follow up analysis, BDDCS classification could be 

assigned to 166 drugs. This comparative analysis is depicted in Table 3.2. This “Ro2 + Reactive 

Metabolites” shows an increase in PPV, but only has a marginal improvement in the overall 

ACC and, in fact, appears to be less useful than “BDDCS Class 2 + Reactive Metabolites”. 

BDDCS Class 2 compounds show higher DILI predictability as compared to the other BDDCS 

classes. Furthermore, BDDCS Class 2 alone in this dataset performed better in terms of ACC 

than the first proposed “Ro2” and most recently proposed model for “Ro2 + Reactive Metabolite 

formation”. We also observe that reactive metabolite formation alone, followed by “Dose ≥ 

50mg + Reactive Metabolite Formation” and “Dose ≥ 100mg + Reactive Metabolite Formation” 

had the best performance in terms of ACC and PPV. However, these conditions also have an 

increase in FNR.  The next best predictive model was “Metabolism (BDDCS Class 1 and 2) + 

Reactive Metabolite Formation” together, which does not require any knowledge of the dose 

taken, performed similarly to “Metabolism (BDDCS Class 1 and 2) + Dose ≥ 50mg or Dose ≥ 

100mg”, which has showed the best predictability in our initial analysis. Moreover, taking into 

account reactive metabolite formation or having better methods to account for reactive 

metabolite formation together with high permeability compounds can potentially lead to an 

improvement in DILI prediction without the need to rely on dose.  

!
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 Lammert and coworkers(1) attributed hepatic adverse events to compounds exhibiting 

extensive metabolism. This attribute is represented by “BDDCS Class (1+ 2)” in Table 3.1 and 

Table 3.2 that shows better ACC than Ro2 and “BDDCS Class 2” because of the marked 

decrease in FNR, but the lower PPV value is probably higher than is acceptable for DILI 

predictions. Lammert et al.(2) had previously suggested that significant hepatic metabolism and 

daily dose ≥ 50mg was potentially predictive of hepatic adverse events. However, addition of 

dose to BDDCS Class (1 + 2) shows an increase in PPV, but with a corresponding increase in 

FNR, yielding negligible ACC changes. It is noteworthy that the best ACC in Table 3.1 is 

achieved with dose alone (i.e. Dose ≥ 50mg and Dose ≥ 100mg) with slightly lower PPV but the 

lowest FNRs as compared to Ro2 and BDDCS Class 2. In Table 3.2 what we find illuminating 

for this data set is that BDDCS Class 2 by itself performed better than “Ro2” and “Ro2 and 

reactive metabolite formation.” We also observe a comparable performance of “BDDCS Class 

(1+2) + reactive metabolite formation” vs. dose alone. But we also note that just considering 

only reactive metabolite formation yields the highest ACC of all the other methodologies, even 

when dose is added to reactive metabolite formation. (In Supplementary Tables 3.3A and 3.3B 

we show that selection of only BDDCS Class drugs vs. all drugs in the new Chen et al. (13) data 

set does not bias the outcome.) 



 71 

 

Table 3.3A. Comparison of Different Predictive Metrics for the Most Recent Chen et al. 
Data Set (13). 
Criteria % Correct  (Positive 

Predictive Value, 
PPV) 

% DILI Missing   
(False Negative Rate, 

FNR) 

% Accuracy   (ACC)  
(True Positive + True 

Negative)/192 
Rule of Two 92.7% 58.9% 59.9% 
Rule of Two + 
Reactive Metabolite 
Formation 

100.0% 61.3% 60.4% 

Dose ≥ 100mg+ 1 ≤ 
CLogP < 3 

81.1% 75.8% 47.4% 

Dose ≥ 100mg+ 1 ≤ 
CLogP < 3 + Reactive 
Metabolite Formation 

92.3% 80.6% 46.9% 

Dose ≥ 100mg 80.8% 15.3% 77.1% 
CLogP ≥ 3 77.2% 50.8% 57.8% 
Reactive Metabolite 
Formation 

88.0% 16.9% 81.8% 

 

Table 3.3B. Comparison of Different Predictive Metrics for the Most Recent Chen et al. 
Data Set (13) (Filtered for only BDDCS Classifiable Drugs). 
 
Criteria % Correct  (Positive 

Predictive Value, PPV) 
% DILI Missing   (False 

Negative Rate, FNR) 
% Accuracy   (ACC)  
(True Positive + True 

Negative)/166 
Rule of Two 92.2% 58.0% 58.4% 
Rule of Two + Reactive 
Metabolite Formation 

100.0% 60.7% 59.0% 

Dose ≥ 100mg+ 1 ≤ 
CLogP < 3 

83.3% 77.7% 44.6% 

Dose ≥ 100mg+ 1 ≤ 
CLogP < 3 + Reactive 
Metabolite Formation 

90.9% 82.1% 43.4% 

Dose ≥ 100mg 82.6% 15.2% 77.7% 
CLogP ≥ 3 79.2% 49.1% 57.8% 
Reactive Metabolite 
Formation 

88.7% 16.1% 81.9% 
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Relationship between BSEP Inhibition and BDDCS Classification 

Another model we used to evaluate DILI toxicity has been the supposition that BSEP 

inhibitors lead to DILI causation. FDA drug labels for 182 registered drugs have been evaluated 

for their BSEP inhibition by Pedersen et al.(15). Assignment to BSEP inhibition categories was 

based on the ATP dependent taurocholate transport rate. Compounds that inhibited BSEP more 

than 50% at concentration of 50uM were considered “BSEP Inhibitors”; compounds in the 50%-

72.5% range were considered “Weak BSEP Inhibitors”; compounds that inhibited less that 

27.5% were considered “BSEP Non-Inhibitors”. All compounds but L-carnitine (“No mention”, 

“No DILI”) could be classified. For BDDCS classification, only active species were considered. 

The distribution of BSEP inhibition in each FDA hepatic liability category and BDDCS class 

were evaluated. 73/181 drugs were assigned to the “Adverse Reactions” category, 61/181 to the 

“Warning and Precautions”, 12/181 to the “Boxed Warning”, 2/181 in the “Withdrawn” category 

and 33/181 to the “No mention” category. 

When BSEP inhibition data were correlated with FDA drug labels of registered 

drugs(15), we observed no discernible pattern between BSEP inhibition and ADR categories 

(See Figure 3.6A). For the BDDCS classification, we observe that the great majority of strong 

BSEP inhibitors are BDDCS Class 2 drugs, with concomitant decreases in the percentages of 

BDDCS class 1 and 3 drugs as BSEP inhibition increases, as depicted by Figure 3.6B. Here we 

point out that because we are able to make similar predictions just based on simple 

physicochemical parameters, this leads us to dismiss the predictive ability of the mechanistic 

association of BSEP and DILI. We suspect that previous analyses predicting that BSEP 

inhibition leads to DILI may have been confounded by the observation that most BSEP inhibitors 

are BDDCS Class 2 drugs, which show a high prevalence for DILI. In Table 3.4, we observe that 



 73 

in the condition of a positive GSH + BDDCS Class 2 or BSEP +BDDCS Class 2 we observe a 

marked improvement in the PPV. However, the predictability of these assays is still very limited 

as noted by their high FNR outcomes. Consideration of Cmax of drugs in relation to IC50 of 

BSEP inhibition could possibly improve the prediction of DILI based on BSEP inhibition. 
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Figure 3.6A: Distribution of BSEP inhibition with respect to FDA Hepatic Liability assignment. 
Assignment to BSEP inhibition categories was based on the ATP dependent taurocholate  (TC) 
transport rate. Compounds that inhibited TC transport more than 50% were considered BSEP 
Inhibitors; compounds inhibiting TC transport rate in the 27.5%-50.0% range were considered 
Weak BSEP Inhibitors; compounds inhibiting TC transport less than 27.5% were considered 
BSEP Non-inhibitors. Bars show the percentage of all compounds in the same BSEP inhibition 
class  (BSEP Non-Inhibitor, BSEP Weak Inhibitor, BSEP Inhibitor). There was a significant 
difference between the FDA hepatic liability categories when the proportionality trend test was 
calculated: “No mention” trend, NS, p-value = 0.6018, “Adverse Reactions” trend, p-value = 
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0.0007441, “Warning and Precautions” trend, p-value = 0.01111, “Boxed Warning” trend, NS, 
p-value = 0.1129, “Withdrawn” trend, p-value = 0.01243.  

Figure 3.6B. Distribution of BSEP inhibition assignment with respect to BDDCS Class.  
BSEP inhibitors are overwhelmingly composed of BDDCS Class 2 drugs  (84.6%). There was a 
significant difference between BDDCS Classes when the proportionality trend test was 
calculated: BDDCS Class 1 trend, p-value = 5.521e-05; BDDCS Class 2 trend, p-value = 5.009e-
13; BDDCS Class 3 trend, p-value = 0.00115; BDDCS Class 4 trend, NS, p-value = 0.2432. 
There was also significant differences in the BDDCS Class distributions among the following 
BSEP inhibition groups: “BSEP Non-inhibitor” vs. “BSEP Weak Inhibitor”, p-value = 0.0214; 
“BSEP Non-inhibitor” vs. “BSEP Inhibitor”, p-value = 2.78e-11. 
 

Comparison of Mechanism Based Toxicity Endpoints 

Although, a number of compound–specific liability factors have been linked with DILI 

susceptibility, it is difficult to understand which risk factors are more important in patient-

specific responses and/or environmental stimuli. One approach followed by many research 

groups to assess and reduce some of the more common, drug-specific factors in a set of targeted 

in vitro assays. The most common mechanisms covered in such in vitro panels or hazard 

matrices include formation of reactive metabolites, inhibitions of drug transporters involved in 

hepatobiliary elimination of bile acids and other metabolic endogenous products (BSEP, MRPs), 

mitochondrial toxicity and different cellular toxicity assays covering the formation of drug-

metabolites(28, 29). Various approaches are used in the pharmaceutical industry for hazard 

identification and risk assessment of reactive metabolites and more integrated strategies that 

include measures of the initial mechanism of toxicity have been highlighted in our analysis.  

Zhang et al.(16) evaluated the in vitro hepatic toxicity of 152 drugs from the Chen and 

coworkers(9) data set using four mechanistically relevant endpoints. They reported that the ratio 

of the measured reactive oxygen species to cellular ATP depletion (ROS/ATP) was able to not 

only differentiate compounds exhibiting severe DILI (65 compounds) from no DILI (35 

compounds) but also severe DILI from non-severe DILI (52 compounds). Of the 152 drugs, 
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streptozocin could not be BDDCS classified and chlorpropamide as a class 0 drug (extent of 

metabolism highly dependent upon urinary pH) was not included in our analysis. For the 152 

drugs from the Chen dataset evaluated by Zhang et al.(16), 134 drugs were BDDCS Class known. 

When we carried out an analysis for this data set in terms of BDDCS Class as was done for the 

entire Chen et al. (9) data set  as shown in Fig. 3.4 a similar trend was observed (data not shown) 

but the trends were not to the same degree of significance. What would be more illuminating 

would be individual drug results with respect to the specific mechanisms based outcomes, which 

were not presented. However, the accuracy of this characterization remains in question.  In the 

manuscript by Zhang et al.(16) ibuprofen and atorvastatin were characterized as “severe DILI”, 

felbamate, methimazole, and pyrazinamide were characterized as “non-severe DILI” and 

streptozocin and penicillamine were characterized as “no DILI”, which we believe are inaccurate 

classifications. In addition, Zhang et al. include in their study directly cytotoxic anticancer drugs 

such as cisplatin, dacarbazine, bleomycin, etc., which should be evaluated separately from other 

drugs.   

 We also include here a comparison of the different predictive metrics in the various 

assays measuring key mechanisms of toxicity endpoints associated with DILI from the Schadt et 

al. data set(14). Schadt et al.(14) evaluated 120 marketed or withdrawn drugs, which were 

analyzed independent of FDA classification. These workers categorized severe and moderate 

DILI as “high DILI concern” and mild and no DILI as “low DILI concern.” The “high DILI 

concern” category was a merger of moderate and severe risk compounds based on the FDA 

categorization. Generation of reactive metabolites was tested via GSH adduct formation and 

P450 3A4 time-dependent inhibition (TDI). Further key measures of initial mechanism of 

toxicity were monitored in a panel consisting of assays assessing BSEP inhibition, mitochondrial 
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toxicity and cytotoxicity. In the Schadt et al. data set of 120 compounds, 14 compounds had not 

been BDDCS classified. As depicted in Table 3.4 we evaluated 106/120 drugs that were screened 

based on different in vitro mechanism endpoints and BDDCS class, which has been previously 

published. The assays that performed the best were GSH and BSEP assays; this was determined 

based on the balance of the lowest FNR and highest PPV. However the FNR rates of these two 

assays are also very high, and the accuracy of these tests is comparable to the analysis of 

BDDCS class 2 alone. When GSH or BSEP measurements are added to BDDCS Class 2 PPV 

and FNR both increase but accuracy is no better. The highest ACC is obtained when all of the 

mechanisms of toxicity endpoints are confirmed, due to the low FNR. However, having a PPV of 

only 65.1% does not give much confidence.  
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 Some of these risk factors can be mitigated during the drug design/development process 

to identify drugs with better chemical attributes with reduced potential to cause human DILI.  

The strengths and weaknesses have been highlighted in our analysis  

Although there may be some general trends between simple physical parameters, it is 

unlikely that such considerations could accurately predict risk.  This problem could potentially 

be alleviated by the new in vitro approaches and utilization of state of the art instrumentation 

currently being evaluated. The development of improved physiological test systems based on 

information gained from studies with model hepatotoxins are required to encompass both 

chemical and biological factors associated with hepatotoxicity to try to screen for rare but often 

fatal idiosyncratic hepatotoxicities earlier in drug development.  

 

BDDCS Classification Prior to Dosing in Humans 

Although the finding of Uetrecht shows that idiosyncratic drug reactions were rare among 

individuals given drug doses <10mg/day and more likely among individuals given drug doses ≥ 

1000mg/day(30), the dose relationships can only be determined for a new molecular entity after 

the drug has been administered to human subjects/patients. In contrast, BDDCS Class can be 

predicted prior to ever dosing the compounds to humans as we have proposed previously(31). 

Hosey and Benet(24) showed that based on in vitro permeability measurements, PPV for 

prediction of extensive metabolism were all 90% or greater. And most recently Dave and 

Morris(25) showed that they were able to correctly predict highly soluble vs. poorly soluble 

drugs using measured solubility parameters with greater than 85% probability. Thus as seen in 

Table 3.1, just knowing if a compound is BDDCS Class 2 prior to drug dosing has the ability to 

identify DILI potential with 90.2% PPV and 61.6% ACC. And in Table 3.2, the incorporation of 
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better assays to the assignment of BDDCS Class and reactive metabolite formation can perform 

as well as dose without knowing the actual dose. As noted above, negligible improvements in 

PPV and decrements in ACC are observed when dose size is added to BDDCS categorization. 

BDDCS Class (2 + 4) gave comparable results for BDDCS Class 2 alone, but since there are so 

few Class 4 drugs, it is difficult to conclude if this is relevant.  

 

Relationships between BDDCS and Toxicity 

The hypothesis that compounds with significant hepatic metabolism may potentially be 

more hepatotoxic due to the generation of reactive intermediates and subsequent metabolic 

idiosyncrasies was first uncovered in an epidemiological survey by Lammert and coworkers(1) 

who reported in their analysis that compounds exhibiting a significant hepatic metabolism 

resulted in ALT > 3 times ULN, liver failure, liver transplantation, and fatal DILI versus 

compounds with lesser degrees of hepatic metabolism. Our results show that DILI toxicity is 

most apparent in BDDCS Class 2 drugs, exhibiting the highest proportions among the ”Warning 

and Precautions”, “Black Box Warning”, “Withdrawn” and “Discontinued” categories. The great 

majority of approved drugs that cause acute liver failure, fatal hepatotoxicity, discontinued and 

or withdrawn are BDDCS Class 2 drugs. BDDCS Class 3 and 4 drugs show little risk of liver 

aminotransferases increase and hyperbilirubinemia. Lammert’s assertion that extensively 

metabolized compounds are at an increased risk to develop DILI is limited since we show in our 

data analysis that BDDCS Class 1 compounds, which are extensively metabolized, represent the 

majority of the compounds in the “No mention” and “No DILI” groups (See Figure 3.3A and 

Figure 3.4A). The compounds that show the most toxicity are the extensively metabolized, low 
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solubility compounds, i.e. BDDCS Class 2. Overall BDDCS classification appears to have an 

association with drug toxicity potential to lead to DILI adverse events.  

Drugs belonging to BDDCS Class 3 and 4 exhibited much lower proportions in the FDA 

hepatic liability and DILI severity assessment categories (See Figures 3.3 and 3.4). However, we 

note the underrepresentation of BDDCS Class 4 drugs in the overall scheme of marketed 

approved drugs. Compounds with poor hepatic metabolism had been previously noted to be 

significantly less likely to cause hepatotoxicity(1). In support of this observation, we also 

observe the increasing trend of BDDCS Class 3 drugs as the DILI severity decreases as depicted 

by Figure 3.4. Although a lack of hepatic metabolism does not assure total lack of hepatotoxicity, 

it indeed appears that BDDCS Class 3 and 4 drugs lead to a lower DILI severity. 

We are not the first to investigate the BDDCS Class relationship and DILI. Previously 

Vuppalanchi et al.(32) have analyzed 383 cases of DILI caused by a single orally administered 

prescription agent from the DILI Network Prospective Study. The relationship of daily dosage (≥ 

50 mg vs. ≤ 49mg), preponderance of hepatic metabolism (≥50% vs. <50%), and BDDCS class 

were compared with clinical characteristics and outcomes. A total of 99 drugs belonging to 

BDDCS Classes 1 through 4 were responsible for the DILI episodes.  In concordance with daily 

dosage relationship previously reported, there are a much smaller number of cases of DILI in the 

≤ 49 mg/day group (n=50) than those with daily dosages ≥ 50mg/day (n=324). There is also a 

higher number of cases of DILI from drugs that underwent significant hepatic metabolism 

(n=305) compared to those without hepatic metabolism (n=71).  However, in their BDDCS case 

analysis breakdown, they report 118 cases with BDDCS Class 1, 96 cases with BDDCS Class 2, 

112 cases with BDDCS Class 3, and 38 cases with BDDCS Class 4, which shows that the actual 

number of extensively metabolized drugs is 214, while it is 150 for poorly metabolized drugs.   
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Vuppalanchi et al. concludes that there is no DILI difference between BDDCS Class 1 and 

BDDCS Class 2 drugs.  Patients with DILI caused by medications with or without preponderant 

hepatic metabolism did not differ in clinical characteristics or outcomes. There was also no 

significant difference between BDDCS 1, 2, 3 classes in terms of DILI cases. BDDCS Class 1 

compounds were reported to have a longer latency and exhibit a greater proportion of 

hepatocellular injury. However, in our current analysis we observe that the majority of drugs in 

the “No DILI” group are composed of BDDCS Class 1 and BDDCS Class 3 and there is a much 

greater risk of BDDCS Class 2 leading to idiosyncratic DILI than BDDCS Class 1 or 3 

compounds.   

In this work and in our previous study reported in Chapter 2, predicting the prevalence of 

cutaneous adverse reactions with antiepileptic drug (12), BDDCS Class 2 drugs appear to present 

the most toxic liability. Why should this be true? A major finding in the development of the 

BDDCS classification system was the recognition that extensively metabolized, high 

permeability, high solubility Class 1 drugs may be shown in vitro to be substrates of both uptake 

and efflux transporters, but that effects of transporters on BDDCS Class 1 drugs are essentially 

clinically insignificant in the liver and intestine, as well as the brain. Thus, for BDDCS Class 1 

drugs unbound concentrations in the systemic circulation will reflect unbound concentrations in 

the liver as well as in the rest of the body. However, this will not be true for BDDCS Classes 2, 3 

and 4 drugs where transporter effects will lead to different unbound concentrations in the liver 

and throughout the body. That is, Class 1 drugs will follow the long held assumption in deriving 

pharmacologic/toxicologic relationships that free drug concentrations are the same throughout 

the body. But this assumption in pharmacology was made prior to any recognition of the 

importance of drug transporters in controlling permeability.  Thus, according to BDDCS 
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classification(22, 33) approximately 40% of marketed drugs (i.e., those that are Class 1) will still 

follow the equivalent free drug concentration hypothesis.  It is important to recognize that the 

compounds evaluated here are drugs that reach the market where sponsors were able to convince 

the regulatory agencies based on in vitro and preclinical animal studies that toxicity potential, 

particularly DILI, would be manageable or at least acceptable when the drugs reached the market 

and were taken by large patient populations as compared to those limited number of patients 

studied during drug development. Thus, according to our hypothesis, drug company sponsors in 

their preclinical and clinical studies of Class 1 drugs would be able to reasonably predict drug 

concentrations in the liver and throughout the body. In contrast, for BDDCS Class 2 drugs, 

where metabolism is the significant process of elimination, drug concentration measurements in 

the systemic circulation for these compounds both in the preclinical and clinical studies would 

poorly predict what occurs in the liver and in other organs of the body.  And since it is obvious 

that DILI occurs more frequently with metabolized drugs, studies in drug development with 

Class 2 drugs would be poorer predictors of toxicity potential due to the challenges to estimate 

intracellular concentrations and metabolic processes. Thus, the prevalence of DILI with BDDCS 

Class 2 drugs could just be circumstantial in that sponsors would be unable to properly evaluate 

hepatic toxicity for these compounds in designing their clinical studies.  This problem could 

potentially be alleviated by new in vitro approaches and utilization of state of the art 

instrumentation currently being evaluated. 

Conclusion 

In our analysis we confirm previous reports that the best predictor of DILI requires 

knowledge of the daily dose, an unknown quantity early in drug development. We show here that 

the BDDCS methodology, where assignment can be made prior to ever dosing a drug to animals 
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or man, yields similar and in a number of cases better than the DILI predictive potential of other 

methodologies such as Ro2. Although we observe strong trends of BDDCS Class 2 increasing 

toxicity as DILI severity increases, overall, BDDCS Classification only marginally improves the 

prediction of DILI toxicity potential. However, we observe that “BDDCS Class 2” alone have 

performed better than “Ro2” and “Ro2 + reactive metabolite formation.” As seen in Figs. 3.3 and 

3.4, the BDDCS Class 2 versus Class 1 differentiation only becomes evident with the most 

severe hepatic toxicities, and then only a 2:1 differentiation between BDDCS Class 2 versus 

Class 1 is found.  

Similarly, we demonstrate that those previous proposed models to predict DILI potential 

such as the “Ro2” and “Ro2 + reactive metabolite formation”, daily dosage ≥ 50mg, and the 

supposition that BSEP inhibitors lead to DILI causation are still not sufficiently predictive. 

Lammert et al.’s(1) assertion that extensive metabolized compounds are at higher risk of 

developing DILI can be much improved by differentiating BDDCS Class 2 from BDDCS Class 1 

drugs. Ro2 shows a high FNR missing significant cases of DILI assignment when “DILI” occurs 

and that the daily dosage ≥ 50mg alone can only depict a clear relationship with dose with 

compounds that have been previous associated with DILI, but very limited predictability in 

differentiating compounds with “No DILI” assignment. We also suspect that previous analyses 

predicting that BSEP inhibition leads to DILI may be confounded by our finding that most BSEP 

inhibitors are BDDCS Class 2 drugs. Thus, our BDDCS analysis and previous DILI toxicity 

potential are not sufficiently accurate in allowing early identification of new molecular entities 

that will be DILI free. But we believe that comparison of proposed DILI predictive methodology 

with BDDCS assignment offers a useful tool by which new DILI predictive hypotheses can be 

evaluated. Hopefully, development of mechanism based toxicity endpoints, such as those 
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proposed by Chen et al.(13), Zhang et al.(16) and Schadt et al.(14), as discussed above, will 

greatly improve future predictability.   

Toxicologists, medicinal chemists and drug development scientists will most likely 

conclude that no one in the drug development process will discontinue a drug candidate based on 

the predictive DILI potential using BDDCS class. We agree. The purpose of this analysis was to 

point out that many of the published “predictive DILI” hypotheses do no better than just 

avoiding BDDCS Class 2 drugs. We propose that comparison of predictive DILI hypotheses with 

BDDCS class assignment is a useful exercise in determining the relevance of predictive metrics.  
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CHAPTER 4: Measures of BSEP Inhibition In Vitro Are Not Usefully DILI Predictive 

ABSTRACT* 

Inhibition of the bile salt export pump (BSEP) by a drug has been implicated as a risk 

factor for a drug’s potential to cause DILI and is thought to be an important mechanism leading 

to DILI. For a wide variety of drugs a correlation has been observed between the potency of in 

vitro BSEP inhibition and its propensity to cause DILI in humans.  These findings were 

interpreted to suggest that BSEP inhibition could be an important mechanism to help explain 

how some drugs initiate DILI.  Recently, the International Transporter Consortium has 

highlighted BSEP as one of the emerging transporters that need to be considered when 

evaluating drug safety. However, the practical utility of this approach is still in its infancy and 

needs to be further evaluated.  Because BDDCS can be useful in characterizing and predicting 

some important transporter effects in terms of drug-drug interactions, we evaluated the 

information provided by BDDCS in order to understand the inhibition propensity of BSEP. Here 

we analyze the relationship between a compound’s ability to inhibit BSEP function and cause 

liver injury in humans using a compilation of published DILI datasets that have screened for 

BSEP inhibitors, other hepatic transporters and other mechanism based toxicity endpoints such 

as the mitochondrial toxicity assay. Our results demonstrate that there is little support for BSEP 

inhibition being universally DILI predictive. Rather we show that most potent BSEP inhibitors 

are BDDCS Class 2 drugs, which we have demonstrated previously is the BDDCS class most 

likely to be DILI related. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
*!Modified from the manuscript submitted:Chan R, Benet LZ. 2017. Measures of BSEP inhibition in vitro 
are not usefully DILI predictive. Toxicol. Sci. 
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INTRODUCTION  

Drug-induced liver injury (DILI) encompasses a spectrum from mild biochemical 

abnormalities to acute liver failure. DILI is often difficult to distinguish from natural causes of 

liver injury such as viral hepatitis or autoimmune conditions (1, 2). DILI often exhibits delayed 

onset (5 to >100 days) during continuous therapy and even may occur after cessation of therapy. 

Although, the underlying pathophysiological mechanism of DILI is still poorly understood, there 

is increasing evidence that cholestatic forms of DILI result from a drug- or metabolite-mediated 

inhibition of hepatobiliary transporter systems (3). Inhibition of the bile salt export pump (BSEP) 

by a drug has been implicated as a risk factor for the drug’s potential to cause DILI and is 

thought to be an important mechanism that leads to DILI (3–5).  

Many drugs that cause infrequent but clinically severe liver injury in humans have been 

found to inhibit BSEP activity in vitro using a variety of different experimental model systems, 

and in vivo in experimental animals (5, 6). For a wide variety of drugs a correlation has also been 

observed between propensity to cause DILI in humans, potency of in vitro BSEP inhibition and 

their therapeutic plasma drug concentrations (7).  These findings suggest that BSEP inhibition 

could be an important mechanism that helps explain how some drugs initiate DILI.  Recently, 

BSEP has also been highlighted by the International Transporter Consortium as one of the 

emerging transporters that need to be considered when evaluating drug safety (8).  However, the 

practical utility of this approach is still in its infancy and needs to be further evaluated.  BSEP 

inhibition is just one of many possible mechanisms that can initiate idiosyncratic DILI, therefore 

it has been suggested that screening for in vitro BSEP inhibition is likely to be of greatest value 

if undertaken together with screening for other relevant adverse effects (e.g. mitochondrial injury, 

cell cytotoxicity, metabolic bioactivation) and understanding its inhibition predisposition along 
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with some basic physicochemical properties (9, 10). Recent research suggests that bile acids 

affect the mitochondria and potentially lead to mitochondrial membrane permeability transition 

(11).  

We have recently compared as presented in Chapter 3 the possibility of predicting DILI 

potential using the Biopharmaceutics Drug Disposition Classification System (BDDCS) versus 

previously proposed published methods (12). Because BDDCS can be useful in characterizing 

and predicting some important transporter effects in terms of drug-drug interactions (13), we 

believe it would be useful to apply BSEP as a potential biomarker and evaluate the information 

provided by BDDCS in order to understand the inhibition propensity of BSEP. Our previous 

analyses suggest that just avoiding BDDCS Class 2 drugs may serve as a useful baseline in 

evaluating these metrics (12).  We suggest in Chapter 3 that if a correlation of a particular 

measure with toxicity (e.g., the ability of BSEP inhibition to predict DILI) is not better than the 

correlation of the toxicity measure with BDDCS Class 2 assignment, then the field can have no 

confidence that the measurement will usefully serve as a mechanistic predictor (12).  

Several groups of researchers have proposed that pro-active in vitro screening for BSEP 

during drug discovery may aid in early flagging and de-selection of compounds that exhibit a 

high propensity to cause idiosyncratic DILI (4, 5, 14).  Therefore, our present goal is to evaluate 

the potential of in vitro BSEP inhibition screening in aiding the prediction of DILI. Here we 

analyze the relationship between a compound’s ability to inhibit BSEP function and cause liver 

injury in humans using a compilation of published DILI datasets that have screened for BSEP 

inhibitors, other hepatic transporters and other mechanism based toxicity endpoints such as the 

mitochondrial toxicity assay.  
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For each pharmaceutical drug, we applied BDDCS classification. Our analysis only 

includes drugs that have been BDDCS classified.  We previously used the BDDCS classification 

as presented in Chapter 3 as a preliminary baseline tool to assess the relationship of in vitro 

BSEP screening with a drug’s DILI predictability (12). Here we provide a more in depth 

evaluation of the relationship between BSEP inhibition and screening using other in vitro 

platforms (e.g. mitochondrial toxicity, cell cytotoxicity, MRP3 and MRP4 inhibition) (4, 9, 14–

17).  

MATERIALS AND METHODS 

Compilation of BSEP Datasets 

Classifying BSEP Inhibition  

FDA drug labels for 182 registered drugs have been evaluated by Pedersen et al. (14) for 

BSEP inhibition using an in vitro membrane vesicle BSEP inhibition assay. Assignment to BSEP 

inhibition categories was based on the ATP dependent taurocholate (TC) transport rate when co-

incubated with 50 µM of test compound.  Pedersen et al. (14) defined compounds as: BSEP 

Inhibitors when they decreased TC transport by more than 50%; BSEP Weak Inhibitors when TC 

transport was decreased by 27.5 to 50%; BSEP Non-Inhibitors showed a minimal decrease of TC 

transport by less than 27.5%. All compounds but L-carnitine (“No mention”,  “No DILI”) could 

be classified. For BDDCS Classification, only active species (e.g., drug but not prodrug) were 

considered. In cases where DILI knowledge is limited by FDA drug labels, we have used 

annotations of human DILI concern collected by Chen et al. (18). All compounds except 

glyburide (“Adverse Reactions”), lopinavir (“Warning and Precautions”) and sulfamethoxale 

(“Warning and Precautions”) were assigned a DILI concern by Chen et al. (18).  We also 

reviewed the Dawson et al. (4) data set that investigated the relationship between human BSEP 
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inhibition for 85 pharmaceuticals in vitro.  As defined by Dawson et al. (4), IC50 <300 µM gave 

an optimal separation between drugs that causes cholestatic/mixed DILI and drugs that caused 

hepatocellular or no DILI. Drugs with IC50< 300 µM were considered as BSEP Inhibitors, while 

all others were considered BSEP Non-Inhibitors (this includes BSEP Weak Inhibitors where 300 

µM < IC50 >1000 µM). All compounds except clobetasol propionate (“No DILI”) and 

picotamide (“No DILI”) could be BDDCS classified. Chlorpropamide was also removed from 

the analysis because it is a BDDCS Class 0 compound (i.e. BDDCS class changes as a function 

of urine pH).  

Classifying BSEP Inhibition and Mitochondrial Toxicity 

 Aleo et al. (9) selected 72 compounds from the 287 compounds reported by Chen et al. 

(19) to test the hypothesis of a synergistic relationship between BSEP inhibition and 

mitochondrial toxicity. However, since they were testing a BSEP inhibition hypothesis, they 

ignored any “Most-DILI concern” molecules that did not exhibit BSEP inhibition. In our analysis 

here we evaluated 42 drugs in the Aleo data set, 24 drugs that exhibited “Most DILI concern” 

and 18 drugs that exhibited “No DILI concern” for which BDDCS classification was available. 

That is, we ignored drugs classified as “Less DILI” concern. Categorization of DILI concern 

were derived by examining the currently approved label in the Chen et al. (19) data set (and thus 

the Aleo et al. (9) data set). In this data set, compounds with IC50 > 100 µM were defined as 

BSEP Non-Inhibitors and Mitotox IC50 <100 nmol/mg were defined as mitochondrial toxic 

compounds. We have also collected data from the 120 compounds investigated by Schadt et al. 

(17) for a number of assays that covered various mechanisms and endpoints associated with 

human DILI.  In that data set 106 drugs were BDDCS classified. For the purpose of this study we 

chose to focus only on the results of BSEP, mitochondrial toxicity, and cytoxicity assays. As 
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defined by Schadt et al. (17) drugs with BSEP IC50 >250 µM were considered BSEP Non-

Inhibitors all others were considered BSEP Inhibitors. For the mitochondrial toxicity assay a 

ratio of IC50glucose/IC50galactose ≥3 was considered a mitochondrial toxicity flag. Compounds 

with TC50 <100 µM were considered positive for cellular toxicity.  

Classifying BSEP, MRP3 and MRP4 in vitro Transport Inhibition 

The inhibitory effect of 88 drugs (100 mM) on MRP3- and MRP4- mediated substrate 

transport was measured in membrane vesicles by Köck et al. (16). Drugs selected for 

investigation included 50 BSEP non-inhibitors (24 non-cholestatic; 26 cholestatic) and 38 BSEP 

inhibitors (16 non- cholestatic; 22 cholestatic). All compounds but clobetasol propionate (“No 

DILI”), fluorescein (“No DILI”) and valinomycin (“No DILI”) could be BDDCS classified. 

Chlorpropamide was also removed because it is a BDDCS Class 0 compound.  Vinblastine 

(“Hepatocellular”) was also omitted from the data set because no BSEP inhibition information 

was reported.  Drugs were also categorized as cholestatic or hepatocellular, according to the 

DILI type reported in the literature. As defined by Köck et al. (16) the compounds were further 

classified as active for the specified transporter if they had an IC50 ≤ 135 µM for BSEP or a 

percent inhibition ≥ 21% compared with control at 100 µM for MRP3 and MRP4; otherwise, 

they were classified as inactive against that transporter. The MRP4 classifications are based on 

findings by Köck et al. (16) that compounds that inhibit MRP4 by at least 21% have a 50% 

chance of being cholestatic and the rationale for the BSEP classifications is to identify inhibitor 

compounds with both potent and moderate cholestatic risk, similar to Morgan et al. (3). 

We also investigated 125 pharmaceuticals (70 of Most DILI Concern and 55 of No DILI 

Concern) that were screened for MRP3 inhibition (15). For each compound, the IC50 value was 

also considered in terms of its in vitro BSEP inhibition potential. All compounds but triprolidine 
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hydrochloride (No DILI concern), brompheniramine (No DILI concern), doxylamine (No DILI 

concern), carbetapentane citrate (No DILI concern), zimeldine (Most DILI concern) and 

pamabrom (No DILI concern) could be BDDCS classified. BSEP Inhibitors were defined as 

having IC50> 100 µM (which included the BSEP Weak Inhibitors); MRP3 Inhibitors were 

defined as having IC50> 300 µM (which included the MRP3 Weak Inhibitors). 

BDDCS Classification 

As we previously reported in Chapter 3 (12), the assignment of BDDCS Class of each 

drug was performed by evaluating the available solubility data, maximum dose strength (mg), 

and extent of metabolism (20). There was a recent expansion on the list of BDDCS drug 

classification to more than 1100 drugs, including many drugs that have been removed from the 

market as a result of toxic manifestations (21). This BDDCS classification list was particularly 

challenging since for many drugs that came onto the market a number of years ago, and then 

removed because of toxicity, little reliable information both in terms of metabolism and 

solubility can be found in the literature. Therefore, when a drug is on the border of two classes, 

the BDDCS class is selected based on expected or known drug interactions. 

 Hosey and Benet (2015) noted a marked distinction between extensively and poorly 

metabolized compounds and this can be well predicted based on an in vitro measure of drug 

permeability. Recently, Dave and Morris (2016) showed that the solubility classification could 

be evaluated using a 0.3 mg/mL cut-off, thus not requiring knowledge of the clinical dose.  

Classifying DILI FDA Drug Labels and DILI Severity of Drugs in the Data Set 

The DILI potential of the drugs in the data set was classified on the basis of the 

information on hepatic ADRs extracted from FDA drug labels (19). Briefly, depending on the 

ADR severity, off market status and FDA drug labels, ADRs may be classified in different 
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categories as “Discontinued”, “Withdrawn”, “Boxed Warning”, “Warning and Precautions”, 

“Adverse Reactions” and “No Mention”, ordered by decreasing severity. The DILI severity 

assessment was categorized as follows: “Most DILI Concern”, “Less DILI Concern” and “No 

DILI Concern”, ordered by decreasing severity as described by Chen et al. (18, 19). 

Data Analysis 

The distribution of BSEP inhibition in each FDA hepatic liability category, the Chen DILI 

assessment and the BDDCS class were evaluated. Proportions of each of the assays: 

hepatobiliary transporters, cell cytotoxicity, or mitochondrial toxicity were tabulated. Positive 

Predictive Value (PPV), False Negative Rate (FNR), and Accuracy (ACC) were calculated in 

order to analyze the ability of these in vitro assays to predict DILI.  

RESULTS 

Relationship between BSEP Inhibition and FDA Drug Labels and FDA DILI Severity 

Assignment 

Using the FDA DILI severity assessment, we observe in Figure 4.1A that among the 

BSEP inhibitors only 29.7% were characterized in the “Most DILI concern” category, while 

BSEP weak inhibitors show an even higher proportion of 42.9% for “Most DILI concern.” In 

addition, when we look at the distribution between BSEP Non-Inhibitors vs. BSEP Inhibitors in 

terms of DILI severity assessed, we observe 14.2% among BSEP Non-Inhibitors vs. 18.9 % 

among BSEP Inhibitors in the “No DILI” group.  Similarly to this point, 29.7% of BSEP 

Inhibitors vs. 19.2% of BSEP Non-Inhibitors are associated with “Most DILI Concern.”  When 

BSEP inhibition data are correlated with FDA drug labels of registered drugs as shown in Figure 

4.1B, we observe no discernible pattern between BSEP inhibition and FDA hepatic liability 

categories. The distribution of BSEP Inhibitors with higher toxic liability is given as follows: 
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43.2% of “Warning and Precautions”, 13.5% “Boxed Warning” and 5.4% “Withdrawn” drugs. 

We note that there is no toxicity differentiation between BSEP Weak Inhibitors and BSEP 

Inhibitors, with 57.1% of BSEP Weak Inhibitors being in “Warning and Precautions” and 4.8% 

in the “Boxed Warning.” These results show that BSEP Weak Inhibitors and BSEP Inhibitors are 

both equally likely to cause hepatotoxicity. Therefore, using BSEP inhibition alone is not an 

adequate biomarker given the poor differentiation that we observe in the analysis of this dataset. 
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Figure 4.1A. Distribution of BSEP inhibition with respect to the Chen DILI assessment.  
(120 drugs BSEP Non-Inhibitors, 21 BSEP Weak Inhibitors, and 37 BSEP Inhibitors) 
 
Figure 4.1B. Distribution of BSEP inhibition with respect to FDA Hepatic Liability. 
Drugs assigned according to the most severe drug label section.  
(120 drugs BSEP Non-Inhibitors, 22 BSEP Weak Inhibitors, and 39 BSEP Inhibitors)

19.2 %

66.7 %

14.2 %

42.9 %
47.6 %

9.5 %

29.7 %

51.4 %

18.9 %

0

25

50

75

100

BSEP Non
−In

hib
ito

rs

BSEP W
ea

k I
nh

ibit
ors

BSEP In
hib

ito
rs

C
he

n 
D

IL
I 

  A
ss

es
sm

en
t (

%
)

No DILI Concern Less DILI Concern Most DILI Concern

A. Distribution of BSEP Inhibition with respect to Chen DILI Assessment (n=178)

0.0 %
5.0 %

25.8 %

50.0 %

19.2 %

0.0 %
4.5 %

59.1 %

18.2 %18.2 %

5.1 %

12.8 %

43.6 %

23.1 %

15.4 %

0

25

50

75

100

BSEP Non
−In

hib
ito

rs

BSEP W
ea

k I
nh

ibit
ors

BSEP In
hib

ito
rs

FD
A 

H
ep

at
ic

 L
ia

bi
lit

y 
  A

ss
es

sm
en

t (
%

)

No Mention Adverse Reactions Warning and Precautions Boxed Warning Withdrawn

B. Distribution of BSEP Inhibition with respect to FDA Hepatic Liability (n=181)



!

!

100 

Relationship between BSEP Inhibition and BDDCS Class 

When BSEP inhibition was correlated with BDDCS Class a highly significant result (p-

value <0.05) was found. BSEP inhibition was most significant among BDDCS Class 2 

compounds (84.6%, n=33/39) (See Figure 4.2A). Our data also depict concomitant decreases in 

the percentages of BDDCS Class 1 and 3 compounds as the strength of BSEP inhibition 

increases. We have previously observed as reported in Chapter 3 that as hepatic warning severity 

increases, the proportion of BDDCS Class 2 drugs increase and the proportions of both BDDCS 

Class 1 and 3 decrease (12). BDDCS Class 2 drugs were incriminated with the highest 

proportions in the following drug label sections: “Warning and Precautions” (45.6%, 36/79), 

“Black Box Warnings”(47.2%, 17/36), “Withdrawn” (62.5%, 25/40) and “Discontinued” (83.3%, 

5/6) (See Figure 4.2B). The most potent BSEP inhibitors are BDDCS Class 2 drugs, which we 

have demonstrated previously is the BDDCS class most likely to be DILI related.
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Figure 4.2A. Distribution of BSEP inhibition with respect to BDDCS Class. 
(120 drugs BSEP Non-Inhibitors, 22 BSEP Weak Inhibitors, and 39 BSEP Inhibitors) 
 
Figure 4.2B. Distribution of FDA Hepatic Liability with BDDCS Class. 
(60 No mention, 43 Adverse Reactions, 79 Warning and Precautions, 36 Boxed Warning, 40 
Withdrawn, 6 Discontinued) 
 

Relationship between BSEP Inhibition and Daily Dosage 

Lammert and co-workers have attributed hepatic adverse events to compounds with 

significant hepatic metabolism and daily dose ≥50mg. We confirmed in Chapter 3 that daily dose 

provided the best DILI predictability (12). Here we have examined the relationship between 
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daily dosages against the FDA hepatic liability categories according to the three BSEP inhibition 

groups  for the Pedersen et al. (14) data set (See Figure 4.3A). As seen in the dot plot, we 

observe no difference in the spread of the drugs and the distribution of BSEP inhibition group. 

We would expect BSEP inhibitors to exhibit a differentiation at dose ≥50mg, but no shift is 

observed.  In Figure 4.3B, we see no difference in terms of dose distribution between BSEP 

Non-Inhibitors (59.4%) and for BSEP Inhibitors (58.3%) given at “Safe” doses of <50mg for the 

Pedersen et al. (14) data set. However a different conclusion is seen with the Aleo et al. (15) data 

as depicted in Figure 4.3C. The daily dose distribution for BSEP Non-Inhibitors and Weak 

Inhibitors is almost identical to that observed by Pedersen et al. (14). However, a marked 

distinction for BSEP Inhibitors is seen in the Aleo et al. (15) data set, where 75% of BSEP 

Inhibitors are given at daily doses ≥50mg (Figure 4.3C).  
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Figure 4.3A. Dot plot of daily dose (mg) and FDA Hepatic Liability from Pedersen et al. (14) 
data set (n=163/181). 
(106 drugs BSEP Non-Inhibitors, 21 BSEP Weak Inhibitors, and 36 BSEP Inhibitors) 
 
Figure 4.3B. Summary of drugs given at ≥50mg (Not Safe) and <50mg (Safe) from Pedersen et 
al. (14) data set (n=163/181). 
(106 drugs BSEP Non-Inhibitors, 21 BSEP Weak Inhibitors, and 36 BSEP Inhibitors) 
 
Figure 4.3C. Summary of drugs given at ≥50mg (Not Safe) and <50mg (Safe) from Aleo et al. 
(15) data set (n=125). 
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(91 drugs BSEP Non-Inhibitors, 10 BSEP Weak Inhibitors, and 24 BSEP Inhibitors) 
 

Relationship between Type of Liver Toxicity and MRP3, MRP4 and BSEP Inhibition  

With respect to type of liver toxicity, looking at the relationship between BSEP inhibitors 

vs. BSEP non-inhibitors in Figure 4.4, we observe the least differentiation between cholestatic 

type of injury (60.5% of BSEP Inhibitors vs. 53.3% of BSEP Non-Inhibitors). When we looked 

at the relationship between MRP3 Inhibitors vs. MRP3 Non-Inhibitors we observe an increase in 

MRP3 inhibitors being associated with cholestatic type of injury (64.4% vs. 47.4%). However, 

examining the relationship for MRP4, we observe that MRP4 had the highest differentiation in 

terms of cholestatic type of liver injury between MRP4 Inhibitors (72.5%) vs. MRP4 Non-

Inhibitors (31.2%) (See Figure 4.4).  

 

Figure 4.4. Distribution of DILI pathology with respect to transporter inhibition. 
(45 BSEP Non-Inhibitors, 38 BSEP Inhibitors) 
(38 MRP3 Non-Inhibitors, 45 MRP4 Inhibitors) 
(32 MRP3 Non-Inhibitors, 32 MRP4 Inhibitors) 
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For extent of hepatocellular injury in Figure 4.4, we note a 2-fold increase in BSEP 

inhibitors that are associated with hepatocellular injury vs. BSEP non-inhibitors. An even greater 

differentiation is seen for MRP3 Non-Inhibitors 10.5% vs. 26.7% for MRP3 Inhibitors. This 

differentiation in hepatocellular injury goes the opposite way for MRP4, 25% MRP4 Non-

Inhibitors vs. 15.7% MRP4 Inhibitors.  

As seen in Figure 4.5, there is marked difference in BDDCS distribution of BSEP. That is, 

68.4% of BSEP Inhibitors are BDDCS Class 2 drugs vs. 15.6% of BSEP Non-Inhibitors. In 

contrast the percentages of Class 1 and Class 3 drugs decrease markedly. For MRP3 and MRP4 

Inhibitors, we observe that the distribution of BDDCS Class 1 and 2 is very similar, and we do 

not observe as much of a decrease between non-inhibitors and inhibitors for BDDCS Class 1 

drugs as seen for BSEP. However for all three transporters BDDCS Class 2 compounds 

constitute the majority of inhibitors. 

 

Figure 4.5. Distribution of BDDCS Class with respect to transporter inhibition. 
(45 BSEP Non-Inhibitors, 38 BSEP Inhibitors) 
(38 MRP3 Non-Inhibitors, 45 MRP4 Inhibitors) 
(32 MRP3 Non-Inhibitors, 32 MRP4 Inhibitors) 
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We note that the highest groups associated with “No DILI” were MRP3 Non-Inhibitors 

and MRP4 Non-Inhibitors (Figure 4.4), they also have the highest percentage of BDDCS Class 3 

drugs (Figure 4.5). In terms of the BDDCS Assessment, we observe a trend that BDDCS Class 3 

drugs are much less likely to cause transporter inhibition for BSEP, MRP3 and MRP4. 

 

Comparative Analysis of Mitochondrial Toxicity and BSEP Inhibition Assay 

Aleo et al. (9) have proposed a synergetic relationship between BSEP and mitochondrial 

toxicity. They suggest that the involvement of mitochondrial dysfunction appears to be an 

additional mechanistic liability for DILI. Mitochondrial dysfunction can de-energize a cell and 

lead to oxidative stress, apoptosis, and hepatocellular injury. Moreover, the accumulation of 

cytotoxic bile acids within hepatocytes, has been long known to disrupt mitochondrial function. 

It has been hypothesized that the combination of these attributes of potent inhibition of 

mitochondrial function and BSEP transport may be more frequently associated with drugs that 

cause more severe forms of human DILI. It should also be noted that in certain disease states, 

like type 2 diabetes and nonalcoholic steatohepatitis, there are significant deficits in normal 

mitochondrial function, which in turn may further predispose individual patients to DILI through 

this mechanism.  

To study this effect we analyzed the Aleo et al. (9) data set (Table 4.1A) together with 

the Schadt et al. (17) data set (Table 4.1B) to see if there is indeed a strong correlation between 

mitochondria mitotoxicity and BSEP inhibition acting synergistically. When comparing the 

correlation between BSEP inhibition and DILI comparable PPV values are observed for the Aleo 

and Schadt data sets. The FNR for the Aleo data set is zero because as noted above, Aleo 
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eliminated any drug showing Most-DILI concern that was not a BSEP inhibitor. Thus, the ACC 

of the Aleo data set for BSEP inhibition is greater than that for BSEP inhibition in the Schadt 

data set. For the mitotoxicity assay, Aleo report a higher PPV, lower FNR and higher ACC than 

Schadt. However, in both Tables 4.1A and 4.1B, BDDCS class 2 characterization shows 

comparable results to both BSEP and mitotoxicity. Thus, we believe there is no support for either 

of these measures being useful predictors of DILI potential.  As seen in Table 4.1B, Schadt et al. 

(17) also investigated the relationship with cellular toxicity yielding even poorer correlations. 

Both Aleo et al. (9) and Dawson et al. (4) differentiated BSEP Inhibitors, as noted earlier, as 

Weak and Strong Inhibitors. In the analyses here we combined both Weak and Strong as BSEP 

Inhibitors. However, we tested each relationship reported using the data for only Strong 

Inhibitors. No marked differences from the reported results were seen between the sets of 

analyses as we show here in Table 4.1C for the Dawson et al. (4) data set.  

Table 4.1A. Comparison of BSEP and Mitochondrial Toxicity Assays Associated with DILI (Aleo et al. 
(9) data set). 

Criteria % Correct (Positive 
Predictive Value, PPV) 

% DILI Missing  
(False Negative Rate, 
FNR 

% Accuracy  (ACC 
(True Positive + True 
Negative/42 

BSEP 72.7% 0.0% 78.6% 
Mitotox 94.1% 33.3% 78.6% 
BDDCS Class 2 80.0% 16.7% 78.6% 
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Table 4.1B. Comparison of BSEP and Mitochondrial Toxicity Assays Associated with DILI (Schadt et 
al. (17) data set). 
 
 
Criteria % Correct (Positive 

Predictive Value, PPV) 
% DILI Missing  

(False Negative Rate, 
FNR 

% Accuracy  (ACC 
(True Positive + True 

Negative/110 
BSEP  69.2% 62.5% 65.5% 
Mitotox 71.4% 79.2% 61.8% 
Cellular Toxicity 48.3% 70.8% 55.5% 
BDDCS Class 2 64.6% 35.4% 69.1% 
 
 
Table 4.1C. BSEP Inhibition Assay Associated with DILI (Dawson et al. (4) data set). 
 
WEAK INHIBITORS INCLUDED AS BSEP-INHIBITORS 
 
Criteria % of Drugs with 

DILI Predicted 
Correctly, PPV 

% of DILI Missing 
in the Prediction, 

FNR 

% of DILI Predicted 
Accurately, ACC 

(n=83) 
BSEP (Strong and 
Weak Inhibitors) 

84.2% 49.2% 54.9% 

BDDCS Class 2  88.2% 52.4% 54.9% 
 
 
WEAK INHIBITORS EXCLUDED 
 
Criteria % of Drugs with 

DILI Predicted 
Correctly, PPV 

% of DILI Missing 
in the Prediction, 

FNR 

% of DILI Predicted 
Accurately, ACC 

(n=77) 
BSEP (Strong 
Inhibitors) 

87.5% 52.5% 53.9% 

BDDCS Class 2 89.7% 55.9% 52.6% 
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Comparison of BSEP, MRP3 and MRP4 in vitro transport inhibition 

In Table 4.2, we report the results of our analysis on the effect of transporter inhibition in 

the prediction of DILI using the Köck et al. (16) compilation defined above. Here again for this 

data set, comparable results are obtained for BSEP inhibition and BDDCS class 2 categorization. 

However, better predictability values are seen for the correlation with MRP3 and MRP4 

inhibition, with MRP3 or MRP4 Inhibitors giving the best predictability.  Adding BSEP 

inhibition to these measures decreases predictability back to BDDCS Class 2 values.  

In Table 4.2B we carry out the same assessment with the Aleo et al. (15) data set. Here 

we see no differentiation for MRP3 inhibition with BDDCS Class 2 drugs always giving the best 

predictability. Our analysis of these data do not support the Aleo et al. (15) contention that 

avoiding dual BSEP and MRP3 inhibitors could lead to less likelihood of causing clinical DILI. 
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DISCUSSION  

The accumulation of bile acids within hepatocytes is thought to be a primary mechanism 

for the development of DILI. However, few reports indicate that drug-induced BSEP dysfunction 

actually leads to hepatotoxicity, and the relationship between drug-induced BSEP dysfunction 

and liver injury risk is yet to be determined. Here we show that pharmacological BSEP 

interference by small molecules is not a strong susceptibility factor. BSEP inhibition alone 

cannot accurately predict hepatotoxic potential of drugs as depicted by Figure 4.1B. It is unclear 

as to what extent BSEP inhibition is functionally significant in vivo. We observe that the great 

majority of compounds that have been associated with DILI and are BSEP inhibitors are also 

BDDCS Class 2. Because we are able to make similar predictions based on BDDCS determinant 

characteristics, this leads us to discount the predictive ability of mechanistic association of BSEP 

and DILI. We have previously in Chapter 3 observed that as hepatic warning severity increases, 

the proportion of BDDCS Class 2 drugs increases and the proportions of both BDDCS Class 1 

and 3 drugs decrease (12).  

The translation of in vitro potency of a small molecule on inhibiting BSEP to human risk 

of liver injury is problematic for many reasons. Drug concentrations within human hepatocytes 

in vivo are unknown. It is likely that they are much higher than plasma concentrations.  The 

apparent IC50 values assume all added drug is available in solution. True values are likely to be 

much lower, due to binding to proteins and lipids. BSEP inhibition by drug metabolites not 

evaluated in the assay also may be markedly more potent than parent drug. 

!
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Aleo et al. (9) suggest that mitochondrial toxicity together with BSEP inhibition 

may provide improved DILI predictability. When we analyzed the predictability of BSEP 

inhibition together with mitochondrial toxicity, we observe that BDDCS class 2 

characterization shows comparable results. Thus, we believe that neither BSEP inhibition 

nor mitochondrial toxicity are useful independent predictors of DILI.  

The activities of a compound on other related transporters, such as the multidrug 

resistance-associated proteins MRP3, MRP4, and potentially others, may show a greater 

affect on overall liver injury. Köck et al. (16) demonstrated that inhibition of MRP4, in 

addition to BSEP, may be a risk factor for the development of cholestatic DILI.  In Table 

4.2A, we report comparable results for BSEP inhibition and BDDCS class 2 

categorization. However, MRP4 inhibition gives the best performance amongst MRP3, 

MRP4, and BSEP inhibition. Our data analysis suggests that screening for MRP4 or 

MRP3 (although only data from Köck et al. (16) and not that of Aleo et al. (15) was 

positive for MRP3) could lead to higher accuracy than BSEP, but that addition of BSEP 

inhibition to measures of MRP4 and MRP3 inhibition gives less predictability, back to 

values similar to BDDCS Class 2 only. 

Idiosyncratic DILI presents with an array of clinical symptoms and can vary in 

severity from a mild increase in liver enzymes (alanine aminotransferase (ALT), bilirubin, 

and alkaline phosphatase (ALP)) to acute liver failure and death. Assessment is based on 

clinical and biochemical findings, and accurate diagnosis with drug causality requires 

detailed case patient records reviewed by multiple expert hepatologists. On the basis of 

biochemical measures, three types of DILI can occur “hepatocellular” caused by damage 

predominantly to hepatocytes, where serum ALT at the time of maximum elevation is 
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greater than ALP, “cholestatic” caused by disruption in biliary excretion of bilirubin, 

where serum bilirubin is elevated and ALP at the time of maximum elevation is greater 

than ALT, and “mixed”, where ALT, ALP, and bilirubin are elevated. A concomitant rise 

in ALT (>3× the upper limit of normal range, ULN) and bilirubin (>2× ULN) is 

suggestive of severe liver injury where hepatocyte damage is coupled with disrupted 

biliary excretion, increased serum bilirubin, and jaundice. With respect to liver type of 

toxicity, when we looked at the relationship between BSEP inhibitors and non-inhibitors, 

we observe that there is no significant difference between cholestatic type of injury, 

although there was an increase in hepatocellular injury (Figure 4.4). However, the BSEP 

inhibitor and non-inhibitor from the Köck et al. (16) data in Figure 4.4 were compiled 

from previous reports of Dawson et al. (4) and Morgan et al. (3). In Dawson et al. (4), 

one can determine that cholestatic DILI was caused by 68.4% of strong BSEP Inhibitors 

while hepatocellular DILI was caused by only 15.8% of strong BSEP Inhibitors. Such as 

analysis from the Morgan et al. (3) paper is not readily available, but was carried out by 

Köck et al. (16). Yet the data for BSEP inhibition in Figure 4.4 would suggest that the 

Morgan et al. (3) results contradict the Dawson et al. (4) report.   Thus, we view with 

skepticism any utility of BSEP inhibition screening for predicting DILI since such 

predictions as indicated in Tables 4.1 and 4.2 show no differentiation with drugs being 

BDDCS Class 2.  

DILI is multifactorial; inhibition of multiple hepatic efflux transporters could 

confer additional risk. DILI for many drugs involves cholestasis and accumulation of bile 

acids within hepatocytes. The adaptive response by the liver is an important component 

in predicting the potential for cholestatic hepatotoxicity. Bile acid disposition is tightly 
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regulated by the Farnesoid X Receptor (FXR). FXR activation leads to increased 

fibroblast growth factor 19 (FGF19), suppression of cytochrome P450 7A1 (CYP7A1), 

induction of BSEP, MRP3, and organic solute transporter alpha/beta (OSTα/β). 

Chenodeoxycholic acid (CDCA), an endogenous FXR agonist, upregulates BSEP in 

human sandwich culture hepatocytes (24). Increased function of basolateral efflux 

transportes can be an important “safety valve” if BSEP-mediated efflux is compromised. 

Chenodeoxycholic acid (CDCA) upregulates OSTα/β. Adaptation to the harmful effects 

of such accumulation can mean the difference between hepatocyte death and survival 

(25). Basolateral and canalicular efflux transporters play a critical role in hepatic and 

systemic exposure for some drugs, endogenous compounds, and metabolites. Inhibition 

of hepatic efflux transporters may increase hepatocyte exposure and cause toxicity. 

Induction of basolateral efflux transporters may decrease intracellular concentrations and 

increase systemic exposure.  At this stage our analysis suggests that BSEP inhibition 

itself is not an adequate or useful predictor of DILI potential. 

Although mutations in BSEP have been associated with liver disease in a 

univariate manner, (5) it is not yet fully understood how pharmacological inhibition of 

BSEP in humans in vivo relates to the familial dysfunction of this transporter. The case 

examples where autoantibodies to BSEP led to posttransplant liver failure in patients with 

PFIC2 (26, 27) offer a glimpse at how complete shutdown of BSEP might manifest when 

exposed to an unlimited challenge. However, this is an example of extreme 

pharmacology and not necessarily representative of what occurs with small molecules.  

 There is a general acceptance that inhibitors of BSEP are a source of 

toxicity.  However, according to our analysis of DILI this is not true.  What we find is 
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that most DILI occurs with BDDCS Class 2 compounds and almost all BSEP inhibitors 

are Class 2 compounds, but we do not see a relationship with the strength of BSEP 

inhibition and toxicity, which makes us believe that the generally held hypothesis is 

incorrect.  

For the purposes of early screening, binning compounds based on their relative 

BSEP mediated inhibition does not limit the possibility of liver liabilities in humans. Our 

data suggest that compounds that are BDDCS Class 2 are as likely as BSEP inhibitors to 

lead to DILI. As we noted earlier, if potential drug characteristics, such as BSEP 

inhibition in vitro (or mitochondrial toxicity) provides no better prediction than BDDCS 

Class 2 categorization, one cannot have faith in the proposed toxicology screen.   
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CHAPTER 5: Further Examination of the HLA-B*15:02 In Vitro Assay and BDDCS 
Against Other AEDs and Clinical Data on Cutaneous Adverse Reactions 
 

ABSTRACT 

Recent advances in pharmacogenetic studies reveal strong genetic associations between 

human leukocyte antigen (HLA) alleles and their susceptibility to drug hypersensitivity reactions 

(DHRs). In particular, HLA-B*15:02 has been associated with carbamazepine-induced SJS/TEN. 

Previously, we have been able to show a strong correlation between the HLA-B in vitro assay 

binding and the toxic responses from cutaneous adverse reactions (cADRs) of antiepileptic drugs 

(AEDs).  The goal of the present study was to further examine the relationship of the BDDCS 

and the utility of the HLA-B in vitro assay by analyzing the binding/interaction response of other 

AEDs in this assay. Here we observe that several BDDCS Class 1 drugs are capable of a strong 

interaction with the HLA-B in vitro assay, and that the excellent correlation that we observed in 

Chapter 2 may not be consistent when expanding the AEDs investigated. Our data show that it is 

not possible to define which BDDCS Class 1 drugs will predict drug hypersensitivity reactions, 

some of them are very reactive and bind very strongly in the HLA-B in vitro assay (e.g. 

tiagabine, clonazepam clobazam) and have deleterious effects, while others are not reactive but 

have deleterious effects (e.g. phenobarbital), and others are not reactive and do not have 

deleterious effects (e.g. valproic acid and ethosuximide). However, it still appears that good 

predictions can be made with BDDCS Class 2 and Class 3 drugs. 
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INTRODUCTION 
 

Recent advances in pharmacogenetic studies revealed strong genetic associations 

between human leukocyte antigen (HLA) alleles and their susceptibility to drug hypersensitivity 

reactions. T-cell mediated drug hypersensitivity reactions may range from mild rash to severe 

fatal reactions. Among them, drug reaction with eosinophilia and systemic symptoms (DRESS) 

or drug-induced hypersensitivity syndrome (DIHS), Stevens-Johnson syndrome/ toxic epidermal 

necrolysis (SJS/TEN), are some of the most life-threatening severe cutaneous adverse reactions 

(SCARs). Very strong associations between HLA-B*15:02 and carbamazepine-induced 

SJS/TEN have been found among the Han Chinese in Taiwan, which were confirmed by various 

case-control studies of Southeastern Asian patients (1–10). HLA-B*15:02 is a member of the 

serotype HLA-B75. Carbamazepine-induced SJS/TEN have also been detected in carriers of 

some HLA-B75 members, including HLA-B*15:08, HLA-B*15:11 and HLA-B*15:21 in Asian 

countries, including India, Thailand, Korea and Japan (7, 8, 11). 

Considerable effort has been devoted to developing assays that diagnose immunological 

drug reactions in drug hypersensitive patients. A study by Wei et al. demonstrated involvement 

of HLA-B75 members in the development of SJS/TEN (12). The rationale is that these HLA 

alleles share high amino acid sequence homology that may resemble structural features of HLA-

B*15:02 and thus may be able to trigger a similar cutaneous adverse reaction to carbamazepine 

(CBZ) (12). Thus, HLA-B75 can be said to be a risk factor for carbamazepine-induced SJS/TEN 

in Asian individuals.  

Our previous work evaluated the use of the Biopharmaceutics Drug Disposition 

Classification System (BDDCS) in assisting the prediction of AED drug hypersensitivity 

reactions and we performed in vitro studies to identify specific HLA/drug interactions patterns 
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(13). Briefly, the BDDCS is a simple classification system that recognizes that drugs exhibiting a 

high passive permeability rate (BDDCS Class 1 and 2) are extensively metabolized in humans 

while low passive permeability rate drugs (BDDCS Class 3 and 4) are primarily eliminated as 

unchanged drug in the bile or the urine (14). We were able to demonstrate a strong correlation 

between the HLA-B in vitro assay and the toxic responses from cutaneous adverse reactions for 

BDDCS Class 2 AEDs. The current studies follow up on these apparent determinant properties 

in predicting toxicity potential using BDDCS. For instance, our data on the incidence of 

cutaneous adverse reactions reveal that toxicity is not limited to just HLA-B*15:02, since 

Americans and Norwegians, which are populations that do not have this allele present, show the 

same pattern of toxicity. Because of this finding, here we examine how these general 

characteristics described by BDDCS class could potentially shed some insights in predicting 

drug hypersensitivity reactions.  

In this work we further examine the relationship of the BDDCS and the utility of the 

HLA-B in vitro assay by analyzing the binding/interaction response of other AEDs examined in 

the American and Norwegian retrospective studies that have not been tested by us previously.  

 

METHODS 

HLA-B In Vitro Assay 

Surface plasmon resonance (SPR) has previously been used to examine the molecular 

interactions between soluble major histocompatibility complex (MHC) molecules and peptides, 

and the specificity and advantages of the method has been established (15). Using this 

methodology as reported in Chapter 2, we have tested the applicability of this tool as an HLA-B 

in vitro assay in which we examine the molecular interaction between the soluble MHCs and 
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small molecules. We used the Biacore T200 SPR biosensor for analyzing the interaction between 

HLA-B proteins and drugs according to the manufacturer’s protocol (GE). We immobilized the 

purified soluble HLA-B proteins (acting as ligands) on the chips by an amine coupling reaction. 

The immobilized level for HLA-B*15:02 was 9311 response units (RU). We have specifically 

selected to test:  HLA-B*15:02. HLA-B*81:02 and HLA-B*40:01 were used as our negative 

controls. PBS was used as running buffer and the flow rate was 10 mL/min. The compounds (7 

marketed drugs to complement our previous findings and analysis) dissolved in PBS with 5% 

DMSO were evaluated and flowed through the solid phase with the running buffer PBS with 5% 

DMSO. Responses of the interaction were reference subtracted and corrected with a standard 

curve for the DMSO effects. We used BIA evaluation Version 3.1 for data analysis. Assays were 

performed in triplicate.  

BDDCS Classification 

The BDDCS class assignments for the compounds were obtained from the “BDDCS 

applied to over 900 drugs” paper (16). The 7 additional drugs tested here were: clobazam, 

clonazepam, felbamate, phenobarbital, primidone, tiagabine, and  vigabatrin of which 4 were 

BDDCS Class 1 drugs, 1 BDDCS Class 2 drug, 1 BDDCS Class 3 drug, and 1 BDDCS Class 4 

drug.  

Data Analysis 

To complement our literature search for validating the finding of the SPR HLA-B in vitro 

assay, we have reviewed the literature for any information available for the cutaneous adverse 

reactions associated with the compounds tested.  
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RESULTS 

Analysis of AEDs tested in the HLA-B*15:02 in vitro assay and their BDDCS Classification  

In Figure 5.1, which includes results from the present investigation and our previously 

published results (13) reviewed in Chapter 2, we observe that many of the BDDCS Class 1 drugs 

that we have tested bind very strongly to HLA-B*15:02, even more strongly than we previously 

reported with BDDCS Class 2 drugs. We also present data for one BDDCS Class 4 drug, 

felbamate, which shows a poor binding interaction to HLA-B*15:02. We observe weak binding 

interactions for all the BDDCS Class 3 drugs tested. Combining our previous results with the 

data here, we observe that the following BDDCS Class 1 drugs are strong binders to HLA-

B*15:02: tiagabine, clonazepam, and clobazam. The following BDDCS Class 2 drugs: 

carbamazepine, lamotrigine, phenytoin and oxcarbazepine interacted strongly with HLA-

B*15:02. Primidone is the only BDDCS Class 2 drug that showed poor binding to HLA-

B*15:02. All of the BDDCS Class 3 drugs: topiramate, gabapentin, levetiracetam, and vigabatrin 

showed a poor interaction with HLA-B*15:02. The following BDDCS Class 1 drugs showed a 

poor interaction with HLA-B*15:02: ethosuximide, valproate and phenobarbital. Felbamate a 

BDDCS Class 4 drug also showed a poor binding interaction with HLA-B*15:02.  
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Clinical Data of AEDs and its Correlation with HLA-B*15:02 Assay 

In the American retrospective study by Arif and coworkers (17), we observe that BDDCS 

class 2 drugs (phenytoin, lamotrigine, and carbamazepine) showed the highest rates of cutaneous 

adverse reactions. We observe that BDDCS class 1 drugs (tiagabine, zonisamide, and 

phenobarbital) also showed a high rate of cutaneous adverse reactions (See Figure 5.2A). 

Primidone is the BDDCS class 2 that showed the lowest rate of cutaneous adverse reactions and 

it also showed poor binding in the HLA-B*15:02 assay. 

In the Norwegian retrospective study by Alvestad and coworkers (18), we observe that 

BDDCS class 2 drugs (carbamazepine, phenytoin, lamotrigine, oxcarbazepine) show the highest 

rates of cutaneous adverse reactions. BDDCS Class 1 drugs (phenobarbital, clonazepam, 

valproate, clobazam, ethosuximide) show a much lower rate of cutaneous adverse reactions (See 

Figure 5.2B).  

Our results show that phenobarbital and primidone, two antiepileptic drugs that have 

been on the market for quite some time, do not bind to HLA-B*15:02. Primidone gets converted 

to phenobarbital when metabolized. We observe that phenobarbital, a BDDCS class 1 drug, has a 

high rash rate in the American study but a much lower rash rate in the Norwegian study. In the 

HLA-B in vitro assay, phenobarbital shows a poor binding interaction with HLA-B*15:02. When 

primidone is given, sufficient doses are usually administered to produce therapeutic 

concentrations of both phenobarbital and primidone. At present, concentrations of the other 

possible active metabolite of primidone, PEMA, are not routinely measured. While animal 

experiments indicate that primidone has inherent antiseizure activity, some clinicians believe that 

phenobarbital is the predominant species responsible for the therapeutic effect of primidone in 
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humans (19). Because phenobarbital and PEMA are produced via hepatic metabolism of 

primidone, it is very difficult to study the antiepileptic activity of primidone alone in patients. In 

contrast, primidone a BDDCS Class 2 showed a low rash rate in the Norwegian study and a poor 

binding interaction in the HLA-B in vitro assay.  

BDDCS class 2 drugs (lamotrigine, oxcarbazepine, carbamazepine, and phenytoin) 

showed the highest rate of cutaneous adverse drug reactions across both studies. Gabapentin, 

felbamate, clobazam, clonazepam, valproate, topiramate, levetiracetam, and vigabatrin had the 

lowest rates of CARs. Hence, it appears that BDDCS class 2 AEDs exhibit the highest trend of 

causing cutaneous adverse reactions followed by certain BDDCS class 1 drugs, in particular 

zonisamide, phenobarbital, and tiagabine. Valproic acid, a widely used AED, clonazepam, and 

clobazam are BDDCS class 1 presenting lower levels of adverse cutaneous reactions than the 

other aforementioned BDDCS class 1 drugs. 
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Figure 5.2A. American retrospective study of cutaneous rash rates. 
Figure 5.2B. Norwegian retrospective of cutaneous rash rates. 
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DISCUSSION 
 

Several studies have revealed that HLA-B*15:02 is associated with an increased risk of 

SJS/TEN upon exposure to phenytoin, oxcarbazepine, and potentially lamotrigine in a Taiwanese 

population although the strength of these associations was weaker than that of CBZ (20). Small 

case studies in Thailand (4 cases of phenytoin induced SJS) and Hong Kong (single cases of 

phenytoin and lamotrigine induced SJS) also showed the presence of HLA-B*15:02 in all SJS 

patients (1, 2). Recently, a meta-analysis of the relationship between aromatic amine 

anticonvulsants-induced SJS/TEN and HLA-B*15:02 in Han Chinese populations showed a 

strong association of HLA-B*15:02 with phenytoin (OR 4.26; 95% CI 1.93–9.93;) and with 

lamotrigine (OR 3.59; 95% CI 1.15–11.22; = 0.03) (21). These studies confirmed a clinically 

relevant association between the HLA-B*15:02 allele and phenytoin-induced SJS/TEN, 

supporting the US Food and Drug Administration recommendation that health care providers 

should consider avoiding phenytoin and its prodrug, fosphenytoin, as alternatives for CBZ in 

HLA-B*15:02 carriers (22). Reports in the literature also present a statistical association between 

HLA-B*15:02 and lamotrigine-induced SJS/TEN in Han Chinese subjects (23). Because of these 

studies and the positive results of our in vitro HLA-B assay with carbamazepine, phenytoin, 

oxcarbazepine, and lamotrigine, we believe that there is value in further working on this assay 

for industry use in the screening of drugs. Previously, we did not observe a strong interaction for 

the two BDDCS Class 1 investigated drugs (ethosuximide and valproic acid) in the HLA-B in 

vitro assay. We had seen that the majority of the binders were BDDCS Class 2 drugs (13). 

Our HLA-B in vitro data show that BDDCS Class 1 drugs: tiagabine, clonazepam and 

clobazam have a high risk of leading to drug hypersensitivity reactions. Although, we observe a 

great consensus for the prediction of toxicity for BDDCS Class 2 drugs, this is not true for 
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BDDCS Class 1 drugs. Moreover, we cannot trust our results for BDDCS Class 1 drugs because 

there is a high variability between the in vitro results and the clinical data reported. For instance, 

valproate is an AED that shows no interaction in the in vitro assay and no toxicity, but tiagabine, 

clonazepam, clobazam show very strong interaction and in some cases high toxicity and 

phenobabrbital, no interaction yet in some cases high toxicity. 

We have previously reported a trend of BDDCS class 2 drugs (lamotrigine, 

oxcarbazepine, carbamazepine, and phenytoin) having the highest rate of cutaneous adverse drug 

reactions. In the current study, we show that primidone, a BDDCS Class 2 compound, does not 

interact with HLA-B*15:02 in the HLA-B in vitro SPR binding assay. However, high rates of 

phenobarbital-induced SJS/TEN has been reported according to the US Food and Drug 

Administration and our literature review. 

In patients with a history of drug-induced skin rash, BDDCS Class 3 AEDs such as 

gabapentin, topiramate, levetiracetam and vigabatrin appear to carry a lower risk of skin rash and 

other cross-reactivities. A few BDDCS class 1 drugs such as valproate and ethosuximide also 

appear to be at low risk, results confirmed in our HLA-B in vitro assay. However, other BDDCS 

class 1 drugs (tiagabine, clonazepam, and clobazam) show a strong binding to HLA-B*15:02, 

and in some cases clinical data demonstrating high rates of cutaneous adverse reactions.  

Apart from HLA alleles association with drug hypersensitivity, contributions of genetic 

variants of metabolic enzymes in cutaneous adverse drug reactions had been proposed as well. 

For example, primidone converts to phenobarbital and PEMA; it is still unknown which exact 

cytochrome P450 enzymes are responsible for this metabolism. 

Overall, after we further examined additional BDDCS Class 1 drugs (tiagabine, 

clonazepam, clobazam, and phenobarbital), and an additional BDDCS Class 2 drug, we observe 
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that the HLA-B in vitro assay does not predict as well as we have shown previously. It looks like 

we can trust the prediction for BDDCS Class 2, except for primidone. But we cannot trust our 

results for BDDCS Class 1 drugs because there is a high variability between the in vitro results 

and the clinical data reported. For instance, valproate is an AED that shows no interaction in the 

in vitro assay and no toxicity, but tiagabine, clonazepam, clobazam show very strong interaction 

and in some cases high toxicity and phenobarbital, no interaction yet in some cases high toxicity 

(See Figure 5.1 and Figure 5.2).  

 In patients who are positive for HLA-B*15:02, we believe that alternative medications 

should be used as first-line therapy. Consideration in the choice of alternative medications should 

be given to the possibility of cross-reactivity with structurally similar AEDs (lamotrigine, 

phenytoin, oxcarbazepine) according to our HLA-B in vitro assay results.   

The risk factors for drug hypersensitivity reactions (DHRs) include high mass dose, route 

of administration, sex, viral infections and genetic factors. There appear to be other HLA alleles 

that can link to carbamazepine (CBZ)-induced SJS/TEN. Some of the cases of CBZ-induced 

SJS/TEN did not carry the HLA-B*15:02 allele, suggesting that other genetic variants may play 

a role. HLA-A*31:01 (24) is a risk factor for various types of carbamazepine-induced cADRs, 

ranging from mild ones such as maculopapular exanthema (MPE) to severe ones, including 

SJS/TEN and DIHS, in both Asian and white patients. The pathogenesis of HLA-

A*31:01 involvement in the development of cADRs remains to be elucidated, which could help 

discriminate rashes that are likely to progress from those that are likely to resolve. To date, 

approximately 25 HLA-associated ADRs have been identified, most of them reaching genome 

wide significance (25). The discovery of strong associations between DHRs and particular HLA 
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alleles further implicates MHC-restricted T-cell responses in disease etiology as the primary role 

of the proteins encoded by HLA is to effectively present antigenic peptides to passing T-cells.  

However, prediction of DHRs in the clinic, based solely on HLA-genotype, remains very 

limited. This is because the majority of individuals who carry known HLA risk alleles do not 

develop immunological reactions when exposed to a culprit drug. We must therefore assume that 

immunological parameters, other than HLA genotype, may also contribute to the development of 

a drug-specific T-cell response (26). Therefore the utility of the BDDCS drug disposition 

characteristics come into play. Since susceptibility to drug hypersensitivity is a function of the 

patient’s individual biology, the prediction of drug hypersensitivity will involve capturing the 

patient’s biology and variability during the early stages of drug development within preclinical 

test systems. Characterization of the molecular pathophysiological mechanism(s) of drug 

hypersensitivity using a combination of in vitro assays and animal models is a critical step 

toward designing assays that will accurately predict which new drug will cause these reactions 

before they become widely used as therapeutics.  
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CHAPTER 6: Review of the Use of the BDDCS to Evaluate the Relevance of DILI 

Predictive Hypotheses in Early Drug Development 

 

ABSTRACT* 

Severe drug-induced liver injury (DILI) remains a major safety concern due to its 

frequency of occurrence, idiosyncratic nature, poor prognosis, and diverse underlying 

mechanisms. Numerous experimental approaches have been published to improve human DILI 

prediction with modest success. A number of in vitro screening assays have been developed to 

help assess the potential DILI risk, such as inhibition of mitochondrial function, hepatobiliary 

transporter inhibition, reactive metabolite formation and covalent binding, and cellular health. 

Several studies have also shown a correlation of total administered dose alone or in combination 

with drug lipophilicity with higher risk of DILI. However, it would be best to have a predictive 

DILI methodology early in drug development, long before the clinical dose is known. Here we 

discuss the extent to which BDDCS defining characteristics, independent of knowing actual drug 

pharmacokinetics/pharmacodynamics and dose, can be used as a comparison baseline matrix of 

potential DILI adverse events for prior published predictive proposals. Our results show that 

BDDCS Class 2 drugs exhibit the highest DILI severity, and that all of the published 

methodologies evaluated here, except when daily dose is known, do not yield markedly better 

predictions than BDDCS. The assertion that extensively metabolized compounds are at higher 

risk of developing DILI is confirmed, but can be enhanced by differentiating BDDCS Class 2 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
* Modified from manuscript submitted: Chan R, Benet LZ. 2017. Review of the use of the 
BDDCS to evaluate the relevance of DILI predictive hypotheses in early drug development. 
Toxicol. Res. (Camb). 
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from Class 1 drugs. Conclusion: Our published analyses suggest that comparison of proposed 

DILI prediction methodologies with BDDCS classification is a useful tool to evaluate the 

potential reliability of newly proposed algorithms. This is true since almost all of these predictive 

DILI metrics do no better than just avoiding BDDCS Class 2 drugs. 
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INTRODUCTION  

Severe drug-induced liver injury (DILI) remains a major safety concern due to its 

frequency of occurrence, idiosyncratic nature, poor prognosis, and diverse underlying 

mechanisms. Numerous experimental approaches have been published to improve human DILI 

prediction with modest success. Idiosyncratic DILI (IDILI) is very complex.  Most IDILI 

appears to be immune mediated, and reactive metabolites appear to be involved in most, but not 

all IDILI.  Reactive metabolites are widely accepted as playing a pivotal role in the pathogenesis 

of idiosyncratic adverse drug reactions. While there are today well-established strategies for the 

risk assessment of stable metabolites within the pharmaceutical industry, there is still no 

consensus on reactive metabolite risk assessment strategies. This is due to the complexity of the 

mechanisms of these toxicities as well as the difficulty in identifying and quantifying short-lived 

reactive intermediates such as reactive metabolites. In addition, there are probably several 

mechanisms by which a drug or reactive metabolite can induce an immune response.  

Across the pharmaceutical industry, systems of screening drug candidates have emerged 

that include transcriptomic profiling of animals in addition to animal pathology, assessment of 

covalent binding and glutathione (GSH) adducts in microsomal test systems and in vivo, 

inhibition of bile salt export pump (BSEP) in vitro, impairment of function of isolated animal 

mitochondria, and cell stress responses and viability in human hepatoma and hepatocyte culture 

systems. Several common themes emerge in all these test systems especially involving oxidative 

stress, mitochondrial impairment, covalent binding, and endoplasmic reticulum stress. It has 

been proposed that test systems have moderately strong predictive value for IDILI (1–3), which 

we evaluate here. Others have examined combinations of mechanistic assays to better predict 

hepatotoxicity potential (4, 5), also evaluated here.  Several studies have shown a correlation of 



!

!

138 

total administered dose alone (6) or in combination with drug lipophilicity (7) with higher risk of 

DILI. However, it would be best to have a predictive DILI methodology early in drug 

development, long before the clinical dose is known. 

Since liver injury has been reported with a large number of drugs, efforts have been 

undertaken to compile human hepatotoxicity data, including the National Institute of Health 

LiverTox Database(8) and the FDA Liver Toxicity Knowledge Base (LTKB) (9). These publicly 

available datasets have enabled development of new structure activity relationships for 

hepatotoxicity endpoints or triggered the development of knowledge-based and quantitative 

structure activity relationships (QSAR) models (10–12).  

We have reviewed the applicability of the Biopharmaceutics Drug Disposition 

Classification System (BDDCS) to be compared with presently proposed predictive procedures 

in evaluating DILI toxicity. Since its inception, the BDDCS has been useful in drug discovery 

for predicting routes of elimination, oral drug disposition, food effects on drug absorption, 

transporter effects on drug absorption, and potentially clinically significant drug interactions that 

may arise in the intestine, liver and brain (13). In Chapter 2 and 3 we have shown that the 

BDDCS can be useful in predicting the potential for antiepileptic drugs to cause cutaneous 

adverse reactions and DILI (14, 15). BDDCS’s strong relationship between dose, metabolic 

susceptibility, solubility and idiosyncratic DILI highlights the potential benefits of BDDCS as a 

comparison matrix for DILI prediction.  

The BDDCS was developed in 2005 after Wu and Benet recognized that highly 

permeable compounds, as outlined by the Biopharmaceutics Classification System (BCS), were 

extensively metabolized, while poorly permeable drugs were primarily eliminated unchanged in 

the urine or bile (16). BDDCS demonstrated that simple passive membrane permeability 
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measures were highly selective in differentiating extensively vs. poorly metabolized drugs in 

humans. Drugs in the BDDCS are classified according to the membrane permeability rate and 

aqueous solubility. These characteristics have helped BDDCS define whether metabolic enzymes 

and/or transporters are clinically important. BDDCS features are demarcated by high and low 

values, classifying drugs into four categories. These classes are each associated with specific 

predictions regarding route of elimination and which interactions may be a clinical concern.  

Here we provide a review on the extent to which BDDCS defining characteristics, 

independent of knowing actual drug pharmacokinetics/pharmacodynamics and dose, can be used 

as a comparison baseline matrix of potential DILI adverse events with prior published predictive 

proposals (13, 15). We review the clinical impact of BDDCS in evaluating the severity of DILI 

warnings in drug labels approved by the Food and Drug Administration (FDA) (17), the 

withdrawal status due to adverse drug reactions (ADRs), the role of BSEP inhibition, maximum 

daily dosages prescribed, and in vitro toxicology assays applied to cover various mechanisms 

and toxicity endpoints associated with human DILI (15).  

 

Assessment of the BDDCS Classification on FDA Drug Labels Associated with DILI 

Hepatic Liability 

In Chapter 3, we reported the BDDCS class relationship of hepatotoxicity between the 

different ADR categories by calculating the proportion of drugs in each FDA hepatic liability 

category, and each DILI severity category (15). As depicted in Figure 3.3A, we observe that as 

the hepatic warning severity increases, the proportion of BDDCS Class 2 drugs increases and the 

proportions of both BDDCS Class 1 and 3 drug decrease, all with highly significant trends. The 

“No mention” category is significantly different from all other categories, except for “Adverse 
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Reactions.” BDDCS Class 2 drugs were incriminated with the highest proportions in the 

following drug label sections:  “Warning and Precautions” (45.6%, 36/79), “Boxed Warning” 

(47.2%, 17/36), “Withdrawn” (62.5%, 25/40) and “Discontinued” (83.3%, 5/6). Obviously, the 

number of drugs designated as exhibiting severe DILI increases as the ADR severity increases. 

That is, 15.9% (7/44) in the “Adverse Reactions” category, 36.7% (29/79) in the “Warning and 

Precautions” and 81.6% (31/38) of the drugs in the “Black Box Warning” are assessed to exhibit 

severe DILI (See Figure 3.2). In Figure 3.3B and 3.3C the two BDDCS determinants (extent of 

metabolism and solubility) are examined. The percentages of poorly metabolized (Figure 3.3B) 

and of highly soluble (Figure 3.3C) drugs show statistically significant decreases with hepatic 

liability, while low solubility drugs increase significantly (Figure 3.3C) with hepatic liability. 

The percent of extensively metabolized drugs also increases with hepatic liability, but since 

almost 2/3 of “No mention” drugs are metabolized, it is apparent that extent of metabolism itself 

is not a discriminating parameter. Although greater extent of metabolism has been reported to 

significantly increase the potential of a compound to cause DILI (18), this property alone is not 

able to distinguish compounds that are “No mention” of hepatic liability from those compounds 

exhibiting hepatic liability (See Figure 3.3B).  

Our examination of the relationship between the BDDCS’s determinant properties: 

solubility and extent of metabolism, led to some novel observations. Drugs belonging to BDDCS 

Class 1 and 3 exhibited a lower proportion of DILI severity. Drugs that are extensively 

metabolized and have low aqueous solubility, i.e., BDDCS Class 2 drugs have the highest rates 

of DILI risk. BDDCS Class 2 drugs exhibited the highest proportions among the ”Warning and 

Precautions”, “Black Box Warning”, “Withdrawn” and “Discontinued” categories. These are 

notably considered the most serious DILI risk categories (See Figure 3.3A). These findings 
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demonstrate the importance of intrinsic drug properties as a potential factor for the development 

of a DILI event.  

Drugs belonging to BDDCS Class 3 and 4 exhibited much lower proportions in the FDA 

hepatic liability (See Figure 3.3A). Moreover, BDDCS Class 3 and 4 drugs show little risk of 

liver aminotransferases increase and hyperbilirubinemia. However, we note the 

underrepresentation of BDDCS Class 4 drugs in the overall scheme of marketed approved drugs. 

Compounds with poor hepatic metabolism had been previously noted to be significantly less 

likely to cause hepatotoxicity (18). Although a lack of hepatic metabolism does not assure total 

lack of hepatotoxicity, it indeed appears that BDDCS Class 3 and 4 drugs lead to a lower DILI 

severity. 

 Barton and co-workers (19) have previously discussed a new paradigm for navigating 

compound properties related to drug attrition. Optimizing the exposure of potent compounds at 

the desired site of action and in tissues associated with toxicity is fundamental to addressing 

attrition via efficacy and safety. Traditional oral drug space is well defined with respect to 

physicochemical properties and absorption, distribution, metabolism, excretion and toxicity 

(ADMET) risks but increased focus on ligand-lipophilicity efficiency, maximizing enthalpy 

contributions and new target classes challenge this paradigm. Barton et al. (19) propose that 

BDDCS Class 3 compounds should be significantly more associated with drug attrition because 

they tend to be transporter substrates or inhibitors. Furthermore, they suggest that compounds 

that are substrates for transporters as being a toxicity liability. We completely disagree with this 

suggestion based on our analysis of DILI potential (15) and antiepileptic drugs’ cutaneous 

adverse events (14). Our analysis suggests that BDDCS Class 3 compounds exhibit less toxicity 

potential. 
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Assessment of Daily Dosage on FDA Drug Labels and DILI Severity 

Numerous compound- and/or patient-specific risk factors can contribute to the 

susceptibility to DILI. IDILI has been shown to be dependent on both daily dose and extent of 

hepatic metabolism of a drug (6, 18, 20, 21). Lammert and coworkers (6, 18) have attributed 

hepatic adverse events to compounds with significant hepatic metabolism and daily dose ≥ 50mg. 

Formation of reactive metabolites, high covalent body burden (22, 23),  mitochondrial 

dysfunction (resulting in the depletion of cellular energy supply and the generation of damaging 

reactive oxygen species), cell damage from oxidative stress (caused by reactive oxygen or 

reactive nitrogen species), and local inflammatory effects (24). All of these mechanisms are 

often interconnected and have, under various circumstances, been associated with the formation 

of chemically reactive metabolites. 

In Chapter 3 evaluated the relationship between daily dosages ≥ 50mg against the already 

assessed FDA hepatic liability categories and DILI severity assessment (15). Our analysis 

concurs with the association of drugs being given at dosages ≥ 50mg/day having more adverse 

hepatic events. We have further evaluated this observation by examining the FDA hepatic 

liability distribution and DILI severity assessment.  Drugs with a daily dose ≥ 50mg had a much 

higher frequency of toxicity as evidenced by the higher percentages in the “Warning and 

Precautions”, “Boxed Warning” and “Withdrawn” label sections (Figure 3.5A). For the DILI 

assessment in Figure 3.5B we also observe a higher frequency in DILI severity for compounds 

that are dosed at ≥ 50mg/day.  

Although, there is strong evidence that dosages ≥ 50mg/day are associated with increased 

risk for hepatotoxicity, many drugs are safe at such dosages. For instance, the 50mg/day dosage 

cut off would predict that 44% of “No mention” and/or “No DILI” drugs (See Figure 3.5) exhibit 
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“Not Safe” potential in terms of hepatotoxicity. Thus, supporting that daily dosage alone is not a 

reliable means of guiding the drug development process, regulatory application, and clinical 

practice.  

 

BDDCS Classification Prior to Dosing in Humans 

Although the finding of Uetrecht shows that idiosyncratic drug reactions were rare among 

individuals given drug doses <10mg/day and more likely among individuals given drug doses ≥ 

1000mg/day (25), the dose relationships can only be determined for a new molecular entity after 

the drug has been administered to human subjects/patients. In contrast, BDDCS class can be 

predicted prior to ever dosing the compounds to animals and humans as we have proposed 

previously (26). Hosey and Benet (27) showed that based on in vitro permeability measurements, 

the positive predictive value (PPV) for prediction of extensive metabolism were all 90% or 

greater. And most recently Dave and Morris (28) showed that they were able to correctly predict 

highly soluble vs. poorly soluble drugs using measured solubility parameters with greater than 

85% probability.  

 

Drug Metabolism and Propagation of Drug Hypersensitivity Reactions 

Drug metabolism also plays an important role in the initiation and propagation of drug 

hypersensitivity through the generation of neoantigens that are recognized by the cellular and 

humoral immune systems (5). Although the majority of drug biotransformations occur in the 

liver, there is overwhelming evidence to suggest that localized drug metabolism by immune cells 

is critical for organ-specific reactions such as cutaneous adverse drug reactions (5, 29, 30). These 

reactions are usually rare and are not typically present in animal species, but they can be serious 
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and even fatal in humans (31, 32) and may lead to the withdrawal of otherwise effective 

therapeutic agents. At present, during preclinical drug evaluation there are no widely accepted 

methods for the identification of drugs that may cause hypersensitivity or idiosyncratic reactions. 

It has been demonstrated that HLA-B*1502 is not only a genetic marker but also a key 

determinant in the pathophysiology of carbamazepine related Stevens-Johnson Syndrome and 

Toxic Epidermal Necrolysis (SJS/TEN). In Chapter 2 we assessed the use of the 

Biopharmaceutics Drug Disposition Classification System (BDDCS) to distinguish antiepileptic 

drugs (AEDs) associated with and without cutaneous adverse events by examining the binding 

relationship of AEDs to HLA-B*15:02 and data from extensive reviews of medical records. We 

also evaluated the lack of benefit from a Hong Kong population policy on the effects of 

screening for HLA-B*15:02 and previous incorrect structure-activity hypotheses. Our analysis 

concludes that BDDCS Class 2 AEDs are more prone to cause adverse cutaneous reactions than 

certain BDDCS Class 1 AEDs and that BDDCS Class 3 drugs have the lowest levels of 

cutaneous adverse reactions. We propose that BDDCS Class 3 AEDs should be preferentially 

used for patients with Asian backgrounds (i.e., Han Chinese, Thai and Malaysian populations) if 

possible and in patients predisposed to skin rashes (14). 

Alfirevic and Pirmohamed (33)  and Urban et al. (34) have summarized the current state 

of pharmacogenomics and suggested that although certain HLA and other differences are related 

to a higher susceptibility of DILI from a number of agents, the actual number of drugs identified 

as having these genetic risks is still quite small, and the accuracy of most polymorphisms is 

limited. Although significant advances in our hepatotoxicity knowledge base have been made by 

the DILI Network and others (35), when it comes to identifying the specific components of DILI 
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risk, it appears to be much more complicated than just being a matter of daily dose or drug 

disposition (20). 

Comparison of In Vitro Mechanism Based Toxicity Endpoints  

Although, a number of compound–specific liability factors have been linked with DILI 

susceptibility, it is difficult to understand which risk factors are more important in patient-

specific responses and/or environmental stimuli. One approach followed by many research 

groups is to assess and reduce some of the more common, drug-specific factors in a set of 

targeted in vitro assays. The most common mechanisms covered in in vitro high throughput 

screening assays include reactive metabolite formation and covalent binding (36, 37), inhibition 

of drug transporters involved in hepatobiliary elimination of bile acids and other metabolic 

endogenous products (BSEP, MRPs) (3, 38), mitochondrial toxicity (39)  and different cellular 

toxicity assays covering the formation of drug-metabolites (4, 40–43). Various approaches are 

used in the pharmaceutical industry for hazard identification and risk assessment of reactive 

metabolites and more integrated strategies that include measures of the initial mechanism of 

toxicity have been highlighted in our analysis.  

 In Chapter 3 we performed a comparison of the different predictive metrics in the various 

assays measuring key mechanisms of toxicity endpoints associated with DILI from the Schadt et 

al. data set (42). The toxicity endpoints were monitored in a panel consisting of assays assessing 

the generation of reactive metabolites tested via GSH adduct formation, P450 3A4 time-

dependent inhibition (TDI), BSEP inhibition, mitochondrial toxicity and cytotoxicity. In the 

Schadt et al. data set of 120 compounds marketed compounds, 14 compounds had not been 

BDDCS classified. Our analysis is depicted in Table 6.1.  The assays that performed the best 

were GSH adduct formation and BSEP inhibition. We noted that although the positive predictive 
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value (PPV) for these measurements were somewhat better than for BDDCS Class 2 

classification, the false negative rate (FNR) for these measures was much greater than BDDCS 

Class 2, so that in terms of accuracy (ACC), the GSH and BSEP assays were no better than just 

avoiding BDDCS Class 2 drugs. When GSH and BSEP assays were combined with BDDCS 

Class 2, again higher PPV values are obtained, but because FNR also increased, ACC is not 

better than just avoiding BDDCS Class 2 drugs. A slightly higher ACC is obtained when all of 

the mechanisms of toxicity endpoints are confirmed, due to the low FNR. However, having a 

PPV of only 65.1% does not give much confidence.  
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 Although there may be some general trends between simple physical parameters, it is 

unlikely that such considerations could accurately predict risk.  This problem could potentially 

be alleviated by the new in vitro approaches in physiological test systems with model 

hepatotoxins and utilization of state of the art instrumentation currently being evaluated 

encompassing chemical and biological factors associated with hepatotoxicity earlier in drug 

development (15, 44).  

Assessment of BDDCS Classification on BSEP Inhibition and DILI risk  

The accumulation of bile acids within hepatocytes is thought to be a primary mechanism 

for the development of DILI, although as we show with the Schadt et al. data, this is not 

confirmed. Inhibition of the bile salt export pump (BSEP) by a drug has been implicated as a risk 

factor for a drug’s potential to cause DILI. However, few reports indicate that drug-induced 

BSEP dysfunction actually leads to hepatotoxicity, and the relationship between drug-induced 

BSEP dysfunction and liver injury risk is yet to be determined. Recently, the International 

Transporter Consortium has highlighted BSEP as one of the emerging transporters that need to 

be considered when evaluating drug safety. However, the practical utility of this approach still 

needs to be further evaluated. We analyzed further data encompassing the relationship between a 

compound’s ability to inhibit BSEP function and cause liver injury in humans using a 

compilation of published DILI datasets that have screened for BSEP inhibitors, other hepatic 

transporters and other mechanism based toxicity endpoints such as the mitochondrial toxicity 

assay (4, 42, 45, 46). We evaluated the information provided by using BDDCS in order to 

understand the inhibition propensity of BSEP. Our results presented in Chapter 4 demonstrate 

that there is little support for BSEP inhibition being usefully DILI predictive. Rather we show 
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that most potent BSEP inhibitors are BDDCS Class 2 drugs, which we have demonstrated 

previously is the BDDCS class most likely to be DILI related (47). 

When BSEP inhibition data by Pedersen et al. (48) were correlated with Chen DILI 

Assessment and FDA drug labels of registered drugs, we observed no discernible pattern 

between BSEP inhibition and ADR categories (47) (See Figure 4.1A and 4.1B). For the BDDCS 

classification, we observe that the great majority of strong BSEP inhibitors are BDDCS Class 2 

drugs, with concomitant decreases in the percentages of BDDCS class 1 and 3 drugs as BSEP 

inhibition increases, as depicted by Figure 4.2A. Here we show that pharmacological BSEP 

interference by small molecules is not a strong susceptibility factor. BSEP inhibition alone 

cannot accurately predict hepatotoxic potential of drugs as depicted by Figure 4.1B. It is unclear 

as to what extent BSEP inhibition is functionally significant in vivo. We observe that the great 

majority of compounds that have been associated with DILI and are BSEP inhibitors are also 

BDDCS Class 2. Because we are able to make similar predictions based on BDDCS determinant 

characteristics, this leads us to discount the predictive ability of mechanistic association of BSEP 

and DILI. We have previously in Chapter 3 observed that as hepatic warning severity increases, 

the proportion of BDDCS Class 2 drugs increases and the proportions of both BDDCS Class 1 

and 3 drugs decrease (15). We conclude that previous analyses predicting that BSEP inhibition 

leads to DILI may have been confounded by the observation that most BSEP inhibitors are 

BDDCS Class 2 drugs, which show a high prevalence for DILI.  

Aleo et al. (4) suggest that mitochondrial toxicity together with BSEP inhibition may 

provide improved DILI predictability. When we analyzed the predictability of BSEP inhibition 

together with mitochondrial toxicity, we observe that BDDCS class 2 characterization shows 

comparable results (47). This is further confirmed in the Schadt et al. data set where we show in 
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Table 6.1 that combining the BSEP inhibition and mitotoxicity yields a very high FNR and no 

improvement in ACC. Thus, we believe that neither BSEP inhibition nor mitochondrial toxicity 

are useful independent or combined predictors of DILI.  

 

Why are BDDCS Class 2 drugs more toxic than BDDCS Class 1 drugs? 

Several studies have also shown a correlation of total administered dose alone or in 

combination with drug lipophilicity with higher risk of DILI. However, as we show in Fig. 2 and 

in our discussion above, dose alone is not able to accurately discriminate all drugs causing DILI. 

Chen et al. (7) proposed a Rule of 2 where PPV for DILI was very high when considering drugs 

with cLogP ≥3.0 (calculated lipid water partition coefficient) and dose > 100mg. However, we 

have shown that the Rule of 2 was slight less accurate than just BDDCS Class 2 assignment (15). 

 Highly lipophilic drugs are cleared by the liver and generally require biotransformation to 

be eliminated. The parameter clogP may simply be a surrogate for extensive biotransformation 

and hepatic exposure to a reactive metabolite. If cLogP that could differentiate DILI potential, 

we would see equal chances of BDDCS Class 1 and 2 drugs leading to DILI toxicity. As seen in 

Figs. 3.1, BDDCS Class 2 compounds predominate among the most severe hepatic toxicities. 

Furthermore, in our previous analysis (15), we have observed that PPV for cLogP ≥ 3  alone is 

fairly low (76.1% and ACC is 52.3%). So we do not believe extensive metabolism is an adequate 

DILI predictor.  

A major finding in the development of the BDDCS was the recognition that BDDCS 

Class 1 drugs, i.e. extensively metabolized, high permeable, high soluble, may be shown in vitro 

to be substrates of both uptake and efflux transporters, but that effects of transporters on BDDCS 

Class 1 drugs are essentially clinically insignificant in the liver and intestine, as well as the brain. 
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Thus, the unbound concentrations of BDDCS Class 1 drugs in the systemic circulation will 

reflect unbound concentrations in the liver as well as in the rest of the body, since it is 

transporters that lead to differences in unbound concentrations in different organs. According to 

BDDCS (49, 50) approximately 40% of marketed drugs (i.e., those that are Class 1) will still 

follow the equivalent free drug concentration hypothesis.  However, this will not be true for 

BDDCS Classes 2, 3 and 4 drugs where transporter effects will lead to different unbound 

concentrations in the liver and throughout the body. That is, Class 1 drugs will follow the long 

held assumption in deriving pharmacologic/toxicologic relationships that free drug 

concentrations are the same throughout the body. But this assumption in pharmacology was 

made prior to any recognition of the importance of drug transporters in controlling permeability.  

It is important to recognize that the compounds evaluated here are drugs that reach the 

market where sponsors were able to convince the regulatory agencies based on in vitro and 

preclinical animal studies that toxicity potential, particularly DILI, would be manageable or at 

least acceptable when the drugs reached the market and were taken by large patient populations 

as compared to those limited number of patients studied during drug development. Thus, 

according to our hypothesis, drug company sponsors in their preclinical and clinical studies of 

Class 1 drugs would be able to reasonably predict drug concentrations in the liver and throughout 

the body. In contrast, for BDDCS Class 2 drugs, where metabolism is the significant process of 

elimination, drug concentration measurements in the systemic circulation for these compounds 

both in the preclinical and clinical studies would poorly predict what concentrations are present 

in the liver and in other organs of the body.  And since it is obvious that DILI occurs more 

frequently with metabolized drugs, studies in drug development with Class 2 drugs would be 

poorer predictors of toxicity potential due to the challenges to estimate intracellular 
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concentrations and metabolic processes. Thus, the prevalence of DILI with BDDCS Class 2 

drugs could just be circumstantial in that sponsors would be unable to properly evaluate hepatic 

toxicity for these compounds in designing their clinical studies. This problem could potentially 

be alleviated by new in vitro approaches and utilization of state of the art instrumentation 

currently being evaluated. 

Conclusion 

The application of the BDDCS methodology can help evaluate the potential validity of 

risk assessment hypotheses. The BDDCS Class 2 susceptibility factor yields similar and in a 

number of cases better accuracy than the DILI predictive potential biomarkers of other 

methodologies. Since there is no mechanistic basis for BDDCS Class 2 drugs being most DILI 

related, if an alternate hypothesis is no more predictive than BDDCS Class assignment, we 

maintain that the alternate hypothesis is not sufficiently predictive, nor a mechanistic valid 

hypothesis. As seen in Fig. 3.1, the BDDCS Class 2 versus Class 1 differentiation only becomes 

evident with the most severe hepatic toxicities, and then only a 2:1 differentiation between 

BDDCS Class 2 versus Class 1 is found. Lammert et al.’s (18) assertion that extensive 

metabolized compounds are at higher risk of developing DILI can be much improved by 

differentiating BDDCS Class 2 from BDDCS Class 1 drugs. Daily dosage ≥ 50mg alone can 

only depict a clear relationship with dose with compounds that have been previously associated 

with DILI, but very limited predictability in differentiating compounds with “No DILI” 

assignment. There is a general acceptance of BSEP inhibitor as being a source of 

toxicity.  However, according to our analysis of DILI this is not true.  What we find is that most 

DILI occurs with BDDCS Class 2 compounds and almost all BSEP substrates and inhibitors are 
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Class 2 compounds, but we do not see a relationship with the strength of BSEP inhibition and 

toxicity, which makes us believe that the generally held hypothesis is incorrect.  

Thus, our review of the BDDCS analysis alongside other DILI toxicity potential 

biomarkers show that none of the current in vitro methodologies are sufficiently accurate and 

effective in allowing early identification of new molecular entities that will be DILI free. The 

comparison of proposed DILI predictive methodology with BDDCS assignment offers a useful 

tool by which new DILI predictive hypotheses can be evaluated. Furthermore, using BDDCS 

classification and finding that a compound is Class 2, one would recognize that priority should 

be given to more aggressively investigate its DILI potential in mechanistic DILI assays.  Some 

DILI risk factors can be mitigated during the drug design/development process to identify drugs 

with better chemical attributes with reduced potential to cause human DILI. Hopefully, 

development of mechanism based toxicity endpoints, such as those proposed by Chen et al. (51), 

and Schadt et al. (42),  as discussed above, will greatly improve future predictability.   

Our review of this work has clearly pointed out that many of the published “predictive 

DILI” hypotheses do no better than just avoiding BDDCS Class 2 drugs. We propose that 

comparison of predictive DILI hypotheses with BDDCS class assignment is a useful exercise in 

determining the relevance of predictive metrics. The results presented herein illustrate how 

BDDCS can be applied to better understand clinically observed hepatotoxicity and aid in the 

DILI risk assessment of new molecular entities.  
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