Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Reducing Visceral-Motion-Related Artifacts on the Liver with Dual-Energy CT: A Comparison of Four Different CT Scanner Techniques

Abstract

Purpose: To assess the influence of different dual-energy CT (DECT) scanner techniques on the severity of visceral-motion-related artifacts on the liver. Methods: Two independent readers retrospectively evaluated visceral-motion-related artifacts on the liver on 120-kVp(-like), monoenergetic low- and high-keV, virtual non-contrast (VNC), and iodine images acquired on a dual-source, twin-beam, fast kV-switching, and dual-layer spectral detector scanner. Quantitative assessment: Depth of artifact extension into the liver, measurements of Hounsfield Units (HU) and iodine concentrations. Qualitative assessment: Five-point Likert scale (1 = none to 5 = severe). Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests. Results: 615 contrast-enhanced routine clinical DECT scans of the abdomen were evaluated in 458 consecutive patients (mean age: 61 ± 14 years, 331 men). For dual-source and twin-beam scanners, depth of extension of artifacts into the liver was significantly shorter and artifact severity scores significantly lower for 120-kVp-like images compared with the other image reconstructions (p < 0.001, each). For fast kV-switching and spectral detector scanner images, depth of extension of artifacts was significantly shorter and artifact severity scores significantly lower for iodine images (p < 0.001, each). Dual-source 120-kVp-like and spectral detector iodine images reduced artifacts to an extent that no significant difference in HU or iodine concentrations between artifacts (dual-source: 97 HU, spectral detector: 1.9 mg/mL) and unaffected liver parenchyma (dual-source: 108 HU, spectral detector: 2.1 mg/mL) was measurable (dual-source: p = 0.32, spectral detector: p = 0.15). Conclusion: Visceral-motion-related artifacts on the liver can be markedly reduced by viewing 120-kVp-like images for dual-source and twin-beam DECT scanners and iodine images for fast kV-switching and dual-layer spectral detector DECT scanners.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View