Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Dose simulations of an early 20th century kilovoltage pneumonia radiotherapy technique performed with a modern fluoroscope

Abstract

To simulate an early 20th century viral pneumonia radiotherapy treatment using modern fluoroscopy and evaluated it according to current dose guidelines. Monte Carlo was used to assess the dose distribution on an anthropomorphic phantom. Critical organs were: skin, breasts, esophagus, ribs, vertebrae, heart, thymus, and spinal cord. A 100 kVp beam with 3 mm Al HVL, 25 × 25 cm2 posterior-anterior (PA) field and 50 cm source-to-surface distance were simulated. Simulations had a resolution of 0.4 × 0.4 × 0.06 cm3 and a 6% uncertainty. Hundred percent dose was normalized to the skin surface and results were displayed in axial, coronal, and sagittal planes. Dose volume histograms were generated in MATLAB for further analysis. Prescription doses of 0.3, 0.5, and 1.0 Gy were applied to the 15% isodose for organ-dose comparison to current tolerances and potential risk of detriment. Ninety-five and ninety-seven percent of the right and left lung volumes, respectively, were well-covered by the 15% isodose line. For the 0.3, 0.5, and 1.0 Gy prescriptions, the maximum skin doses were 2.9, 4.8, and 9.6 Gy compared to a 2.0 Gy transient erythema dose threshold; left/right lung maximum doses were 1.44/1.46, 2.4/2.4, and 4.8/4.9 Gy compared to a 6.5 Gy pneumonitis and 30 Gy fibrosis thresholds; maximum heart doses were 0.5, 0.9, and 1.8 Gy compared to the 0.5 Gy ICRP-recommendation; maximum spinal cord doses were 1.4, 2.3, and 4.6 Gy compared to 7.0 Gy single fraction dose threshold. Maximum doses to other critical organs were below modern dose thresholds. A 100 kVp PA field could deliver a 0.3 Gy or 0.5 Gy dose without risk of complications. However, a 1.0 Gy dose treatment could be problematic. Critical organ doses could be further reduced if more than one treatment field is used.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View