Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes

Abstract

Achieving perovskite-based high-color purity blue-emitting light-emitting diodes (LEDs) is still challenging. Here, we report successful synthesis of a series of blue-emissive two-dimensional Ruddlesden-Popper phase single crystals and their high-color purity blue-emitting LED demonstrations. Although this approach successfully achieves a series of bandgap emissions based on the different layer thicknesses, it still suffers from a conventional temperature-induced device degradation mechanism during high-voltage operations. To understand the underlying mechanism, we further elucidate temperature-induced device degradation by investigating the crystal structural and spectral evolution dynamics via in situ temperature-dependent single-crystal x-ray diffraction, photoluminescence (PL) characterization, and density functional theory calculation. The PL peak becomes asymmetrically broadened with a marked intensity decay, as temperature increases owing to [PbBr6]4- octahedra tilting and the organic chain disordering, which results in bandgap decrease. This study indicates that careful heat management under LED operation is a key factor to maintain the sharp and intense emission.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View