Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Simultaneous Metabolic and Perfusion Imaging Using Hyperpolarized 13C MRI Can Evaluate Early and Dose-Dependent Response to Radiation Therapy in a Prostate Cancer Mouse Model

Abstract

Purpose

To investigate use of a novel imaging approach, hyperpolarized (HP) 13C magnetic resonance imaging (MRI) for simultaneous metabolism and perfusion assessment, to evaluate early and dose-dependent response to radiation therapy (RT) in a prostate cancer mouse model.

Methods and materials

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice (n = 18) underwent single-fraction RT (4-14 Gy steep dose across the tumor) and were imaged serially at pre-RT baseline and 1, 4, and 7 days after RT using HP 13C MRI with combined [1-13C]pyruvate (metabolic active agent) and [13C]urea (perfusion agent), coupled with conventional multiparametric 1H MRI including T2-weighted, dynamic contrast-enhanced, and diffusion-weighted imaging. Tumor tissues were collected 4 and 7 days after RT for biological correlative studies.

Results

We found a significant decrease in HP pyruvate-to-lactate conversion in tumors responding to RT, with concomitant significant increases in HP pyruvate-to-alanine conversion and HP urea signal; the opposite changes were observed in tumors resistant to RT. Moreover, HP lactate change was dependent on radiation dose; tumor regions treated with higher radiation doses (10-14 Gy) exhibited a greater decrease in HP lactate signal than low-dose regions (4-7 Gy) as early as 1 day post-RT, consistent with lactate dehydrogenase enzyme activity and expression data. We also found that HP [13C]urea MRI provided assessments of tumor perfusion similar to those provided by 1H dynamic contrast-enhanced MRI in this animal model. However, apparent diffusion coefficien , a conventional 1H MRI functional biomarker, did not exhibit statistically significant changes within 7 days after RT.

Conclusion

These results demonstrate the ability of HP 13C MRI to monitor radiation-induced physiologic changes in a timely and dose-dependent manner, providing the basic science premise for further clinical investigation and translation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View