Skip to main content
eScholarship
Open Access Publications from the University of California

Coupled thermal-hydrological-mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth

Abstract

We numerically model the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We consider a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350 °C as a conceptual TES model, and simulate its operation for thirty years. At first, the insulator performance are not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator are examined for different insulator thicknesses. The key concerns are hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increases in the early stage and, consequently, evaporation of groundwater occurs, raising the fluid pressure. However, evaporation and multiphase flow does not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350 °C) heat source. The simulations showed that large-scale heat flow around a cavern is expected to be conduction-dominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern leads to a ground surface uplift on the order of a few centimeters, and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis shows that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View